Given two parallelisms of a projective space we describe a construction, called blending, that yields a (possibly new) parallelism of this space. For a projective double space (P, ‖ ℓ, ‖ r) over a quaternion skew field we characterise the “Clifford-like” parallelisms, i.e. the blends of the Clifford parallelisms ‖ ℓ and ‖ r, in a geometric and an algebraic way. Finally, we establish necessary and sufficient conditions for the existence of Clifford-like parallelisms that are not Clifford.
Havlicek, H., Pasotti, S., Pianta, S., Clifford-like parallelisms, <<JOURNAL OF GEOMETRY>>, 2019; 110 (1): 1-18. [doi:10.1007/s00022-018-0456-9] [http://hdl.handle.net/10807/129192]
Clifford-like parallelisms
Pianta, Silvia
2019
Abstract
Given two parallelisms of a projective space we describe a construction, called blending, that yields a (possibly new) parallelism of this space. For a projective double space (P, ‖ ℓ, ‖ r) over a quaternion skew field we characterise the “Clifford-like” parallelisms, i.e. the blends of the Clifford parallelisms ‖ ℓ and ‖ r, in a geometric and an algebraic way. Finally, we establish necessary and sufficient conditions for the existence of Clifford-like parallelisms that are not Clifford.File | Dimensione | Formato | |
---|---|---|---|
Clifford-like Parallelisms (J.Geom 2019).pdf
non disponibili
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
549.49 kB
Formato
Unknown
|
549.49 kB | Unknown | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.