In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.

Borrelli, A., Giantesio, G., Patria, M. C., Uniqueness and decay results for a Boussinesquian nanofluid, <<INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS>>, 2019; 32 (4): 563-578. [doi:10.12732/ijam.v32i4.2] [http://hdl.handle.net/10807/153709]

Uniqueness and decay results for a Boussinesquian nanofluid

Giantesio, Giulia
;
2019

Abstract

In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.
2019
Inglese
Borrelli, A., Giantesio, G., Patria, M. C., Uniqueness and decay results for a Boussinesquian nanofluid, <<INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS>>, 2019; 32 (4): 563-578. [doi:10.12732/ijam.v32i4.2] [http://hdl.handle.net/10807/153709]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/153709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact