CA 125 also known as mucin 16 or MUC16 is a large membrane glycoprotein belonging to the wide mucin family, encoded by the homonymous MUC16 gene. Following its discovery in the blood of some patients with specific types of cancers or other benign conditions, CA125 has found application as a tumor marker of ovarian cancer. Thirty years after its discovery, use of CA 125 is still FDA-recommended to monitor response to therapy in patients with epithelial ovarian cancer and to detect residual or recurrent disease in patients who have undergone first-line therapy and would be considered for second-look procedures. However, due to its limited specificity and sensitivity, CA 125 alone cannot still be an ideal biomarker. Increased clinical performance, in terms of better sensitivity and specificity in identifying epithelial ovarian cancer relapse, has been obtained by combined use of CA 125 with HE4, another ovarian cancer marker recently introduced in clinical use. Significant advancements have been achieved more recently, due to the introduction of FDA-approved ROMA and OVA1 algorithms to evaluate the risk of ovarian cancer for patients with a pelvic mass.
Bottoni, P., Scatena, R., The role of CA 125 as tumor marker: biochemical and clinical aspects, <<ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY>>, 2015; 2015 (867): 229-244. [doi:10.1007/978-94-017-7215-0_14] [http://hdl.handle.net/10807/101363]
The role of CA 125 as tumor marker: biochemical and clinical aspects
Bottoni, Patrizia;Scatena, Roberto
2015
Abstract
CA 125 also known as mucin 16 or MUC16 is a large membrane glycoprotein belonging to the wide mucin family, encoded by the homonymous MUC16 gene. Following its discovery in the blood of some patients with specific types of cancers or other benign conditions, CA125 has found application as a tumor marker of ovarian cancer. Thirty years after its discovery, use of CA 125 is still FDA-recommended to monitor response to therapy in patients with epithelial ovarian cancer and to detect residual or recurrent disease in patients who have undergone first-line therapy and would be considered for second-look procedures. However, due to its limited specificity and sensitivity, CA 125 alone cannot still be an ideal biomarker. Increased clinical performance, in terms of better sensitivity and specificity in identifying epithelial ovarian cancer relapse, has been obtained by combined use of CA 125 with HE4, another ovarian cancer marker recently introduced in clinical use. Significant advancements have been achieved more recently, due to the introduction of FDA-approved ROMA and OVA1 algorithms to evaluate the risk of ovarian cancer for patients with a pelvic mass.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.