This paper offers a new approach to modeling the distribution of a portfolio composed of either asset returns or insurance losses. To capture the leptokurtosis, which is inherent in most financial series, data are modeled by using Gram-Charlier (GC) expansions. Since we are interested in operating with several series simultaneously, the distribution of the sum of GC random variables is derived. This latter turns out to be a tail-sensitive density, suitable for modeling the distribution of a portfolio return-losses and, accordingly, can be conveniently adopted for computing risk measures such as the value at risk and the expected shortfall as well as some performance measures based on its partial moments. The closed form expressions of these risk measures are derived for cases when the density of a portfolio is the sum of GC expansions, either with the same or different kurtosis. An empirical application of this approach to a portfolio of financial asset indexes provides evidence of the comparative effectiveness of this technique in computing risk measures, both in and out of the sample period.

Zoia, M., Biffi, P., Nicolussi, F., Value at Risk and Expected Shortfall based on Gram-Charlier-like expansions, <<JOURNAL OF BANKING & FINANCE>>, 2018; (93): 92-104. [doi:10.1016/j.jbankfin.2018.06.001] [http://hdl.handle.net/10807/121340]

Value at Risk and Expected Shortfall based on Gram-Charlier-like expansions

Zoia, Maria
Methodology
;
Biffi, Paola
Membro del Collaboration Group
;
2018

Abstract

This paper offers a new approach to modeling the distribution of a portfolio composed of either asset returns or insurance losses. To capture the leptokurtosis, which is inherent in most financial series, data are modeled by using Gram-Charlier (GC) expansions. Since we are interested in operating with several series simultaneously, the distribution of the sum of GC random variables is derived. This latter turns out to be a tail-sensitive density, suitable for modeling the distribution of a portfolio return-losses and, accordingly, can be conveniently adopted for computing risk measures such as the value at risk and the expected shortfall as well as some performance measures based on its partial moments. The closed form expressions of these risk measures are derived for cases when the density of a portfolio is the sum of GC expansions, either with the same or different kurtosis. An empirical application of this approach to a portfolio of financial asset indexes provides evidence of the comparative effectiveness of this technique in computing risk measures, both in and out of the sample period.
2018
Inglese
Zoia, M., Biffi, P., Nicolussi, F., Value at Risk and Expected Shortfall based on Gram-Charlier-like expansions, <<JOURNAL OF BANKING & FINANCE>>, 2018; (93): 92-104. [doi:10.1016/j.jbankfin.2018.06.001] [http://hdl.handle.net/10807/121340]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378426618301195-main.pdf

Open Access dal 01/08/2019

Tipologia file ?: Postprint (versione finale dell’autore successiva alla peer-review)
Licenza: Creative commons
Dimensione 877.65 kB
Formato Adobe PDF
877.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/121340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact