Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium, Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings.

Ponziani, F. R., Zocco, M. A., D'Aversa, F., Pompili, M., Gasbarrini, A., Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation, <<WORLD JOURNAL OF GASTROENTEROLOGY>>, 2017; 23 (25): 4491-4499. [doi:10.3748/wjg.v23.i25.4491] [http://hdl.handle.net/10807/104781]

Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation

Ponziani, Francesca Romana
;
Zocco, Maria Assunta
Secondo
;
D'Aversa, Francesca;Pompili, Maurizio
Penultimo
;
Gasbarrini, Antonio
Ultimo
2017

Abstract

Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium, Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings.
2017
Inglese
Ponziani, F. R., Zocco, M. A., D'Aversa, F., Pompili, M., Gasbarrini, A., Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation, <<WORLD JOURNAL OF GASTROENTEROLOGY>>, 2017; 23 (25): 4491-4499. [doi:10.3748/wjg.v23.i25.4491] [http://hdl.handle.net/10807/104781]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/104781
Citazioni
  • ???jsp.display-item.citation.pmc??? 43
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 102
social impact