We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L 1 appearing naturally in these contexts.

Nguyen, H., Pinamonti, A., Squassina, M., Vecchi, E., New characterization of magnetic Sobolev spaces, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2018; 7 (1): 227-245. [doi:10.1515/anona-2017-0239] [http://hdl.handle.net/10807/132126]

New characterization of magnetic Sobolev spaces

Squassina, Marco
Membro del Collaboration Group
;
2018

Abstract

We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L 1 appearing naturally in these contexts.
2018
Inglese
Nguyen, H., Pinamonti, A., Squassina, M., Vecchi, E., New characterization of magnetic Sobolev spaces, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2018; 7 (1): 227-245. [doi:10.1515/anona-2017-0239] [http://hdl.handle.net/10807/132126]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/132126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact