We study holographic subregion volume complexity for a line segment in the AdS3 Vaidya geometry. On the field theory side, this gravity background corresponds to a sudden quench which leads to the thermalization of the strongly-coupled dual conformal field theory. We find the time-dependent extremal volume surface by numerically solving a partial differential equation with boundary condition given by the Hubeny-Rangamani-Takayanagi surface, and we use this solution to compute holographic subregion complexity as a function of time. Approximate analytical expressions valid at early and at late times are derived.

Auzzi, R., Nardelli, G., Schaposnik Massolo, F. I., Tallarita, G., Zenoni, N., On volume subregion complexity in Vaidya spacetime, <<JOURNAL OF HIGH ENERGY PHYSICS>>, 2019; (1911): 0-26. [doi:10.1007/JHEP11(2019)098] [http://hdl.handle.net/10807/146062]

On volume subregion complexity in Vaidya spacetime

Auzzi, Roberto;Nardelli, Giuseppe;Zenoni, Nicolo'
2019

Abstract

We study holographic subregion volume complexity for a line segment in the AdS3 Vaidya geometry. On the field theory side, this gravity background corresponds to a sudden quench which leads to the thermalization of the strongly-coupled dual conformal field theory. We find the time-dependent extremal volume surface by numerically solving a partial differential equation with boundary condition given by the Hubeny-Rangamani-Takayanagi surface, and we use this solution to compute holographic subregion complexity as a function of time. Approximate analytical expressions valid at early and at late times are derived.
2019
Inglese
Auzzi, R., Nardelli, G., Schaposnik Massolo, F. I., Tallarita, G., Zenoni, N., On volume subregion complexity in Vaidya spacetime, <<JOURNAL OF HIGH ENERGY PHYSICS>>, 2019; (1911): 0-26. [doi:10.1007/JHEP11(2019)098] [http://hdl.handle.net/10807/146062]
File in questo prodotto:
File Dimensione Formato  
Auzzi2019_Article_OnVolumeSubregionComplexityInV.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 945.35 kB
Formato Unknown
945.35 kB Unknown Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/146062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact