Aroyl-pyrrole-hydroxy-amides (APHAs) are a new class of synthetic HDAC inhibitors recently described by us. Through three different docking procedures we designed, synthesized, and tested two new isomers of APHA lead compound 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1), compounds 3 and 4, characterized by different insertions of benzoyl and propenoylhydroxamate groups onto the pyrrole ring. Biological activities of 3 and 4 were predicted by computational tools up to 617-fold more potent than that of 1 against HDAC1; thus, 3 and 4 were synthesized and tested against both mouse HDAC1 and maize HD2 enzymes. Predictions of biological affinities (K(i) values) of 3 and 4, performed by a VALIDATE model (applied on either SAD or automatic DOCK or Autodock results) and by the Autodock internal scoring function, were in good agreement with experimental activities. Ligand/receptor positive interactions made by 3 and 4 into the catalytic pocket, in addition to those showed by 1, could at least in part account for their higher HDAC1 inhibitory activities. In particular, in mouse HDAC1 inhibitory assay 3 and 4 were 19- and 6-times more potent than 1, respectively, and 3 and 4 antimaize HD2 activities were 16- and 76-times higher than that of 1, 4 being as potent as SAHA in this assay. Compound 4, tested as antiproliferative and cytodifferentiating agent on MEL cells, showed dose-dependent growth inhibition and hemoglobin accumulation effects.
Ragno, R., Mai, A., Massa, S., Cerbara, I., Valente, S., Bottoni, P., Scatena, R., Jesacher, F., Loidl, P., Brosch, G., 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors. 3. Discovery of Novel Lead Compounds Through Structure-Based Drug Design and Docking Studies, <<JOURNAL OF MEDICINAL CHEMISTRY>>, 2004; (Marzo): 1351-1359 [http://hdl.handle.net/10807/10374]
3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors. 3. Discovery of Novel Lead Compounds Through Structure-Based Drug Design and Docking Studies
Bottoni, Patrizia;Scatena, Roberto;
2004
Abstract
Aroyl-pyrrole-hydroxy-amides (APHAs) are a new class of synthetic HDAC inhibitors recently described by us. Through three different docking procedures we designed, synthesized, and tested two new isomers of APHA lead compound 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1), compounds 3 and 4, characterized by different insertions of benzoyl and propenoylhydroxamate groups onto the pyrrole ring. Biological activities of 3 and 4 were predicted by computational tools up to 617-fold more potent than that of 1 against HDAC1; thus, 3 and 4 were synthesized and tested against both mouse HDAC1 and maize HD2 enzymes. Predictions of biological affinities (K(i) values) of 3 and 4, performed by a VALIDATE model (applied on either SAD or automatic DOCK or Autodock results) and by the Autodock internal scoring function, were in good agreement with experimental activities. Ligand/receptor positive interactions made by 3 and 4 into the catalytic pocket, in addition to those showed by 1, could at least in part account for their higher HDAC1 inhibitory activities. In particular, in mouse HDAC1 inhibitory assay 3 and 4 were 19- and 6-times more potent than 1, respectively, and 3 and 4 antimaize HD2 activities were 16- and 76-times higher than that of 1, 4 being as potent as SAHA in this assay. Compound 4, tested as antiproliferative and cytodifferentiating agent on MEL cells, showed dose-dependent growth inhibition and hemoglobin accumulation effects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.