Mindfulness meditation is at present deemed also as form of mental training that may allow for empowering focusing, attention regulation, and executive control skills. Nonetheless, the potential of traditional mindfulness practice for improving cognitive and neural efficiency is affected by two critical requirements—intensity of exercise and perseverance to practice—which represent a known limitation of accessibility to meditation practices. It has been suggested that the impact of such limitations might be reduced thanks to the support of external devices. The present study aims at testing the efficacy of an intensive technology-mediated intervention based on mindful practices and supported by a brain-sensing device to optimize cognitive performance and neural efficiency. Forty participants took part in the study and were randomly divided in an active control and an experimental group. Both groups were involved in a structured intervention, which lasted 4 weeks and was constituted by brief daily activities. The experimental group, differently from the active control, underwent mindfulness-based practices with the support of a dedicated device. Analyses highlighted increased electrophysiological responsiveness indices at rest and frequency profiles consistent with a relaxed mindset in the experimental group. Participants in the experimental group also showed improved electrophysiological markers of attention regulation and improved cognitive performance, as measured by a complex reaction times task. Findings hint at the potential of the investigated technology-mediated mindfulness practice for enhancing cognitive performance and for inducing consistent modulations of neural efficiency markers.
Crivelli, D., Fronda, G., Venturella, I., Balconi, M., Supporting mindfulness practices with brain-sensing devices. Cognitive and electrophysiological evidences, <<MINDFULNESS>>, 2019; 10 (2): 301-311. [doi:10.1007/s12671-018-0975-3] [http://hdl.handle.net/10807/130973]
Supporting mindfulness practices with brain-sensing devices. Cognitive and electrophysiological evidences
Crivelli, Davide
;Fronda, Giulia;Venturella, Irene;Balconi, Michela
2019
Abstract
Mindfulness meditation is at present deemed also as form of mental training that may allow for empowering focusing, attention regulation, and executive control skills. Nonetheless, the potential of traditional mindfulness practice for improving cognitive and neural efficiency is affected by two critical requirements—intensity of exercise and perseverance to practice—which represent a known limitation of accessibility to meditation practices. It has been suggested that the impact of such limitations might be reduced thanks to the support of external devices. The present study aims at testing the efficacy of an intensive technology-mediated intervention based on mindful practices and supported by a brain-sensing device to optimize cognitive performance and neural efficiency. Forty participants took part in the study and were randomly divided in an active control and an experimental group. Both groups were involved in a structured intervention, which lasted 4 weeks and was constituted by brief daily activities. The experimental group, differently from the active control, underwent mindfulness-based practices with the support of a dedicated device. Analyses highlighted increased electrophysiological responsiveness indices at rest and frequency profiles consistent with a relaxed mindset in the experimental group. Participants in the experimental group also showed improved electrophysiological markers of attention regulation and improved cognitive performance, as measured by a complex reaction times task. Findings hint at the potential of the investigated technology-mediated mindfulness practice for enhancing cognitive performance and for inducing consistent modulations of neural efficiency markers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.