Aim: Identifying the best care for a patient can be extremely challenging. To support the creation of multifactorial Decision Support Systems (DSSs), we propose an Umbrella Protocol, focusing on prostate cancer. Materials & methods: The PRODIGE project consisted of a workflow for standardizing data, and procedures, to create a consistent dataset useful to elaborate DSSs. Techniques from classical statistics and machine learning will be adopted. The general protocol accepted by our Ethical Committee can be downloaded from cancerdata.org. Results: A standardized knowledge sharing process has been implemented by using a semi-formal ontology for the representation of relevant clinical variables. Conclusion: The development of DSSs, based on standardized knowledge, could be a tool to achieve a personalized decision-making.

Alitto, A. R., Gatta, R., Vanneste, B., Vallati, M., Meldolesi, E., Damiani, A., Lanzotti, V., Mattiucci, G. C., Frascino, V., Masciocchi, C., Catucci, F., Dekker, A., Lambin, P., Valentini, V., Mantini, G., PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE, <<FUTURE ONCOLOGY>>, 2017; 13 (24): 2171-2181. [doi:10.2217/fon-2017-0142] [http://hdl.handle.net/10807/111833]

PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE

Alitto, Anna Rita;Gatta, Roberto;Meldolesi, Elisa;Damiani, Andrea;Mattiucci, Gian Carlo;Frascino, Vincenzo;Masciocchi, Carlotta;Catucci, Francesco;Dekker, Alain;Valentini, Vincenzo;Mantini, Giovanna
2017

Abstract

Aim: Identifying the best care for a patient can be extremely challenging. To support the creation of multifactorial Decision Support Systems (DSSs), we propose an Umbrella Protocol, focusing on prostate cancer. Materials & methods: The PRODIGE project consisted of a workflow for standardizing data, and procedures, to create a consistent dataset useful to elaborate DSSs. Techniques from classical statistics and machine learning will be adopted. The general protocol accepted by our Ethical Committee can be downloaded from cancerdata.org. Results: A standardized knowledge sharing process has been implemented by using a semi-formal ontology for the representation of relevant clinical variables. Conclusion: The development of DSSs, based on standardized knowledge, could be a tool to achieve a personalized decision-making.
2017
Inglese
Alitto, A. R., Gatta, R., Vanneste, B., Vallati, M., Meldolesi, E., Damiani, A., Lanzotti, V., Mattiucci, G. C., Frascino, V., Masciocchi, C., Catucci, F., Dekker, A., Lambin, P., Valentini, V., Mantini, G., PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE, <<FUTURE ONCOLOGY>>, 2017; 13 (24): 2171-2181. [doi:10.2217/fon-2017-0142] [http://hdl.handle.net/10807/111833]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/111833
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact