In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.

Mazzoleni, D. C. S., Pratelli, A., Existence of minimizers for spectral problems, <<JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES>>, 2013; 100 (3): 433-453. [doi:10.1016/j.matpur.2013.01.008] [http://hdl.handle.net/10807/118947]

Existence of minimizers for spectral problems

Mazzoleni, Dario Cesare Severo;
2013

Abstract

In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.
2013
Inglese
Mazzoleni, D. C. S., Pratelli, A., Existence of minimizers for spectral problems, <<JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES>>, 2013; 100 (3): 433-453. [doi:10.1016/j.matpur.2013.01.008] [http://hdl.handle.net/10807/118947]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/118947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact