In this paper we present a general method for computing the irreducible components of the permutation modules of the symmetric groups over a field $ F$ of characteristic 0. We apply this machinery to determine the decomposition into irreducible submodules of the $ F[S_n]$-permutation module on the right cosets of the normaliser in $ S_n$ of the subgroup generated by a permutation of type $ (3,3)$.

Franchi, C., Ivanov, A. A., Mainardis, M., Permutation modules for the symmetric group, <<PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY>>, 2017; 145 (Number 8, August): 3249-3262. [doi:https://doi.org/10.1090/proc/13474] [http://hdl.handle.net/10807/102133]

Permutation modules for the symmetric group

Franchi
Primo
;
2017

Abstract

In this paper we present a general method for computing the irreducible components of the permutation modules of the symmetric groups over a field $ F$ of characteristic 0. We apply this machinery to determine the decomposition into irreducible submodules of the $ F[S_n]$-permutation module on the right cosets of the normaliser in $ S_n$ of the subgroup generated by a permutation of type $ (3,3)$.
Inglese
Franchi, C., Ivanov, A. A., Mainardis, M., Permutation modules for the symmetric group, <<PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY>>, 2017; 145 (Number 8, August): 3249-3262. [doi:https://doi.org/10.1090/proc/13474] [http://hdl.handle.net/10807/102133]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/102133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact