Let X be a topological vector space, Y subset of X a subspace, and A subset of X an open convex set containing 0. We are interested in extendability of a continuous convex function f: A boolean AND Y -> R to a continuous convex function F: A -> R. We characterize such extendability being valid: (a) for a given f; (b) for every f. The case (b) for A = X generalizes results from a paper by J. Borwein, V. Montesinos and J. Vanderwerff, and from another one by L. Zajicek and the second-named author. We also show that if X is locally convex and X/Y is "conditionally separable" then the couple (X, Y) satisfies the CE-property, saying that the above extendability holds for A = X and every f. It follows that every couple (X, Y) has the CE-property for the weak topology.We consider also a stronger SCE-property saying that the above extendability is true for every A and every f. A deeper study of the SCE-property will appear in a subsequent paper.

De Bernardi, C. A., Vesely, L., Extension of Continuous Convex Functions from Subspaces I, <<JOURNAL OF CONVEX ANALYSIS>>, 2014; 21 (4): 1065-1084 [http://hdl.handle.net/10807/113765]

Extension of Continuous Convex Functions from Subspaces I

De Bernardi, Carlo Alberto;
2014

Abstract

Let X be a topological vector space, Y subset of X a subspace, and A subset of X an open convex set containing 0. We are interested in extendability of a continuous convex function f: A boolean AND Y -> R to a continuous convex function F: A -> R. We characterize such extendability being valid: (a) for a given f; (b) for every f. The case (b) for A = X generalizes results from a paper by J. Borwein, V. Montesinos and J. Vanderwerff, and from another one by L. Zajicek and the second-named author. We also show that if X is locally convex and X/Y is "conditionally separable" then the couple (X, Y) satisfies the CE-property, saying that the above extendability holds for A = X and every f. It follows that every couple (X, Y) has the CE-property for the weak topology.We consider also a stronger SCE-property saying that the above extendability is true for every A and every f. A deeper study of the SCE-property will appear in a subsequent paper.
2014
Inglese
De Bernardi, C. A., Vesely, L., Extension of Continuous Convex Functions from Subspaces I, <<JOURNAL OF CONVEX ANALYSIS>>, 2014; 21 (4): 1065-1084 [http://hdl.handle.net/10807/113765]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/113765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact