In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schr¨odinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.

Borrelli, W., Carlone, R., Bifurcating standing waves for effective equations in gapped honeycomb structures, <<NANOSYSTEMS>>, 2021; 12 (1): 5-14. [doi:10.17586/2220-8054-2021-12-1-5-14] [http://hdl.handle.net/10807/171309]

Bifurcating standing waves for effective equations in gapped honeycomb structures

Borrelli, William;
2021

Abstract

In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schr¨odinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.
2021
Inglese
Borrelli, W., Carlone, R., Bifurcating standing waves for effective equations in gapped honeycomb structures, <<NANOSYSTEMS>>, 2021; 12 (1): 5-14. [doi:10.17586/2220-8054-2021-12-1-5-14] [http://hdl.handle.net/10807/171309]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/171309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact