The genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9). CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, it has a higher success rate, and it is more versatile and less expensive. This review focuses on the recent advances in plant protection against virus, bacteria and fungal diseases using CRISPR/Cas9 technology in model plants and crops, targeting the pathogen genome or editing susceptibility genes in crop species such as rice and wheat. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Le tecnologie del “genome editing” sono progredite rapidamente negli ultimi anni e per questo sono diventate uno dei più importanti strumenti per il miglioramento della resistenza ai patogeni nelle piante. Recentemente, sono emersi metodi per indurre modificazioni sito-specifiche mediante l’impiego di meganucleasi, nucleasi “a dito di zinco” (Zinc-Finger Nucleases, ZFN), nucleasi TALE (Transcription Activator-Like Effector Nucleases, TALEN) e nucleasi basate sul sistema Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9). Il sistema CRISPR/Cas ha largamente superato le altre tecnologie di “genome editing”, in quanto più semplice da utilizzare, presenta una maggiore probabilità di successo, è maggiormente versatile e meno costoso. Questa relazione si focalizza sui recenti sviluppi nella difesa delle piante contro le malattie causate da virus, batteri e funghi mediante l’impiego della tecnologia del CRISPR/Cas9, avendo come bersaglio il genoma dei patogeni o modificando geni di suscettibilità in specie come riso e frumento. Dopo anni trascorsi nella lettura e decodificazione dei genomi, i ricercatori sono ora in grado di modificarli e riscriverli per sviluppare nuove colture resistenti a specifici parassiti e patogeni.
Marocco, A., Borrelli, V. M. G., Lanubile, A., Uso dell’approccio CRISPR/Cas per lo studio della resistenza dei cereali ai patogeni, in Atti dei Georgofili 2018, (Firenze, 05-05 December 2018), Polistampa, Firenze 2019:2019 343-348 [http://hdl.handle.net/10807/151588]
Uso dell’approccio CRISPR/Cas per lo studio della resistenza dei cereali ai patogeni
Marocco, Adriano
;Borrelli, Virginia Maria Grazia;Lanubile, Alessandra
2019
Abstract
The genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9). CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, it has a higher success rate, and it is more versatile and less expensive. This review focuses on the recent advances in plant protection against virus, bacteria and fungal diseases using CRISPR/Cas9 technology in model plants and crops, targeting the pathogen genome or editing susceptibility genes in crop species such as rice and wheat. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.