(degenerate case), with a bounded reaction f and Dirichlet type conditions in a smooth domain Ω. By means of barriers, a nonlocal superposition principle, and the comparison principle, we prove that any weak solution u of such equation exhibits a weighted Holder regularity up to the boundary

Iannizzotto, A., Mosconi, S., Squassina, M., Fine boundary regularity for the degenerate fractional p-Laplacian, <<JOURNAL OF FUNCTIONAL ANALYSIS>>, 2020; (Volume 279, Issue 8, 1 November 2020, 108659): 1-54. [doi:10.1016/j.jfa.2020.108659] [http://hdl.handle.net/10807/154901]

Fine boundary regularity for the degenerate fractional p-Laplacian

Squassina, Marco
2020

Abstract

(degenerate case), with a bounded reaction f and Dirichlet type conditions in a smooth domain Ω. By means of barriers, a nonlocal superposition principle, and the comparison principle, we prove that any weak solution u of such equation exhibits a weighted Holder regularity up to the boundary
Inglese
Iannizzotto, A., Mosconi, S., Squassina, M., Fine boundary regularity for the degenerate fractional p-Laplacian, <<JOURNAL OF FUNCTIONAL ANALYSIS>>, 2020; (Volume 279, Issue 8, 1 November 2020, 108659): 1-54. [doi:10.1016/j.jfa.2020.108659] [http://hdl.handle.net/10807/154901]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/154901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 15
social impact