The services and applications being deployed nowa days in cloud environments are characterized by variable intensity and resource requirements. The variability of these workloads coupled with their heterogeneity affects the cost associated with the cloud infrastructure and the performance levels that can be satisfied. In these complex scenarios, resource provisioning policies have to take into account the actual workloads being processed and pro-actively anticipate in a timely manner the changes in workload intensity and characteristics. To support this decision process, we propose an integrated approach – that combines various workload characterization techniques – for modeling and predicting workload access patterns. The application of this approach has shown the importance of identifying models that specifically capture and reproduce the dynamics of these patterns and consider at the same time their peculiarities.
Calzarossa, M. C., Della Vedova, M. L., Massari, L., Nebbione, G., Tessera, D., Modeling and Predicting Dynamics of Heterogeneous Workloads for Cloud Environments, Paper, in 2019 IEEE Symposium on Computers and Communication (ISCC), (Barcelona (Spain), 2018-06-29), IEEE, NEW YORK -- USA 2019: 1-7. 10.1109/ISCC47284.2019.8969761 [http://hdl.handle.net/10807/159608]
Modeling and Predicting Dynamics of Heterogeneous Workloads for Cloud Environments
Della Vedova, Marco Luigi;Massari, Luisa;Tessera, Daniele
2019
Abstract
The services and applications being deployed nowa days in cloud environments are characterized by variable intensity and resource requirements. The variability of these workloads coupled with their heterogeneity affects the cost associated with the cloud infrastructure and the performance levels that can be satisfied. In these complex scenarios, resource provisioning policies have to take into account the actual workloads being processed and pro-actively anticipate in a timely manner the changes in workload intensity and characteristics. To support this decision process, we propose an integrated approach – that combines various workload characterization techniques – for modeling and predicting workload access patterns. The application of this approach has shown the importance of identifying models that specifically capture and reproduce the dynamics of these patterns and consider at the same time their peculiarities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.