The g-and-h distribution is able to handle well the complex behavior of loss data and applied to operational losses suggests that indirect inference estimators of VaR outperform quantile-based estimators.

Bee, M., Hambuckers, J., Trapin, L., Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach, <<QUANTITATIVE FINANCE>>, 2019; 19 (8): 1255-1266. [doi:10.1080/14697688.2019.1580762] [http://hdl.handle.net/10807/141449]

Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach

Trapin, Luca
2019

Abstract

The g-and-h distribution is able to handle well the complex behavior of loss data and applied to operational losses suggests that indirect inference estimators of VaR outperform quantile-based estimators.
2019
Inglese
Bee, M., Hambuckers, J., Trapin, L., Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach, <<QUANTITATIVE FINANCE>>, 2019; 19 (8): 1255-1266. [doi:10.1080/14697688.2019.1580762] [http://hdl.handle.net/10807/141449]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/141449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact