In the holographic framework, complexity is supposed to capture the interior of black holes, overcoming the limitations of entanglement entropy. This thesis debates the interplay between the two quantities, covering complexity aspects in the quantum information and holographic realms. Complexity quantifies the hardness of implementing an operator or preparing a quantum state through elementary operations. Huge arbitrariness stems from the identification of operations with high computational cost. For an n-qubit system, we detect a choice compatible with exponential lower bounds and chaotic behavior of operator complexity, as required to mimic black hole interiors. Then, we analyze the relation between operator and state complexity using the formalism of Riemannian submersions. Several candidates have been proposed for the dual of state complexity: the volume, the gravitational action, and the spacetime volume of proper bulk regions. Specializing to subsystems, we explore the conjectures in various static settings, finding that subsystem complexity and entanglement entropy contain different information. The same conclusion holds for a holographic global quench, during which subsystem volume complexity evolves non-monotonically in time, contrary to entanglement entropy. Finally, we study an example of local quench in which entanglement entropy suffices to discern between diverse holographic realizations.
Nel contesto olografico, si ritiene che la complessità catturi l’interno di buchi neri, superando i limiti dell’entropia di entanglement. Questa tesi discute l’interrelazione tra le due quantità, trattando aspetti della complessità negli ambiti dell’informazione quantistica e dell’olografia. La complessità quantifica la difficoltà nell’implementare un operatore o preparare uno stato tramite operazioni elementari. Considerevole arbitrarietà emerge dall’identificazione di operazioni con elevato costo computazionale. Per un sistema di n qubit, rileviamo una scelta compatibile con un comportamento caotico della complessità di operatori, richiesto per mimare l’interno di buchi neri. Analizziamo poi la relazione tra complessità di operatori e stati mediante il formalismo delle sommersioni Riemanniane. Diversi candidati sono stati proposti come duale della complessità di stati: il volume, l’azione gravitazionale, e il volume di spaziotempo di opportune regioni. Specializzandoci su sottosistemi, esploriamo le congetture in varie configurazioni statiche, deducendo che la complessità per sottosistemi e l’entropia di entanglement contengono differente informazione. La medesima conclusione si applica ad un modello olografico di quench globale, per il quale la complessità di volume per sottosistemi evolve in maniera non monotòna, contrariamente all’entropia di entanglement. Infine, studiamo un esempio di quench locale per cui l’entropia di entanglement risulta sufficiente a discernere tra diverse realizzazioni olografiche.
ZENONI, NICOLO', DEVELOPMENTS IN HOLOGRAPHIC COMPLEXITY AND QUANTUM INFORMATION, AUZZI, ROBERTO, BOBEV, NIKOLAY, NARDELLI, GIUSEPPE, Università Cattolica del Sacro Cuore Brescia:Ciclo XXXIV. [doi:https://link.springer.com/article/10.1007/JHEP09(2019)114]. [doi:https://link.springer.com/article/10.1007/JHEP11(2019)098]. [doi:https://link.springer.com/article/10.1007/JHEP01(2020)066]. [doi:https://link.springer.com/article/10.1007/JHEP11(2021)048]. [doi:https://pos.sissa.it/398/722]. [doi:https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.106021] [https://hdl.handle.net/10807/285121]
DEVELOPMENTS IN HOLOGRAPHIC COMPLEXITY AND QUANTUM INFORMATION
Zenoni, Nicolo'
2022
Abstract
In the holographic framework, complexity is supposed to capture the interior of black holes, overcoming the limitations of entanglement entropy. This thesis debates the interplay between the two quantities, covering complexity aspects in the quantum information and holographic realms. Complexity quantifies the hardness of implementing an operator or preparing a quantum state through elementary operations. Huge arbitrariness stems from the identification of operations with high computational cost. For an n-qubit system, we detect a choice compatible with exponential lower bounds and chaotic behavior of operator complexity, as required to mimic black hole interiors. Then, we analyze the relation between operator and state complexity using the formalism of Riemannian submersions. Several candidates have been proposed for the dual of state complexity: the volume, the gravitational action, and the spacetime volume of proper bulk regions. Specializing to subsystems, we explore the conjectures in various static settings, finding that subsystem complexity and entanglement entropy contain different information. The same conclusion holds for a holographic global quench, during which subsystem volume complexity evolves non-monotonically in time, contrary to entanglement entropy. Finally, we study an example of local quench in which entanglement entropy suffices to discern between diverse holographic realizations.File | Dimensione | Formato | |
---|---|---|---|
tesiphd_completa_Zenoni.pdf
accesso aperto
Tipologia file ?:
Tesi di dottorato
Note: tesi
Dimensione
9.41 MB
Formato
Adobe PDF
|
9.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.