We prove sharp pointwise decay estimates for critical Dirac equations on $ mathbb{R}^n$ with $ ngeq 2$. They appear for instance in the study of critical Dirac equations on compact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb structures. For the latter case, we find excited states with an explicit asymptotic behavior. Moreover, we provide some classification results both for ground states and for excited states.

Borrelli, W., Frank, R. L., Sharp decay estimates for critical Dirac equations, <<TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY>>, 2020; 373 (3): 2045-2070. [doi:10.1090/tran/7958] [http://hdl.handle.net/10807/171304]

Sharp decay estimates for critical Dirac equations

Borrelli, William;
2019

Abstract

We prove sharp pointwise decay estimates for critical Dirac equations on $ mathbb{R}^n$ with $ ngeq 2$. They appear for instance in the study of critical Dirac equations on compact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb structures. For the latter case, we find excited states with an explicit asymptotic behavior. Moreover, we provide some classification results both for ground states and for excited states.
2019
Inglese
Borrelli, W., Frank, R. L., Sharp decay estimates for critical Dirac equations, <<TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY>>, 2020; 373 (3): 2045-2070. [doi:10.1090/tran/7958] [http://hdl.handle.net/10807/171304]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/171304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact