We propose a model to extract significant risk spatial interactions between countries adopting the Graphical Lasso algorithm, used in graph theory to sort out spurious conditional correlations. In this context, the major issue is the definition of the penalization parameter. We propose a search algorithm aimed at the best separation of the variables (expressed in terms of conditional dependence) given an a priori desired partition. The case study focuses on Credit Default Swap (CDS) returns over the period 2009–2017. The proposed algorithm is used to estimate the spatial systemic risk relationship between Peripheral and Core Countries in the Euro Area.

Arbia, G., Bramante, R., Facchinetti, S., Zappa, D., Modelling Inter-country Spatial Financial Interaction with Graphical Lasso: An application to Sovereign co-risk Evaluation, <<REGIONAL SCIENCE AND URBAN ECONOMICS>>, 2018; 70 (70): 72-79. [doi:10.1016/j.regsciurbeco.2018.02.006] [http://hdl.handle.net/10807/116306]

Modelling Inter-country Spatial Financial Interaction with Graphical Lasso: An application to Sovereign co-risk Evaluation

Arbia, Giuseppe
Primo
;
Bramante, Riccardo
Secondo
;
Facchinetti, Silvia
Penultimo
;
Zappa, Diego
Ultimo
2018

Abstract

We propose a model to extract significant risk spatial interactions between countries adopting the Graphical Lasso algorithm, used in graph theory to sort out spurious conditional correlations. In this context, the major issue is the definition of the penalization parameter. We propose a search algorithm aimed at the best separation of the variables (expressed in terms of conditional dependence) given an a priori desired partition. The case study focuses on Credit Default Swap (CDS) returns over the period 2009–2017. The proposed algorithm is used to estimate the spatial systemic risk relationship between Peripheral and Core Countries in the Euro Area.
2018
Inglese
Arbia, G., Bramante, R., Facchinetti, S., Zappa, D., Modelling Inter-country Spatial Financial Interaction with Graphical Lasso: An application to Sovereign co-risk Evaluation, <<REGIONAL SCIENCE AND URBAN ECONOMICS>>, 2018; 70 (70): 72-79. [doi:10.1016/j.regsciurbeco.2018.02.006] [http://hdl.handle.net/10807/116306]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0166046217300595-main[2].pdf

Open Access dal 01/06/2020

Tipologia file ?: Postprint (versione finale dell’autore successiva alla peer-review)
Licenza: Creative commons
Dimensione 978.03 kB
Formato Adobe PDF
978.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/116306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact