Nanotubular molecular self-aggregates are characterized by a high degree of symmetry and they are fundamental systems for light-harvesting and energy transport. While coherent effects are thought to be at the basis of their high efficiency, the relationship between structure, coherence and functionality is still an open problem. We analyse natural nanotubes present in Green Sulphur Bacteria. We show that they have the ability to support macroscopic coherent states, i.e. delocalized excitonic states coherently spread over many molecules, even at room temperature. Specifically, assuming a canonical thermal state we find, in natural structures, a large thermal coherence length, of the order of 1000 molecules. By comparing natural structures with other mathematical models, we show that this macroscopic coherence cannot be explained either by the magnitude of the nearest-neighbour coupling between the molecules, which would induce a thermal coherence length of the order of 10 molecules, nor by the presence of long-range interactions between the molecules. Indeed we prove that the existence of macroscopic coherent states is an emergent property of such structures due to the interplay between geometry and cooperativity (superradiance and super-transfer). In order to prove that, we give evidence that the lowest part of the spectrum of natural systems is determined by a cooperatively enhanced coupling (super-transfer) between the eigenstates of modular sub-units of the whole structure. Due to this enhanced coupling strength, the density of states is lowered close to the ground state, thus boosting the thermal coherence length. As a striking consequence of the lower density of states, an energy gap between the excitonic ground state and the first excited state emerges. Such energy gap increases with the length of the nanotube (instead of decreasing as one would expect), up to a critical system size which is close to the length of the natural complexes considered.

Gullì, M., Valzelli, A., Mattiotti, F., Angeli, M., Borgonovi, F., Celardo, G. L., Macroscopic coherence as an emergent property in molecular nanotubes, <<NEW JOURNAL OF PHYSICS>>, 2019; 21 (1): 1-27. [doi:10.1088/1367-2630/aaf01a] [http://hdl.handle.net/10807/129331]

Macroscopic coherence as an emergent property in molecular nanotubes

Mattiotti, Francesco
Membro del Collaboration Group
;
Borgonovi, Fausto
Membro del Collaboration Group
;
2019

Abstract

Nanotubular molecular self-aggregates are characterized by a high degree of symmetry and they are fundamental systems for light-harvesting and energy transport. While coherent effects are thought to be at the basis of their high efficiency, the relationship between structure, coherence and functionality is still an open problem. We analyse natural nanotubes present in Green Sulphur Bacteria. We show that they have the ability to support macroscopic coherent states, i.e. delocalized excitonic states coherently spread over many molecules, even at room temperature. Specifically, assuming a canonical thermal state we find, in natural structures, a large thermal coherence length, of the order of 1000 molecules. By comparing natural structures with other mathematical models, we show that this macroscopic coherence cannot be explained either by the magnitude of the nearest-neighbour coupling between the molecules, which would induce a thermal coherence length of the order of 10 molecules, nor by the presence of long-range interactions between the molecules. Indeed we prove that the existence of macroscopic coherent states is an emergent property of such structures due to the interplay between geometry and cooperativity (superradiance and super-transfer). In order to prove that, we give evidence that the lowest part of the spectrum of natural systems is determined by a cooperatively enhanced coupling (super-transfer) between the eigenstates of modular sub-units of the whole structure. Due to this enhanced coupling strength, the density of states is lowered close to the ground state, thus boosting the thermal coherence length. As a striking consequence of the lower density of states, an energy gap between the excitonic ground state and the first excited state emerges. Such energy gap increases with the length of the nanotube (instead of decreasing as one would expect), up to a critical system size which is close to the length of the natural complexes considered.
Inglese
Gullì, M., Valzelli, A., Mattiotti, F., Angeli, M., Borgonovi, F., Celardo, G. L., Macroscopic coherence as an emergent property in molecular nanotubes, <<NEW JOURNAL OF PHYSICS>>, 2019; 21 (1): 1-27. [doi:10.1088/1367-2630/aaf01a] [http://hdl.handle.net/10807/129331]
File in questo prodotto:
File Dimensione Formato  
njp2019.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/129331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact