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Abstract

In the holographic framework, complexity is supposed to capture the interior of
black holes, overcoming the limitations of entanglement entropy. This thesis
debates the interplay between the two quantities, covering complexity aspects
in the quantum information and holographic realms.

Complexity quantifies the hardness of implementing an operator or preparing
a quantum state through elementary operations. Huge arbitrariness stems
from the identification of operations with high computational cost. For an
n-qubit system, we detect a choice compatible with exponential lower bounds
and chaotic behavior of operator complexity, as required to mimic black hole
interiors. Then, we analyze the relation between operator and state complexity
using the formalism of Riemannian submersions.

Several candidates have been proposed for the dual of state complexity: the
volume, the gravitational action, and the spacetime volume of proper bulk
regions. Specializing to subsystems, we explore the conjectures in various static
settings, finding that subsystem complexity and entanglement entropy contain
different information. The same conclusion holds for a holographic global
quench, during which subsystem volume complexity evolves non-monotonically
in time, contrary to entanglement entropy.

Finally, we study an example of local quench in which entanglement entropy
suffices to discern between diverse holographic realizations.






Sommario

Nel contesto olografico, si ritiene che la complessita catturi I'interno di buchi
neri, superando i limiti dell’entropia di entanglement. Questa tesi discute
I'interrelazione tra le due quantita, trattando aspetti della complessita negli
ambiti dell’informazione quantistica e dell’olografia.

La complessita quantifica la difficolta nell’implementare un operatore o preparare
uno stato tramite operazioni elementari. Considerevole arbitrarieta emerge
dall’identificazione di operazioni con elevato costo computazionale. Per un
sistema di n qubit, rileviamo una scelta compatibile con un comportamento
caotico della complessita di operatori, richiesto per mimare ’interno di buchi
neri. Analizziamo poi la relazione tra complessita di operatori e stati mediante
il formalismo delle sommersioni Riemanniane.

Diversi candidati sono stati proposti come duale della complessita di stati:
il volume, 'azione gravitazionale, e il volume di spaziotempo di opportune
regioni. Specializzandoci su sottosistemi, esploriamo le congetture in varie
configurazioni statiche, deducendo che la complessita per sottosistemi e I’entropia
di entanglement contengono differente informazione. La medesima conclusione
si applica ad un modello olografico di quench globale, per il quale la complessita
di volume per sottosistemi evolve in maniera non monotona, contrariamente
all’entropia di entanglement.

Infine, studiamo un esempio di quench locale per cui ’entropia di entanglement
risulta sufficiente a discernere tra diverse realizzazioni olografiche.






Beknopte samenvatting

Complexiteit wordt verondersteld de binnenkant van zwarte gaten op een holo-
grafische manier te beschrijven en zo de beperkingen van verstrengelingsentropie
te overstijgen. Dit proefschrift behandelt aspecten van complexiteit in de
kwantuminformatie en holografie, en stelt de rol van de verstrengelingsentropie
in vraag.

Complexiteit kwantificeert de hardheid van een operator implementeren of
een kwantumtoestand voorbereiden door middel van elementaire operaties.
Enorme willekeur komt voort uit de identificatie van operaties met hoge
rekenkosten. Voor een systeem van n qubits detecteren we een bestraffing die
compatibel is met chaotisch gedrag en voldoet aan exponentiéle ondergrenzen
van operatorcomplexiteit, zoals vereist om het interieur van zwarte gaten
na te bootsen. Vervolgens analyseren we de relatie tussen operator- en
toestandscomplexiteit met behulp van het formalisme van Riemanniaanse
submersies.

Er zijn verschillende kandidaten voorgesteld voor de duale van de toe-
standscomplexiteit: het volume, de zwaartekracht actie en het ruimte-
tijdvolume van de passende bulkgebieden. Gespecialiseerd in subsystemen,
we onderzoeken de vermoedens in diverse statische configuraties, vinden dat de
subsysteem complexiteit draagt andere informatie dan verstrengelingsentropie.
Dezelfde conclusie geldt voor een holografische globale quench, waarbij de
subsysteem-volumecomplexiteit niet monotoon te evolueren, in tegenstelling tot
verstrengelingsentropie.

Ten slotte bestuderen we een voorbeeld van lokale quench waarin verstrenge-
lingsentropie voldoende is om onderscheid te maken tussen diverse holografische
realisaties.
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Chapter 1

Introduction

The quantum gravity puzzle. Several aspects of our Universe have been
unraveled thanks to two cornerstones of modern physics: general relativity,
a classical theory of gravity formulated by Einstein in 1915, and quantum
mechanics, progressively developed at the beginning of the twentieth century
thanks to the contributions of disparate physicists. Working side by side, but
each in its own regime of validity, the two theories cover the whole range of
physical scales, from the macroscopic domain governed by general relativity,
to the subatomic world ruled by quantum mechanics. The success of the
two descriptions relies on the fact that they are generally independent of
each other: at the macroscopic level quantum effects are negligible, whereas
at the microscopic level gravity is weak compared to the other fundamental
(electromagnetic, weak, and strong) forces.

However, this strict distinction fades when a system exerts an extremely high
gravitational field on small scales, as it happens at the singularity from which
our Universe originated, or in the interior of black holes (BHs). In both cases,
general relativity and quantum mechanics are required to cooperate. The naive
quantization of general relativity, although, leads to a non-predictive (technically,
a non-renormalizable) theory, which has left an important missing piece in the
fundamental physics for many years.

Ironically, the breakthrough came thanks to a theory developed for a completely
different purpose. Physicists realized that string theory, originally aimed to
the description of strong interactions between particles, perfectly fits in the
quantum gravity puzzle. As all the major scientific revolutions, string theory is
accompanied by a drastic paradigm shift: instead of ideal point-like particles,
the basic constituents of Nature are supposed to be oscillating one-dimensional



2 INTRODUCTION

strings. In this picture, each observed physical particle is characterized by
specific oscillation modes of the constituent strings. Notably, the graviton,
responsible for the mediation of the gravitational force, is among such particles.
So, string theory can be regarded as a putative unifying theory for all the
fundamental interactions, including the gravitational one.

The Plato’s cave. It was in this fruitful scenario that in 1997 Maldacena [1]
came out with one of the most exciting discoveries of the last decades. What
goes under the acronym of AdS/CFT is something incredibly deep, which builds
a fundamental bridge between specific theories of gravity and quantum field
theories enjoying conformal invariance, known as conformal field theories (CFTs).
The bottom line is that classical general relativity and quantum mechanics are
not totally unrelated, but rather two sides of the same coin, two complementary
representations of the same reality.

The highly effective analogy with the Plato’s cave, borrowed from Polyakov [2],
conveys the message pretty well. In the Plato’s myth, prisoners are forced to
watch the projected shadows of real objects on a wall. Having never experienced
the outside world, the men are not aware that what they stare at on the wall
is just the fictitious remnant of a higher-dimensional external reality. The
AdS/CFT correspondence parallels our struggle in studying strongly coupled
CFTs to the condition of the prisoners into the cave. The (3 + 1)-dimensional
Minkowski spacetime, where a CFT can be located, lies at the boundary of
a (4 + 1)-dimensional world, named anti-de Sitter (AdS) spacetime, which is
governed by a gravitational theory. The crucial and profound difference with
the Plato’s allegory is that the two descriptions are equivalent: the reality on
the (3 + 1)-dimensional boundary contains exactly the same information as
the reality into the (4 4+ 1)-dimensional world. Similarly to a hologram, in
passing from higher to lower dimensions information is not lost, but simply
written in a harder language, that of CFTs. Moreover, when the gravitational
theory is classical, the lower-dimensional CFT is strongly coupled. So, once the
dictionary translating one language into the other has been understood, the
classical gravitational theory can be employed to address challenging problems
in the strongly coupled quantum realm.

Holography is rooted well before AdS/CFT, in the wake of the formulation
of the laws of BH mechanics. By analogy with the laws of thermodynamics,
the picture of a BH as a thermodynamic system has emerged. As such, a
BH radiates with a temperature proportional to its surface gravity [3] and is
characterized by a thermal entropy, which was discovered by Bekenstein and
Hawking to be proportional to the area of the BH event horizon [3, 4]. The
scaling of the entropy with the area, rather than the volume, suggests that a
BH may admit a lower-dimensional description in terms of boundary degrees of
freedom roughly quantified by the thermal entropy, thus paving the way towards



INTRODUCTION 3

holography. In 1994, based on this important result and on a preliminary idea
by t’Hooft [5], Susskind introduced in string theory the holographic principle,
basically the thought that gravitational systems may be fully described by
lower-dimensional systems [6]. Shortly after, AdS/CFT provided a concrete
realization of this principle.

Far from being limited to an equivalence between a four-dimensional and a
five-dimensional theory, AdS/CFT can be generalized to arbitrary d boundary
dimensions and d + 1 bulk dimensions. Moreover, the correspondence holds true
for spacetimes resembling AdS nearby the boundary, referred to as asymptotically
AdS spacetimes. Imagine for instance to introduce a BH deep inside AdS. This
obviously modifies the bulk spacetime, but far away from the BH the geometry
is essentially indistinguishable from vacuum AdS. This does not mean that
the CFT placed at the boundary of AdS is insensible to the existence of the
BH. As any object into the Plato’s cave casts a distinctive shadow on the wall,
any modification of AdS spacetime leaves a perceivable mark in the boundary
CFT. The sign left by BHs is temperature. Technically, a gravitational theory
in (d 4 1)-dimensional AdS containing a BH is equivalent to a d-dimensional
CFT at finite temperature, living at the AdS boundary. Bearing in mind the
depiction of a BH as a thermodynamic system with a given temperature, this
should not be surprising.

Quantum information and gravity. The great opportunity to access
strongly interacting quantum systems modeled by CFTs at finite temperature
with the common methods of classical gravitation has generated a wave of
excitement in the whole physics community. As a result, unexpected connections
between high energy physics and other disparate subject areas have been unveiled.
Among the applications of AdS/CFT, we mention the study in the field of
nuclear physics of the properties of the quark-gluon plasma [7], which is supposed
to reproduce the state of the early Universe soon after the Big Bang, and the
investigation in the field of condensed-matter physics of so-called holographic
superconductors [8]. In this thesis we will mostly focus on another interrelation,
elapsing between gravity and quantum information, the science studying the
amount of information encoded in quantum states.

The first hint of a bridge between these two seemingly distinct branches may
be probably traced back to the dawn of holography, namely to the Bekenstein-
Hawking formula. Indeed, this finding links an information theory quantity, as
the entropy, to a gravitational system, as a BH. But this is just the top of the
iceberg. The fundamental unit of quantum information is the qubit, the quantum
version of the classical bit. A system of qubits can be in an entangled state.
This happens when a measurement performed on a single qubit also reveals the
state of the others, no matter how far apart they are. An estimation of the
degree of entanglement for a given bipartition of a system is provided by the von
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Neumann entropy, aka entanglement entropy, which can be thought of as the
entropy detected by an observer who cannot directly access the whole system.
In a way, the effect can be likened to the presence of an event horizon hiding the
inaccessible region. Emboldened by this interpretation, one may ask whether the
Bekenstein-Hawking outcome applies to the entanglement entropy too. The key
answer came in 2006 by Ryu and Takayanagi, who proposed the entanglement
entropy of a CFT state to be related to the area of extremal surfaces into the
higher-dimensional AdS spacetime [9, 10]. This remarkable prescription has
acted as a source of inspiration for the search of further mappings between
quantum information notions and geometrical quantities. The same source that
partly inspires the present thesis work.

A probe of black hole interiors. Let us go back to the model of a BH in AdS.
Every BH, being it eternal or formed by the gravitational collapse of matter, is
not a static object. Rather, its interior keeps growing, and it does for extremely
long times. In the Plato’s allegory, when some modifications are performed on
an object into the cave, something should happen to its shadow too. Similarly,
the evolution of the BH interior should be somehow detectable in the quantum
thermal system accommodated at the AdS boundary. A guess would be to look
at entanglement entropy, which can act as a probe of quantum thermalization
processes. However, it ceases to evolve once the system reaches the thermal
equilibrium, which happens well before the BH interior stops growing. So, there
should be some features of quantum states to which entanglement entropy is not
sensitive. In 2014 Susskind proposed that the solution should be sought in the
quantum information repository, among the quantities not taken into account
until then by the high energy physics community. It was time for computational
complexity to enter the game [11].

Complexity was introduced in the field of computer science to assess the difficulty
of a computational task. In the context of quantum systems, the task can be
visualized as the construction of a quantum state from a reference one by the
implementation of elementary operations, called gates. A sequence of gates
constitutes a circuit. Clearly, a given task can be accomplished by several
circuits. Complexity of the target state looks at the optimal one, and is thus
defined as the minimum number of gates doing the job. In chaotic random
circuits, complexity has been shown to increase at a constant rate for a time
exponential in the number of qubits involved by the circuit, prior to saturation to
an exponential value [12]. The major appealing feature which caught Susskind’s
attention is the growth of complexity long after thermalization, just like the
interior of a BH. Hence the proposal that the gravitational counterpart of
complexity should explore the physics beyond the BH event horizon. But the
road to establishing a new entry in the AdS/CFT dictionary is long and steep.

The challenge is two-fold. First, the gravitational quantity corresponding to
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complexity needs to be specified. A good candidate should measure the BH
interior, and should evolve in time in the same way as complexity for chaotic
systems. At the state of the art, we recognize three main proposals: the volume
of the wormbhole traversing the BH (CV conjecture) [11, 13, 14], the gravitational
action of a properly defined causal region stretching far beyond the event horizon
(CA conjecture) [15], and the spacetime volume of the same region (CV 2.0
conjecture) [16]. All the three quantities evolve and respond to perturbations
likewise complexity in random circuits. Recently, it has been argued that such
features are shared by an infinite class of observables ("does complexity equal
anything?") [17, 18]. This uncertainty in the selection of the gravitational dual
may reflect the ambiguities affecting complexity, such as the choice of reference
state and simple gates. More comments on the holographic proposals can be
found in Ch. 2, where useful details for the comprehension of the rest of the
thesis are addressed too.

Second, AdS/CFT does not involve a general quantum mechanical system,
but a far more complicated quantum field theory, which calls for a continuous
definition of complexity more suitable than the discrete counting of gates. One of
the promising approaches to attack the issue is based on the generalization of a
geometric method originally proposed by Nielsen in the context of qubits systems
[19]. Actually, the Nielsen’s approach, dating back to around 2005, aimed at
finding lower bounds to quantum complexity, thus treating the geometric
formulation as a convenient approzimation. Lately, complexity geometry has
been reevaluated as a proper definition of quantum complexity.

Geometry of quantum complexity. It is good to pause here and sketch the
Nielsen’s approach. Complexity is roughly a measure of how "far" the initial
configuration is from the target one. The farther the two configurations, the
more complex the target state. To fix ideas, let us take as states the whole
Earth times a single spin up and the whole Earth times a single spin down.
Though the two states are orthogonal, it is pretty easy to build one from the
other: it just requires the flipping of a single spin. In the complexity sense, the
two states are near. The story would be completely different if the two Earths
had also different meteorological conditions, in which case the two states would
be far in complexity [20]. Now, let us imagine any state of a quantum system to
be represented by a point on a manifold. In this picture, the distance between
states acquires a clear geometric interpretation: it is the length of the shortest
path leading from the initial to the target point. Traveling a path means to
apply a unitary transformation, as the time evolution operator. Clearly, by just
changing the phase of a state no progress is made in reaching the target. So,
it is not restrictive to employ special unitary transformations, which disregard
the overall phase. To be brief, in the following we will refer to them simply
as unitary transformations. As a path is composed by single steps in specific
directions, a unitary transformation consists of a sequence of fundamental gates,
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gradually transforming the initial state into the target one. However, gates are
not equally hard to be implemented. For instance, it is reasonable to suppose
that entangling two spins requires much more computational effort than flipping
a single spin. The hardness of a fundamental operation can be reproduced by
stretching the manifold in the corresponding direction. As a result, the motion
in hard directions costs more in terms of distance, and is thus discouraged in
the selection of the optimal path. The "stretching scheme", specified by a set of
coefficients named penalty factors, which dictate the directions to be stretched
and the amount of deformation, crucially affects the complexity properties.

One of the points we address in this thesis is to understand which kind of
penalization schedules cause complexity geometry to reproduce the behavior
of BH interiors, which in turn is mimicked by complexity in chaotic random
circuits. To gain some insights, in Ch. 3 we focus on a system of a large
number n of qubits, and we study two penalization schemes: the draconian
model, in which all gates acting on more than two qubits are equally penalized,
and the progressive model, in which penalties scale exponentially with the
number of qubits involved by the corresponding gate. We start by analyzing
the complexity of implementing a unitary operator acting on an n-qubits state,
e.g. the time evolution operator. To this purpose, we work on the manifold of
special unitary transformations SU(2"). A fundamental property we ask for
is that maximal complexity geometry, namely the maximum distance between
any pair of points on the unitary manifold, is exponential in n. While in
the draconian case an exponential lower bound was already been found by
Nielsen and collaborators [21], we provide a first evidence of such a bound in the
progressive model. Another feature we look at is ergodicity of geodesics, required
for complexity geometry to be compatible with quantum chaos. Ergodicity is
intimately related to negativity of sectional curvatures [22], that is attained for
large penalty factors. We argue that in the draconian model negative curvatures
are divergent, whereas in the progressive model they remain finite. A smooth
behavior of sectional curvatures is necessary for complexity geometry to respond
to perturbations as quantum circuit complexity [23], making the progressive
schedule more suitable than the draconian one. One may feel puzzled about
the huge arbitrariness in the choice of penalty factors, which must be fixed at
hand, especially in view of their influence on the properties of complexity. A
preliminary answer to this objection has been put forward in [24], where it has
been conjectured that long-distance complexity geometry is essentially the same
for a wide family of penalization schemes.

The outcomes we have discussed so far refers to the so-called unitary complexity.
We can take advantage of this notion to determine complexity of a quantum state.
Indeed, a quantum state can be built in many ways through the application of
a proper unitary operator to a reference state. State complezity is defined as
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the minimal complexity of all operators completing the task. In the geometric
approach, this translates into the length of shortest paths on the complex
projective space CP2H_1, being the manifold of n-qubits states where directions
differing by an overall phase are identified. While the unitary manifold SU(2")
is homogeneous, the state manifold cP?"!is not, which makes the analysis
much harder. For instance, the non-homogeneity of the state manifold causes
sectional curvatures to be position-dependent. To bypass the obstacle, we
propose to work in the formalism of Riemannian submersions [25], of which the
relation between unitary and state complexity is a particular realization. In this
frame, sectional curvatures on the state manifold can be inherited by sectional
curvatures on the unitary manifold [25], and do not necessarily demand for
a direct inspection. The same holds for geodesics on the space of states [26],
whose length is interpreted as state complexity. Anyway, we also provide a
closed-form expression for the metric on the state manifold with unspecified
penalization schedule, which potentially gives us access to the main geometric
properties of interest.

Extending the Nielsen’s method to quantum field theories, complexity has
been studied for a particular class of states, referred to as Gaussian states, in
non-interacting quantum field theories containing bosons [27, 28] or fermions
[29, 30]. Even though the quantum theories in which we expect a match with the
gravitational results are strongly interacting CFTs, complexity geometry in the
non-interacting regime already reproduces the general ultra-violet divergences
structure of the holographic proposals. Partial extensions of complexity geometry
to two-dimensional [31, 32] and higher-dimensional [33] CFTs has been later
put forward.

Complexity for mixed states. All the machinery we have been discussing
applies to pure states. The quantum information concept for which the
holographic dual is known, namely entanglement entropy, is not only a property
of states, but also depends on the bipartition of a system into smaller subsystems.
In general, a subsystem can be in a mized state, expressing the impossibility
for an observer to access the whole system. In these cases, similarly to the
entropy, complexity calls for a generalization. The new quantity playing this
role, which we refer to as subregion complexity, should obviously reduce to the
more familiar complexity notion when the subsystem is extended to the whole
system. To date, there are several candidates [34], most of which rely on the
purification procedure. Instead of seeing the subsystem state from the limiting
observer’s point of view, a purification describes it as the remnant of the state
of a larger system after tracing out the external degrees of freedom. The state
being traced out is known as purification, and its complexity is well-posed.
Actually, a purification is not unique. The now familiar way out is to simply
pick the optimal purification, that is to say the less complex one. This leads
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to a possible definition of subregion complexity, named purification complexity,
as the minimum complexity of all existing purifications. With this technique,
subregion complexity has been studied for the thermal and vacuum state of a
free quantum field theory [35], and for the vacuum state of two-dimensional
CFTs [36]. An alternative definition is based on splitting the construction of
the target state into two steps: preparation of the spectrum and preparation of
the basis of eigenstates. Once the spectrum is prepared through the purification
procedure, the target state can be built by a change of basis. The complexity in
performing this last task is referred to as basis complezity. See for instance [37]
for an application of this method to Gaussian states in a lattice of harmonic
oscillators.

With a new entry in the quantum information catalog, the tantalizing next step
is to search for a gravitational counterpart, with the main guiding principles
being the three holographic conjectures for complexity. Going back to the
takeaway message of AdS/CFT, a CFT is equivalent to a gravitational theory in
higher-dimensional AdS. Then, if an observer can only access a CFT subregion,
we reasonably expect this limitation to also affect the gravitational theory.
The AdS region encoding all information on the boundary CFT state of a
subsystem is referred to as entanglement wedge, and is identified with the
causal bulk region anchored at the Ryu-Takayanagi surface and the boundary
subsystem itself [38]. In turn, the gravitational partner of subregion complexity
is conjectured to be nothing else but the gravitational partner of complexity
(volume, action or spacetime volume) restricted to the entanglement wedge. We
talk about subregion-CV [39], subregion-CA, and subregion-CV 2.0 conjecture
[40], respectively. Each holographic proposal may correspond to a different
definition of subregion complexity in the boundary CFT, or some conjectures
may be discarded. The latter possibility may additionally be used as an
argument to rule out some of the original proposals for holographic complexity.
With that in mind, in Ch. 4-6 we explore the three conjectures for subregion
complexity in various settings.

In Ch. 4, we explicitly compute subregion-CA and subregion-CV 2.0 for a
boundary line segment in both AdSs and the Banados-Teitelboim-Zanelli (BTZ)
spacetime [41, 42], which represents an eternal BH in AdSs;. In order to
regularize the computation, we cutoff the spacetime nearby the boundary, where
divergences arise. The actual result is obtained in the limit of vanishing cutoff.
Subregion-CA and subregion-CV turn out to be the sum of a linearly divergent
term in the cutoff, a finite constant, and a term proportional to the entanglement
entropy of the mixed state localized on the boundary segment. For a two-
segments subregion additional terms appear, suggesting that the interconnection
between subregion complexity and entanglement entropy, if it exists, is not
so straightforward. We also comment on the dependence of subregion-CA on
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an arbitrary scale L, arising from the null boundary counterterm ensuring
reparametrization invariance of the full gravitational action. The parameter
L strongly affects properties such as additivity and temperature behavior,
posing doubts on the physical interpretation of subregion-CA. A possibility is to
associate this ambiguity to the degree of arbitrariness characterizing subregion

complexity, such as the choice of reference state.

In Ch. 5 we work with a deformation of AdSs, known as warped AdS
(WAAS) spacetime [43, 44]. Along the way towards a putative duality involving
asymptotically non-AdS spacetimes, such as de Sitter or Minkowski, WAdS
represents a midway point for which we have more control on the field theory
dual. A duality is in fact conjectured [45, 46] between a gravitational theory in
asymptotically WAdS and a boundary warped conformal field theory (WCFT),
being a (1+ 1)-dimensional non-relativistic field theory whose global symmetries
are a subgroup of those of a CFT [47-49]. This WAdS/WCFT correspondence
is an interesting laboratory in which to look for generalizations of holographic
results. Remarkably, entanglement entropy in WCFTs has been shown to match
the gravitational computations in WAdS [50-54]. This motivates us to test the
holographic proposals for subregion complexity in asymptotically WAdS.

In detail, we explore all the three conjectures for a two-sided (non-)rotating
BH in WAJS, taking as a subregion the whole left (right) boundary time
slice. Compared to the BTZ case, additivity and temperature dependence of
subregion-CA are not influenced by the arbitrary length scale L arising from
the action counterterm. Instead, we detect a correlation between the sign of
specific heat at constant angular momentum and the temperature behavior of
holographic subregion complexity.

Even though subregion complexity in quantum field theory is still in its infancy,
in the conclusions of this thesis we outline a preliminary comparison of our
holographic results with purification and basis complexity expectations.

Quantum information and quenches. Other settings in which quantum
information can be employed to uncover interesting physics are out-of-
equilibrium systems. Simple prototypes of thermalization processes are
represented by quantum quenches, which describe the unitary evolution of
quantum states after a sudden modification of physical parameters [55, 56]. In
this context, entanglement entropy has proved to be a powerful diagnostic tool
[57-60]. Thanks to the AdS/CFT correspondence, the challenging investigation
of far from equilibrium processes taking place in a strongly coupled d-dimensional
CFT can be traced back to dynamical problems in the (d 4 1)-dimensional bulk
gravitational theory [61-65]. Complexity has also been employed as a probe
of quantum quenches, both by field theories [66, 67] and holographic methods
[68—72]. Tt would be valuable to check whether subregion complexity can be
used for the same purpose.
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In Ch. 6 we move in this direction, calculating subregion-CV for a boundary line
segment in (2 4 1)-dimensional Vaidya spacetime. This background represents
the formation of an AdS BH caused by the gravitational collapse of a shell of null
matter falling from the spacetime boundary. The corresponding process in the
dual CFT is a global quench, triggered by an homogeneous injection of energy
into the whole system [73]. Similarly to entanglement entropy, we find that
holographic subregion complexity reaches a constant value after thermalization.
However, while entanglement entropy monotonically increases [74, 75], subregion
complexity manifests a maximum prior to saturation. Again, the two quantum
information concepts seem to provide different information.

Global quenches are not the only family of non-equilibrium phenomena. For
example, we can imagine to locally perturb a system and to study how the
perturbation spreads. This process is modeled by a local quench, which is
holographically realized by the free fall of a massive object in AdS [76]. In
Ch. 7, drawing a parallel between a falling BH and a falling monopole,
we address the question of how the details of the object impact the quench
physics. Compared to the BH quench, the monopole quench is additionally
accompanied by the expansion of a scalar condensate. Surprisingly, whether
energy conservation of the quenches hold, the holographic energy-momentum
tensor does not significantly distinguish between the two bulk configurations.
Instead, holographic entanglement entropy accomplishes the job. The BH
quench is indeed compatible with the propagation of free Einstein-Podolski-
Rosen pairs of entangled quasiparticles generated by the perturbation [57], while
the monopole quench is interested by a concomitant expansion of the scalar
condensate. Being sensitive to the spread of entanglement, entanglement entropy
turns out to be an efficient probe to discern the two holographic realizations.
Quantum information expresses its tight interconnection with gravity.

We conclude our journey in Ch. 8, with a summary of the main original results
and some tips for further developments.



Chapter 2

Holography and complexity

In this chapter, mainly following the reviews [77-83], we introduce the
fundamental notions necessary to understand the rest of the thesis. In Sec. 2.1
we explain the core ideas of the AdS/CFT correspondence. In Sec. 2.2, after
briefly introducing the notion of entanglement entropy, we discuss its holographic
interpretation in the context of CFTs as the area of minimal surfaces in higher-
dimensional AdS. This prescription, due to Ryu and Takayanagi, represents
a milestone in the discovery of a deep interconnection between gravity and
quantum information, and will be employed several times throughout the thesis.
Despite its central role for the understanding of how the bulk spacetime emerges
from the boundary CFT, in Sec. 2.3 we argue that entanglement entropy is
not enough to probe the interior of BHs. This job is supposed to be fulfilled
by computational complexity, a quantum information quantity measuring the
hardness of building quantum states. In Sec. 2.4 we describe the time evolution
of complexity in quantum circuits and the way it reacts to perturbations. Both
features of complexity are mimicked by the model of a particle moving on a
two-dimensional hyperbolic space, which is outlined in Sec. 2.5. The toy model,
in which complexity is identified with the distance of the particle from the origin
of the hyperbolic space, hints at a possible continuous definition of complexity.
As such, it represents an interesting playground to anticipate the importance of
negative curvature in relation to complexity, that we discuss in the next chapter.
Finally, in Sec. 2.6 we turn to the holographic interpretation of complexity as
a quantity exploring BH interiors. To this regard, we discuss the conjectured
gravitational counterparts and comment on their pros and cons.

11
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2.1 The AdS/CFT correspondence

Dualities have proven to be important tools to deepen our comprehension
of several physical phenomena, by unveiling intimate connections between
them. Basically, a duality establishes a mathematical equivalence between two
physically different theories. Concretely, the dual theories lead to the same
result for physical observables. One of the most stimulating breakthroughs
of the last decades is the proposal of a duality between gravitational theories
and specific gauge theories without gravity. In particular, this gauge/gravity
duality, better known as AdS/CFT correspondence, involves a theory of gravity
in anti-de Sitter (AdS) spacetime and a lower-dimensional conformal field theory
(CFT) living on the AdS boundary. This discovery paved the way for both a
new interpretation of gravity and an alternative approach to investigate strongly
coupled field theories. Prior to getting into the details of the correspondence,
we briefly introduce the two protagonists of our story.

2.1.1 AdS spacetime

Anti-de Sitter spacetime in d + 1 dimensions (AdSg4y1) is a solution to the
Einstein’s field equations in vacuum

1
R, — §R9W =—-Agu (2.1.1)
with negative scalar curvature R and negative cosmological constant A:
d(d+1) d(d—-1)
=_" 177 A=-——""_"7 2.1.2
R 7 577 (2.1.2)

The parameter L is called AdS curvature radius and denotes the typical length
scale of the geometry. AdS4y1 can be naturally described by an embedding into
the higher-dimensional flat space R*¢ with signature (—,+,...,+, —). Namely,
it is the set of points (XO, Xt ,Xd“) constrained by

d
— (X030 (x)? - (X = 12, (2.1.3)

i=1
The analogy with the hypersphere definition makes it clear that AdS441 has
isometry group SO(2,d). We point out that this group contains (d+ 2)(d + 3)/2
generators, which is the maximum number of isometry generators allowed in
d + 1 dimensions. Therefore, AdS spacetime is said to be mazimally symmetric.

Among the possible coordinate systems satisfying eq. (2.1.3), we just focus on
the two choices employed in this thesis work.
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The first set (7,w?,7), referred to as static coordinates, is given by
X% =TIL\1+7r2cosT, X4 = [\/1+4r2sinT,

d (2.1.4)

X' = Lrwt, Z(wi)Zzl.

i=1

In the above expressions, 7 € [0, 27| is a compact timelike coordinate, w® with
i =1,...,d are coordinates parametrizing a (d — 1)-dimensional sphere, and
r € [0,4o00[ is a radial coordinate. In order to avoid closed timelike curves, we
consider the universal cover obtained by a decompactification of the timelike
coordinate, which is thus assumed to range in —oco < 7 < 400.

Introducing the area element dQ3_, = Zle (dwi)2, the AdS441 metric in static
coordinates reads

dr?
1+7r2

ds? = L* {— (147r*)dr* + + 25|, (2.1.5)

The second set (t,z%, z), referred to as Poincaré coordinates, is described by

X0 _ % 1+|a‘:’\2—t2+L2 ’ Xi:in,
2 22 2
(2.1.6)
yi_ 2 1+|f\2—t2—L2 Xd-&-l:E.
2 22 ’ z
Here ¢ € |—00,400[ is the time coordinate, & = (xl, e ,xd’l) are Cartesian
coordinates, and z € [0, 400 is the radial coordinate.
The AdS44+1 metric with this choice is
L? « 2
2 2 2 i
ds® = Z3 | =dt? +d2" + ) (da) ] : (2.1.7)
i=1

Contrary to static coordinates, Poincaré coordinates does not cover the whole
AdS spacetime, but only a portion named Poincaré patch. Note that the
resulting spacetime is obtained as a foliation by d-dimensional Minkowski slices
at constant z. In Fig. 2.1 we display a schematic representation for d = 2.
The Minkowski plane at z = 0 is the AdS boundary, the metric on which is
apparently divergent. Actually, the boundary metric can be extracted from eq.
(2.1.7) by

2
2 : i ? 2 i
ds; :lglllof(tax )ﬁ ds® = f(t,z")

d—1
—dt? + (dxi)Q] : (2.1.8)
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boundary

Z2=00 4¢———— =0

Figure 2.1: AdS3 spacetime in Poincaré coordinates. Each z-constant slice is a
two-dimensional Minkowski spacetime.

with f(t,2%) a smooth positive function. We thus have a family of boundary
metrics differing by a multiplicative coordinate-dependent function. As we will
promptly see, such a function can be modified by a conformal transformation,
bringing from one member of the family to another. For this reason AdS
spacetime is said to have a conformal boundary. While Poincaré AdS (2.1.7) has
a conformally flat boundary RV4~1 at z = 0, global AdS (2.1.5) has a spherical
boundary 5% x R at r — 400 with metric ds} = f(r,w’) [-d7? + dQ2_,].

2.1.2 CFT

The second player in the gauge/gravity duality is a conformally invariant
quantum field theory (QFT) accommodated at the AdS boundary. Before
discussing the nice properties of such QFTs, we specify what we mean by
conformal invariance.

The conformal group. A conformal transformation is a map x* — z'# which
leaves the spacetime metric tensor g,, invariant up to a positive coordinate-
dependent scale factor:

gl“’(x) — T(LL‘) guu(m) . (219)
In other words, conformal transformations preserve angles and the causal
structure of spacetime, mapping a timelike (spacelike or null) interval into a
timelike (spacelike or null) interval.
In spacetime dimensions d = 2 the group of conformal transformations is infinite
dimensional. Indeed, describing the two-dimensional spacetime as the complex
plane parametrized by z € C, each holomorphic map z — 2z’ = w(z) of the



THE ADS/CFT CORRESPONDENCE 15

plane into itself represents a conformal transformation. The generators of such
transformations I, = —z"119, and their complex conjugates i, = —z"110;
satisfy the Witt algebra

[l ln) = (m—n)lnin, [lm ,ln] =(m—=n)lnin,
(2.1.10)
[lm ) l_n] =0,
with m,n € Z. Remarkably, the algebra is closed by the subgroups {i_1,lo, 11}
and {I_1,lp, 11 }, which form the finite dimensional subalgebra s[(2,R) & s[(2, R).
At the quantum level, as a consequence of normal ordering, the corresponding

operators L,, span the so-called Virasoro algebra, which is obtained as a central
extension of the Witt algebra:

(Lo s L] = (m — 1) Lipin + 1%(713 — )B 0 - (2.1.11)

The parameter ¢ denotes the central charge of the quantum theory.
In spacetime dimensions d > 2 the conformal group is drastically reduced. In
particular, we recognize four elementary conformal transformations:

o Translation z# — 2* 4 a*, generated by P, = —i0,,.
o Lorentz transformation 2 — M}'a¥, generated by L, = —i (2,0, — x,,0,).

 Dilatation a# — Az#, generated by D = —iz#0,.

: : m M —bH 2
* Special conformal transformation /' — =55,

K,=i (235#35”81, - x28u).

generated by

Translations and Lorentz transformations form the Poincaré group, which is
thus contained into the conformal group. In Minkowski spacetime g,, = 1,, =
diag(—1,1,...,1) the generators obey the conformal algebra:
[D7RL] :iP,uv [D7K/L] = 7Z‘K/u
[P/M Kl/] = Qi(nwf D - Llw) > [L/wa Kp] = i(nup K, - Mvp K;A) )
(2.1.12)
[Lm/v Pp] = i(nup P, =1y, Pu) )

[L,uua Lpo] = i(nup Ll/a + Nvo L,up - 7];“7 Ll/p - 771/p L[LO’) .

After adjusting the generators into the form

L P/A,_Ku P;L+Kﬂ/
Py T2 T2
Jop = | 0 D

P, tK,
Putle  _p 0

. a,b=0,1,....d+1, (2.1.13)
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it is straightforward to check that

[Jaba ch] =1 (ﬁac de + ﬁbd Jac - ﬁad ch - ﬁbc Jad) ; (2114)

where 7., = diag(—1,1,...,1,—1). The new relation is just the algebra of
rotations in a (d + 2)-dimensional spacetime with signature (—,+,...,4+, —).
That is to say, the conformal group in d dimensions is SO(2,d), the same as
the isometry group of (d 4+ 1)-dimensional AdS.

Conformal field theories. Field theories enjoying conformal invariance are
referred to as conformal field theories (CFTs). Classically, conformal invariance
is realized when the action of the theory is left unchanged under transformations
belonging to the conformal group. Let us assume that a field theory on flat
d-dimensional spacetime has translational and Lorentz invariance, so that its
energy-momentum tensor T}, is conserved (0T}, = 0) and symmetric (T}, =
T,.). Then, following an infinitesimal conformal transformation z# — x# + e,
the classical action varies as

68 ~ /dds:T;; Dye” . (2.1.15)

Clearly, if the energy-momentum tensor is traceless, the classical action is
automatically invariant. In some cases, for this condition to be realized, Poincaré
and scale invariance are enough. To get a grasp on this, let us recall the crucial
result of Noether’s theorem: for every continuous symmetry a conserved current
exists. For a theory to be scale invariant, the energy-momentum tensor must
be expressible as the divergence of a current [84]

Tl =0,J". (2.1.16)
Hence, the conserved dilation current reads
Jp =a"Th — J*. (2.1.17)

For unitary theories in d = 2, under some technical assumptions, it has been
shown that the energy-momentum tensor can be improved to be traceless without
requiring full conformal invariance [85]. Generalization to higher dimensions is
guessed, but a proof is lacking.

This nice story is inevitably wrecked by the quantization. Indeed, a field theory
quantization is usually accompanied by the introduction of a renormalization
scale, which obviously spoils the scale invariance. As a result, the coupling
constants g of the theory vary with the energy scale p as dictated by the beta
function 84 = ug—i. Conformal invariance is recovered at the quantum level
whether the beta function vanishes. This can be accomplished for particular
values of the coupling constants g., named fized points, or for any value of g. In
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the latter case the CF'T is finite, and there is a whole manifold of fixed points.
The most celebrated example is the A = 4 supersymmetric! Yang-Mills (SYM)
theory in d = 4 spacetime dimensions, which contains a gauge field, four Weyl
fermions, and six real scalars, all in the adjoint representation of a non-abelian
gauge group.

Conformal symmetry imposes pretty strong constraints, one of which is about
the form of correlation functions involving up to three operators. We here focus
on particular spinless operators, referred to as quasi-primary fields, which under
a conformal map z# — x'# transform as

ol |~/
b(z) = P'(2)) = |— d(z). (2.1.18)
Ox
The multiplicative factor |...| is the Jacobian of the coordinate change, and

A is known as the conformal dimension of the field. Unitarity of the CFT
imposes limitations on the possible values of A, depending on the way the field
transforms under Lorentz operations. For a scalar field in d dimensions, on
which we will come back later, the unitarity bound is
d—2

A > —5 (2.1.19)
Another restriction dictated by conformal invariance concerns the form of
correlation functions. In particular, the correlation function of two spinless
quasi-primary fields is non-vanishing only if their conformal dimensions are
equal Ay = A,, in which case we have

(@1(21)@a(w2)) = Chz |y — 2 25 (2.1.20)
Defining A = Ay + As + Ag, the three-point function is instead
3
(@1 (21)Da(22) @5 (w3)) = Chas [ [ s — w2722 723 (2.1.21)
i<j

With four or more points we can build conformally invariant functions depending
on the distance between points. Therefore, conformal symmetry is not enough
to constraint the form of n-point functions with n > 4.

2.1.3 AdS/CFT

We now come to the central point of the present discussion. As we have seen,
the isometry group of (d + 1)-dimensional AdS is the same as the symmetry

1Supersymmetric theories contain the same number of bosonic and fermionic degrees
of freedom. The value of N is related to the number of generators of supersymmetric
transformations, which turn bosons into fermions and viceversa.
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group of a d-dimensional CFT, namely SO(2, d). For the special case d = 2, the
group factorizes as SO(2,2) = SL(2,R) x SL(2,R). This strong clue of a deep
connection between a gravitational theory in AdS;41 and a CFTy is apparently
limited by the different dimensionality of the two candidates. Anyway, this is
not the only case in which a gravitational system admits a lower-dimensional
description. A celebrated forerunner is represented by the Bekenstein-Hawking
formaula [3, 4]

A
4G’
which relates the entropy of a black hole (BH) to the area of its event horizon.
By elaborating eq. (2.1.22) and a t’Hooft’s idea [5], Susskind guessed that the
degrees of freedom of a gravitational system are encoded at its boundary [6].
In other words, similarly to a hologram, the whole information on gravity may
be stored into a lower-dimensional spacetime. The AdS/CFT correspondence,
figured out by Maldacena [1], realizes such a holographic principle in an extremely
innovative way.

Spa = (2.1.22)

2

The environment from which the original formulation of AdS/CFT came out is
type IIB superstring theory® in ten-dimensional flat spacetime. Open and closed
strings, with distinct and coincident endpoints, respectively, are not the only
fundamental constituents of superstring theory. Indeed, objects with p spatial
dimensions named Dirichlet branes (Dp-branes) can also be introduced. Such
defects are dynamical, so they move in time describing a (p+1)-dimensional
worldvolume. According to the strength of the interaction between strings, Dp-
branes can be seen either as anchoring objects for open strings (weak interaction)
or sources of gravitational fields curving the background (strong interaction).
Taking a bunch of N coincident D3-branes in ten-dimensional flat spacetime,
Maldacena found out that in the low energy limit type IIB superstring theory
decouples as:

e Weak coupling perspective. N' =4 SYM with gauge group SU(N)
on the (3 4 1)-dimensional worldvolume described by the N D3-branes
P type 1IB supergravity in ten-dimensional flat spacetime

2In its original form, the Bekenstein-Hawking formula reads
B kpcd A
T 4Gh

This expression comprises all the fundamental physical constants, thus bridging the
fundamental theories of physics describing both the macroscopic and the microscopic
phenomena: thermodynamics (Boltzmann constant kp), general relativity (speed of light
in vacuum ¢ and Newton’s gravitational constant G), and quantum mechanics (reduced
Planck’s constant h). Unless otherwise specified, in this thesis we will work in natural units
kp=c=h=1.

3Type IIB is one of the consistent closed superstring theories in ten-dimensional spacetime.
Contrary to type IIA superstring theory, it violates parity.
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« Strong coupling perspective. Type IIB supergravity on AdSs x S°
& type IIB supergravity in ten-dimensional flat spacetime

Since the physics in the two perspectives should be equivalent, the non-common
factors should correspond to each other as well. This led to the original
formulation of the AdS/CFT correspondence: N = 4 SYM with gauge group
SU(N) on RY3 is dual to type IIB superstring theory on AdSs x S°.

Noticeably, N'= 4 SYM is not only a finite CFT, but also a supersymmetric
theory. Therefore, its symmetry group is larger than the conformal group
SO(2,4). Namely, there is an additional SU(4) g group reflecting the so-called
R-symmetry, which rotates the supersymmetry generators. On the other side
of the correspondence, the additional factor SU(4) = SO(6) is traced back to
the five-sphere S°, whose radius is identified with the AdSs curvature radius L.
Therefore, the two theories involved in AdS/CFT still share the same symmetry

group.

We stress that S® is compact, so by dimensional reduction we can neglect
it and consider an effective theory in AdS;. The CFT4 can be put on the
AdSs (conformal) boundary, coinciding with R:3. We thus obtain a remarkable
realization of the holographic principle: the gravitational theory into the bulk
spacetime can be fully described in terms of the CFT located on the lower-
dimensional boundary.

A weak/strong duality. So far we have been a bit sloppy regarding the
regimes of validity of the Maldacena’s conjecture. To get insights into this point,
let us specify the parameters involved in the two theories. A string theory is
characterized by the fundamental string length ¢; and by the string coupling g,
controlling the interaction strength between strings. We also add to the list the
length scale L specifying the radius of both AdSs and S®. On the other hand,
N = 4 SYM is characterized by the number of colors N and the Yang-Mills
coupling gy s. It is customary to replace gy p; by the so-called t’Hooft coupling

A=giuN. (2.1.23)

The parameters of the two theories are related by the simple relations

4
% =27g,, A= %%Sl (2.1.24)
To fully exploit the power of AdS/CFT correspondence, we would like to extract
information on one theory by performing tractable computations into the other.
The simplest choice is to work with classical supergravity, which can be obtained
by string theory in the limit g — 0 (no quantum corrections) and ¢, << L
(strings become particles). From eq. (2.1.24), the latter requirement imposes
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A >> 1, meaning that the dual CFT is strongly coupled. At this point, we can
suitably tune N — oo so that the former condition is also met. In this regime,
AdS/CFT relates a weakly coupled theory of gravity to a strongly coupled CFT.
To put it differently, we can replace the challenging analysis of strongly coupled
quantum field theory, where non-perturbative effects are not under control, by
manageable weakly coupled classical gravity. This is what makes AdS/CFT a
high-powered theoretical tool.

In the classical approximation gs — 0, the requirement ¢; << L can be relaxed
by considering the t’Hooft limit N — oo and A arbitrarily fixed. This regime is
referred to as the strong version of AAS/CFT, in which case the gravitational
side is a classical string theory.

In its strongest form AdS/CFT is valid for any value of the parameters N and
A, but computations must be carried out with the full quantum string theory.

Up to now we have specialized to AdS5/CFTy, involving a field theory in four-
dimensional flat spacetime. In this picture, with a vein of poetry, we could say
that our world (without gravity!) sits at the boundary of a negatively curved
spacetime comprising a fifth dimension we are not aware of. Leaving behind
us this appealing imagery, in the following we will consider generalizations
of the Maldacena’s conjecture to arbitrary boundary dimensions d and to
bulk spacetimes with the same asymptotic structure as AdS441, referred to as
asymptotically AdS spacetimes.

The AdS/CFT dictionary. The gauge/gravity duality relates theories which
are expressed in extremely different languages. So, we need a proper vocabulary
to understand how they speak to each other. Eq. (2.1.24) is one of the entries
of this so-called holographic dictionary, translating gravitational quantities into
CFT ones. Besides the mapping between parameters, one would also like to
learn the mapping between observables. To grasp this point, let us work with
Poincaré coordinates (t,Z, z) = (x, z). A central assertion for the field/operator
map, due to Gubser, Klebanov, Polyakov [86], and Witten [87], is that a bulk
field ®(x, z) in AdS441 corresponds to a particular operator O(x) in the dual
CFTy4, and the way they are linked is driven by the boundary behavior z — 0
of the bulk field. More specifically, the field ®¢(z), defined as the coefficient of
the leading-order expansion ®(z, z) ~ f(z)®o(z) around z = 0, acts as a source
for the dual operator O(z). In Euclidean signature (+, ..., +), the generating
functional of CFT correlators thus reads

W] _ <ef ddmo<w>0<w>> (2.1.25)

CFT

The bulk field ®(z, z) is taken as a solution of the equation of motions derived
from the supergravity effective action Is,grq, with boundary condition specified
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Z=0 ¢——— 7 =0

Figure 2.2: According to the field /operator map, each field ®(z, z) in AdSg41
corresponds to a proper operator O(z) in the boundary CFT,;. The figure
specializes to d = 2.

by ®o(x). From here, we get the fundamental formula:

w [(I)O] = Isugra [q)”@(w,z)wf(z) ®o(z) (2126)

Basically, the CFT generating functional depending on the off-shell boundary
configuration ®¢(z) is identified with the on-shell gravitational action computed
on the solution ®(z, z). Clearly, the effective action Igy,g.q is valid when the
gravitational theory is weakly coupled and classical, which in turn happens if the
dual CFT is strongly coupled. So, in the realm where any known perturbative
approach breaks down, a complicated quantum object as the correlator

oW
(J}l) e 5@0(.13”) Bo=0

(O@1) - Oea)lorpr = 55 (2.1.27)

can be computed by taking ordinary derivatives of a classical on-shell action.
Eq. (2.1.26) is believed to also hold for the strongest version of AdS/CFT. In
this case, we get the prominent GKPW formula

ZCFT = Zstringa (2128)

stating the equivalence between the partition functions Z = e"V of a CFTy and
of a full string theory in AdSgy.
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Below we list some possible choices for the source ®q(x) and the corresponding
CFT, operator O(x):

Scalar field ¢(x) <«+—  Scalar operator O(z)
Gauge field A,(z) <+— Current J,(z) (2.1.29)
Spin-two field h,,(z) <+—  Energy-momentum tensor T, (x)

The mass m of each bulk field is related to the conformal dimension A of the
dual operator as follows:

o Scalar field and massive spin-two field: m2L? = A(A — d).
o Gauge field: m?L? = (A —1)(A+1—d).

o Massless spin-two field: m? =0, A = d.

Scalar field example. Let us enter the details of the field/operator map
focusing on a scalar field with mass mi into AdSg4y1. Solving the Klein-Gordon
equation obtained from the scalar action in curved spacetime

S ~ /ddac dz+/—g (gm" m® On® + méd)z) , (2.1.30)
we find two independent asymptotic modes:
Bz, 2) ~ do(x) 2772 + ¢y () 22, (2.1.31)

with A the larger root of the mass constraint mbe2 =A(A —d):

A—§+ derm2L2 (2.1.32)
=3 1 2L 1.

The mode 242 gives a divergent action at the boundary z = 0, so it is called
non-normalizable. On the other hand, the mode 2z provides a finite action,
and is thus defined normalizable. By dimensional arguments, we must interpret
¢o(x) as the source for the dual scalar operator O(z). After fixing ¢o(x), the
other solution ¢;(x) can be expressed as a function of ¢g(z) itself. Namely,
¢1(x) is interpreted as the vacuum expectation value (VEV) (O(z)) of the dual
operator, whose conformal dimension is the corresponding exponent A.
However, this is not the end of the story. Contrary to the Minkowski case,
scalar fields in AdS can have a negative mass mi and still remain stable. By
the way, stability breaks down for masses below a threshold value. The stability
condition for a scalar field in AdSgy1, known as the Breitenlohner-Freedman
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(BF) bound, reads m3 L* > —d? /4 [88]. Now, the lower the mass, the higher the
value of d — A. Clearly, in the mass range —d®/4 < m3L* < —d*/4+ 1 both A
and d — A are above the unitarity bound (2.1.19), so they can both be taken as
honest conformal dimensions for the dual scalar operator O(x). This degree of
arbitrariness corresponds to the choice of either ¢o(x) or ¢1(x) as the source of

O(z) [89].

A

vl
>
o8]

d—A

d? d? 272
— 1 _I“rl m¢L

Figure 2.3: Possible values of the conformal dimension of the CFT; operator
O(z) as a function of the mass of the scalar field ¢(z) in AdS441. The unitarity
lower bound is shown in green. In the mass range A we can have dual operators
with conformal dimension A or d — A. Instead, in the mass range B we can
only have a dual operator with conformal dimension A.

Summarizing:

o For m3L* > —d*/4 +1, ¢o(x) is interpreted as a source and ¢;(z) as a
VEV of the dual scalar operator O(x), whose conformal dimension is A.

o For —d?/4 < miL2 < —d?/4+1, either ¢g(z) or ¢ (x) can be interpreted
as a source for the dual scalar operator O(z), whose conformal dimension
is A or d — A, respectively.

As we will see in Ch. 7, in the second case we have a rich catalog of quantization
conditions.
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2.2 Entanglement entropy and Ryu-Takayanagi pro-
posal

One of the basic ideas of the AdS/CFT correspondence is that the bulk spacetime
emerges from the degrees of freedom of the boundary CFT. A milestone along
the path towards this interpretation is the Bekenstein-Hawking formula (2.1.22),
which tells us that the number of degrees of freedom of a BH scales as the
area and not as the volume. Inspired by this remarkable result and AdS/CFT,
Ryu and Takayanagi proposed a similar formula for the computation of the
entanglement entropy of subsystems in strongly coupled CFTs.

Prior to describing the Ryu and Takayanagi’s key result, it is worth introducing
the notion of entanglement entropy. To this purpose, let us consider a quantum
system with Hilbert space H. Dividing the total system into two subsystems A
and B, the total Hilbert space can be expressed as the direct product of the
Hilbert spaces of the two subsystems, namely H = H4 ® Hp. Given a pure
state [¢)) € H, the corresponding density matrix is p = |¢)(¢)|. An observer
in A, who has not access to B, would describe the state of the system by the
reduced density matrix

pa=Trp [V){Y|, (2.2.1)

obtained by tracing the density matrix p over the Hilbert space Hp. Quantum
mechanics teaches us that, in principle, a measurement on the state ps by
an observer in A can also shed some light on the state of the subsystem B.
When this happens, the two subsystem are said to be entangled. The degree of
entanglement of the pure state |¢) for the chosen bipartition can be measured
by the entanglement entropy of the subsystem A, defined as the von Neumann
entropy of the reduced density matrix pa:

S(A) = —Tra (palnpa), (22.2)

where the trace is taken over the Hilbert space H 4. In case the state |1) of the
whole system is pure we can interchange the role of the two subsystems A and
B, so that S(A4) = S(B).

The entanglement entropy S(A) has some useful properties:

o Subadditivity: for any pair of subsystems A and B we get

S(A)+ S(B) > S(AUB). (2.2.3)

o Strong subadditivity: for any two subsystems A and B we have

S(A) + S(B) > S(AUB) + S(ANB). (2.2.4)
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Note that for disjoint subsystems (AN B = @) the inequality reduces to
subadditivity.

In continuous d-dimensional QFTs, the splitting of the total system into
subsystems A and B is intended as a spatial bipartition on a Cauchy slice
¥,% representing a spacelike (d — 1)-dimensional surface on which the state of
the total system lives. Due to the continuity of the system, the entanglement
entropy S4 is obviously UV divergent, so it calls for a regularization. The
regularization procedure can be accomplished by putting the theory on a lattice
and sending the spacing between neighboring sites to zero, or by working in a
region of width € — 0 around the interface between A and B, thus regulating
the short range entanglement between the interior and exterior of A itself.
The computation of entanglement entropy in QFTs can be performed by the
replica trick [90], which we do not describe in this thesis. While for CFTs in
d = 2 dimensions the conformal symmetry allows to calculate the entanglement
entropy in several situations [91-93], for general QFTs in dimensions d > 2 the
issue appears to be tractable just for free field theories [81, 94].

Here comes the breakthrough of Ryu and Takayanagi. They conjectured that
the entanglement entropy of a spatial region A in a strongly coupled CFT is
given by the area of a codimension-two® minimal surface v4 anchored at 9A
and extending into AdS4y1, on which boundary the CFT is located [9, 10]:

A(74)

S(A) = el (2.2.5)
For the sake of clarity, in Fig. 2.4 we illustrate the proposal.
The Ryu-Takayanagi (RT) formula (2.2.5) generalizes the Bekenstein-Hawking
formula (2.1.22) to AdS spacetime. Indeed, S(A) can be thought of as the
entropy measured by an observer who can only access subsystem A, thus
interpreting the inaccessible subsystem B as the interior of a (fictitious) BH.
In this sense, the minimal surface v4, named RT surface, can be regarded as
a holographic screen for an observer in A. Actually, when the bulk spacetime
contains a BH and subsystem A is extended to the whole Cauchy slice 3, the
RT surface wraps the BH event horizon and S(A) = Sy [9, 10].

As we have stressed in Subsec. 2.1.1, the AdS metric is divergent at the
boundary, causing the holographic entanglement entropy (2.2.5) to diverge
as well. A regularization can be performed by computing the area of v4 up

4A Cauchy slice defines a moment of simultaneity in the QFT. Strictly speaking, 3 is a
Cauchy slice on a Lorentzian manifold M if every inextendible differentiable timelike curve
on M intersects X at precisely one point.

5The codimension of a hypersurface is defined as the difference between the dimension
of the ambient spacetime and the dimension of the hypersurface itself. For instance, a
codimension-two hypersurface in AdS44; has dimensions d — 1.
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Figure 2.4: Pictorial representation of the RT formula. The spatial region A on
the Cauchy slice X in the boundary CFT is shown in blue. The RT surface v4
is anchored at the edges of the region A and extends into the bulk spacetime.
The figure does not show the time direction.

to a cutoff surface introduced nearby the AdS boundary. This regularizing
procedure corresponds to putting a UV cutoff in the boundary CFT [95], as
we have discussed above. The regularized holographic entanglement entropy
(2.2.5) evaluated in three-dimensional AdS has been found to reproduce the
entanglement entropy of a two-dimensional CFT [9]. Then, the RT formula
provides a further evidence of validity of the AdS/CFT correspondence. Besides
this, it inspires a fascinating idea: quantum information notions of CFT states
tell us how the bulk spacetime emerges from the boundary theory.

We conclude this section by stressing that the original RT proposal was
formulated for static states in the dual CFT. Later, a covariant prescription
valid for time-dependent states has been introduced by Hubeny, Rangamani,
and Takayanagi (HRT) [96]. Similarly to the RT formula, the HRT prescription
relates the entanglement entropy of a CFT spatial region A to the area of an
extremal codimension-two surface I' 4 extending into the bulk, anchored at 0A,
and smoothly deformable to A itself:

AT 4) .

SW="1a

(2.2.6)

The HRT surface I'4 represents a covariant generalization of the RT surface
to dynamical backgrounds, and in the static case it reduces to the RT surface
itself.
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2.3 Entanglement entropy is not enough

2.3.1 The thermofield double state

One of the outcomes of the AAS/CFT correspondence is that a field in AdS
spacetime is dual to an operator in the boundary CFT. An analog map exists
between asymptotically AdS bulk geometries and CFT states. The simplest
example is vacuum AdS441, which corresponds to the vacuum state in the
boundary CFTy. In the same spirit, a Schwarzschild AdS;1; BH is dual to
the thermal state in the boundary CFT,. For the purposes of this thesis,
an honorable mention is deserved by eternal® Schwarzschild AdS BHs, whose
maximally extended Penrose diagram, shown in Fig. 2.5, has two boundaries,
one on the left and one on the right.

singularity
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Figure 2.5: Penrose diagram describing the causal structure of an eternal AdSy4;
BH. We recognize four regions: the future interior, which is the proper BH, the
past interior, referred to as white hole (WH), and the left and right exteriors.
The horizontal lines represent the past and future singularities inside the WH
and BH, the vertical lines denote the spacetime boundaries on which the dual
CFTs live, and the diagonal lines are the event horizons of the WH and BH.
Each point of the diagram hides a (d — 1)-dimensional sphere, which shrinks
nearby the singularities.

Maldacena argued that this geometry is equivalent to two identical non-
interacting CFTs, each of which located at the left (CFTy) and right (CFTg)

6Eternal BH solutions contemplate a peculiar region named white hole (WH), which does
not exist for BHs formed by gravitational collapse. The WH is in a sense the time reversal of
a BH. While objects can just enter a BH but never escape, objects can just escape from a
WH but never enter it.
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boundaries of the two-sided spacetime. The two field theories are entangled and
the state on the total Hilbert space H = Hy ® Hg is the so-called thermofield
double (TFD) state [97]

|TFD) = B, © B - (2.3.1)

N
In the above expression, § is the inverse temperature, Z(/3) is the partition
function of one copy of the CFT, and the sum runs over all the eigenstates
of the total system. The motivation for this assertion lies in the fact that an
observer in each of the asymptotic regions into the bulk spacetime witnesses a
Schwarzschild AdS BH, which we have argued to be dual to the CFT thermal
state. In fact, the trace of the TFD state over the full left (or right) system
returns the thermal density matrix of the remaining CFT:

Toy (TPD)(TFD|) = 55 Y5 By Euly

e PHR (2.3.2)
Z(B)

th
/DR7

hence the name thermofield double. Moreover, the presence of the event
horizon prevents observers in the left and right asymptotic regions of the
bulk spacetime from communicating with each other. More precisely, the only
way for an observer to send a message to the other is through the wormhole,
or Einstein-Rosen (ER) bridge, connecting the two sides of the BH. This is
reflected in the lack of interaction between the two boundary CFTs, which are,
although, entangled. As a remarkable conclusion, the spatial connectivity of the
bulk spacetime arises from entanglement [98]. This seminal observation gave
inspiration to the idea that the two apparent (but not effective!)” violations
of locality represented by entanglement and ER bridges are intimately related.
The resulting conjecture, which goes under the name of ER=EPR (where the
second entry stands for Einstein-Podolsky-Rosen, who pointed out the celebrated
paradox involving quantum entanglement [99]), states that the connection of
two systems by an ER bridge is a sufficient and necessary condition for them to
be entangled [100].

7On the one hand, no local operation performed on one member of an entangled pair can
influence the other faster than a classical signal. On the other hand, no causal signal can be
sent from one side of an eternal BH to the other, see for instance Fig. 2.5.
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2.3.2 Time evolution of entanglement entropy

In light of ER=EPR, one may be tempted to conclude that entanglement fully
describes the BH interior. Actually, the ER bridge is a dynamical object, even
for eternal AdS BHs. So, to get a comprehensive view, we must discuss how
entanglement entropy evolves in time.

Let us go back to the field theory state dual to the eternal AdS BH. The TFD
state (2.3.1) can be viewed as the initial configuration at times t;, =t = 0,
where each time refers to one of the two independent field theories CFT 7, and
CFTg. The time-evolved TFD state reads

|TED(ty,tg)) = e HrtL=iHRir | TP D)

(2.3.3)

Z _BEn 72E,L (t+tr) |E > ®|En>R»

\ﬁ

where Hy, g denote the Hamiltonians of the left and right theories. There are
two possibilities of choosing the boundary times [101]: either ¢;, and ¢ grows
in opposite directions (t;, = —tr), or t;, and tg increase in the same direction
(tr, = tr). The first choice is equivalent to evolving the TFD state with the
Hamiltonian Hj, — Hg, leading to

tL—>tL+At, tR—>tR—At, (234)

which clearly leaves the state invariant. Indeed, this transformation is generated
by the time Killing vector of the bulk spacetime. The second choice, instead,
entails a natural time evolution driven by the Hamiltonian Hy + Hg. Thus, in
order to investigate the dynamics of the system, we employ the latter option,
assuming both times to grow upward and defining ¢, = tg = t;,/2.

We now turn to the entanglement entropy, exploiting the power of the RT (or,
accordingly, the HRT') proposal. Namely, the entanglement entropy of a CFT
subsystem can be simply estimated by the area of extremal surfaces anchored
at the boundary subregion itself. In static backgrounds, extremal surfaces never
penetrates BH event horizons [102]. However, in dynamical situations the HRT
surface can act as a probe of the BH interior. This is the case of eternal AdS
BHs with the choice t;, = tg, which enforces time dependence and causes the
entanglement entropy of a boundary subregion to potentially evolve in time. If
the boundary subsystem is the union of half of the space on each of the two
boundaries, the HRT surface traverses the BH at any time. Then, classically,
entanglement entropy linearly grows forever [101]. But this is not the most
general situation. Let us consider a boundary subsystem given by the union
of finite regions in both the left and right theories. At early times the HRT
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surface still connects the asymptotic subregions and explores the BH interior.
After a time of order ¢, =~ 3, the extremal surface stretches along the spacelike
direction in the BH interior, leading to a linear growth of the entanglement
entropy, as in the previous case. However, at a time of the same order as the
subregion size, known as thermalization time, the extremal surface is pushed
out of the BH and becomes disconnected. From this time on, the entanglement
entropy saturates at the constant thermal value [101]. Nevertheless, as it is
clear from the Penrose diagram in Fig. 2.5, the ER bridge continues to grow for
times much longer than the thermalization scale of the system. It is thus clear
that the entanglement entropy is not enough to capture the late time dynamics
of the BH interior [14].

2.4 Gate complexity

Contrary to the ER bridge traversing an eternal BH from side to side, the
entanglement entropy in the dual field theory stops growing when the system
thermalizes. The same story repeats for all the established CFT entries in
the holographic dictionary. By the way, if we believe in AdS/CFT, a quantity
should exist in the dual field theory which keeps evolving for long times after
the thermalization, mimicking the dynamics of the ER bridge. Susskind guessed
this quantity to be quantum computational complexity of the dual state [14].
Prior to justifying the reasoning behind this proposal, we introduce complexity
from the quantum information perspective.

2.4.1 Computational complexity: the origin

Computational complexity was originally introduced in the context of computer
science to quantify the difficulty of performing a task. The basic ingredients
involved in the complexity definition are a system, a set of states, and a
collection of simple operations. Let us pick up a state of our set, which we
refer to as reference state, and consider the problem of transforming such a
state into a target state, again chosen from the same set. Suppose we are only
allowed to consecutively apply to the reference state the simple operations at
our disposal. Complexity is defined as the minimum number of operations
required to accomplish the task.

A classical example. For the sake of clarity, let us borrow an instructive
example from [14]. We consider a classical system of n bits of information, each
of which can be in two states, say 0 and 1. A state of the system is given by a
sequence of n binary digits. For consistency, we identify the states obtained by
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flipping the values of all the n digits, e.g. (0110...) = (1001...). We are now
left with the choices of the reference state and of the notion of simple operation.
The simplest state that immediately comes in mind is a sequence of identical
digits, either 0 or 1: (000...) = (111...). On the other hand, the simplest
operation is the switching of a single digit: 0 <+ 1. Note that every state can be
built from the reference one by applying a finite number of such consecutive
operations. Complexity of the target state is simply defined as the minimum
number of digit-flipping doing the job. Clearly, no state requires more than n/2
simple operations to be constructed this way.® So, the maximum complexity is
just Cmax = n/2. We point out that at the classical level complexity is not that
different from entropy, at least quantitatively. Indeed, in the present model the
maximum entropy, measuring the disorder of the system, is also linear in the
number of bits: Spax = nlog2.

A quantum example. We now introduce quantum mechanics into the problem,
considering the equivalent system constituted by n quantum bits (qubits). The
crucial difference with the classical case is that a state of the quantum system,
up to a normalization constraint and an overall phase, is specified by 2" complex
parameters:

i
) = aili) (2.4.1)

where |i) are elements of the basis of the Hilbert space cp? 1, Specifically, each
|#) is a product state of n one-qubit states, which can be either |0) or |1). The
exponential scaling in n of the number of parameters needed for characterizing
a state, against the linear scaling of the previous case, is at the origin of the
huge discrepancy between classical and quantum complexity.

Reasonably, the simplest state of the quantum system is marked by two
conditions: all the n qubits are in the same one-qubit state and there is
no entanglement between qubits. As before, if we identify the states obtained
from each other by flipping all the one-qubit states, which can be done by a
global SU(2) rotation, it is not restrictive to identify as the reference state

[¥r) =1000...) . (2.4.2)

Quantum states should transform following the laws of quantum mechanics.
Therefore, we just allow wunitary operations. Furthermore, we neglect
transformations which only change the phase of the state, making no progress in
the construction of the target state. As a result, we end up with transformations
belonging to SU(2"), the group of special unitary operators acting on n-qubits
systems. Among the U € SU(2"), the simple operations will involve a small
number of qubits. Since operators acting on one qubit are not able to create

8The most complex states are specified by an equal number of 0 and 1 entries.
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entanglement, we are forced to also admit in our set two-qubits transformations.
We refer to one-qubit and two-qubits operations as quantum gates.

Now, a generic state of the form (2.4.1) can be constructed by acting on the
reference state with a special unitary transformation as

Y1) =U |¢rR) - (2.4.3)

Bearing in mind the general complexity definition, we are interested in special
unitary transformations U coming from the composition of quantum gates:

U=gix9x-1---91- (2.4.4)

This assembling of quantum gates gives rise to a quantum circuit. We here
distinguish between two notions:

o Unitary complexity, quantifying the hardness of building a given unitary
operator. This can be identified with the number of gates in the optimal
circuit.

o State complexity, quantifying the hardness of building a given state. This
can be defined as the lowest complexity of any operator building the state
from the reference one:

C(l¢r)) = min C(U), (2.4.5)
provided that eq. (2.4.3) holds.

Whereas maximum entropy is still Spax = mlog2, maximum quantum
complexity is Cpax =~ €", due to the large number of parameters necessary
to specify the quantum state.

We stress that the above discussion can be readily adapted to quantum systems
of n qudits, each of which can be regarded as a K-levels system. In this case,
the Hilbert space is cPX "_1, and the unitary group acting on states is SU(K™).
Generalizations trivially follows.

2.4.2 Time evolution of complexity

We now turn to the original question of finding a quantum information notion
which continues to grow after the system has come to thermal equilibrium.
Mainly following [22], we investigate the time evolution of quantum complexity,
showing that it fulfills this requirement.
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Strictly speaking, throughout this chapter we specialize on quantum circuits
containing only two-qubits gates. Moreover, we require the circuit to be random,
meaning that in every step each qubit is randomly paired with another and a
randomly chosen quantum gate acts on the pair. We just impose the set of gates
to be universal, so that any unitary operation can be expressed as a sequence
of a finite number of gates. Under this assumption, in every step exactly n/2
gates act, involving all qubits. Clearly, unitary complexity is still defined as the
minimum number of gates composing the circuit. If we think of the steps as
units of discretized time 7, such a parallel computing mimics the Hamiltonian
evolution better than the gate composition of eq. (2.4.4). In Fig. 2.6 we sketch
a random circuit:

—tt
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Figure 2.6: Random circuit involving n = 6 qubits and four steps. Each black
line represents a qubit, and each blue square denotes a gate. In every step three
pairs of qubits are randomly formed, and a gate acts on each pair.

Let us consider a unitary operator U(7), and explore how its complexity evolves
in time. To answer this question, we must count the number of gates in the
optimal circuit preparing U(7) at a given time. Since n/2 gates are implemented
at every time step, surely U(7) can be prepared by a circuit composed of a

number of gates equal to

nrt
Ngates(T) = 7 . (246)

However, the optimal circuit is in general shorter, implying that

C(U(7)) < Ngates(T) (2.4.7)
To fix ideas, we can focus on the evolution operator U(7) = e~*7  generated
by an Hamiltonian containing only one and two-qubits gates. At initial times,
the operator is "close" to the identity, so that the corresponding circuit is
short. Therefore, it is reasonable to suppose that the defining circuit is also the
more efficient for some time interval. In this regime C (U(7)) = Ngates(7), and
complexity linearly grows. By the way, in Subsec. 2.4.1 we have argued that
Cmax =~ €™, so complexity eventually stops increasing. Even though the linear
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growth cannot last forever, it is guessed to last as long as possible [103]:

CUr) =", TS (2.4.8)
Recently, both the initial linear growth and the exponential maximal value of
complexity have been proven [12] in random quantum circuits. When complexity
is near to its maximum value, the growth rate appreciably slows down. At
this point, complexity fluctuates in proximity of Cphax for a long time, as it
can be understood from the fact that the majority of unitary operators has
maximum complexity. The leaping around highly complex operators continues
until the system runs into a quantum recurrence, causing complexity to rapidly
fall down to near the sub-exponential initial value. This extremely rare event
takes place after a doubly exponential time 7 ~ e¢", and is related to Poincaré
recurrence theorem, basically stating that dynamical quantum systems exploring
a phase space eventually returns to their initial state. After the quasi-periodic
quantum recurrence, complexity resumes increasing and the entire cycle keeps
repeating itself. In Fig. 2.7 we outline the conjectured time evolution of unitary
complexity in random circuits:

plateau

e // e
Figure 2.7: Putative time evolution of unitary complexity of the operator e=*7,
reproducing a picture in [104]. The "ramp" regime has been proved in [12].

2.4.3 Quantum chaos and switchback effect

As we will promptly see, the circuit whose complexity evolution is displayed
in Fig. 2.7 is chaotic. A hallmark of quantum chaos is the strong influence
of initial conditions on the time evolution. Namely, a small change of the
initial configuration causes drastic modifications of the state at later times, a
phenomenon which has poetically been described by Lorenz (at the suggestion



GATE COMPLEXITY 35

of colleagues) as the flap of a butterfly’s wings in Brazil setting off a tornado in
Texas.

In the random circuit introduced in the previous subsection, chaos can be
captured by precursors [22, 82, 105], peculiar operators which are sensible to
the spread of a perturbation into the system. To construct a precursor, let
us start from an operator W modeling a small perturbation on the system.
Concretely, we take an operator W acting on a small number of qubits, say one
for simplicity. To investigate the effect of this perturbation on the operator
itself at a given time 7, we turn back time with the inverse of the evolution
operator U(—7) = e'#7 we then apply W, and we finally come back to the
present by applying U(7) = e*#7. The resulting precursor

W(r)=U(r)WU(-7) (2.4.9)

measures how the operator in the present would have been had we inserted a
perturbation in the past. Indeed, if no perturbation is inserted (W = 1) the
precursor does not change with time: W(r) = 1. On the other hand, if the
system is chaotic we expect W(7) to become more and more complex as time
passes, due to the dramatic effects of the initial perturbation W.

Let us study how the complexity of W (7) varies with time. Naively, one may
consider the circuit formed by concatenating the three operators U(—7), W, and
U(r). After 7 time steps, U(7) has been implemented by acting with m = nr/2
gates. So, the precursor is surely reproduced by the circuit

W) =gl . g Wgm...gi. (2.4.10)

In general, this is not the optimal way of building W (7). In fact, a shorter
circuit may exist which does the same job, implying that

C(W(r)) < C(U(7)) +C(W) + C(U(~7)) . (2.4.11)

To understand this point, let us borrow the "epidemic model" introduced in
[105]. We regard the qubit on which W acts as an infected qubit. At initial
time 7 = 0, W clearly commutes with U(7), and C(W (7)) = C(W) = 1. After
one time step, the infected qubit is randomly paired with a healthy qubit and a
gate acts on the pair. We say that the healthy qubit is infected, meaning that
W commutes with all the gates composing U(7) except for the one acting on
the infected pair. So, a huge cancellation between the gates in U(7) and U(—7)
occurs. At the next time step, supposing that the infected qubits are not paired
again, which happens with a small probability of O(n~1), four qubits become
infected and so on. The infection spreads exponentially, until all qubits are
infected. We schematically illustrate the infection process in Fig. 2.8.
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Figure 2.8: Spreading of the epidemic in a random circuit involving n = 6 qubits
and two steps. Infected qubits are represented by red lines. At each step, any
infected qubit contaminates the healthy qubit it is randomly paired with.

Let us define the size of the precursor s(7) as the number of infected qubits at
time 7. In the following step 7 + A7 such a number increases of the amount

n—s

As = S, (2.4.12)

n—1

being (n —s)/(n — 1) the probability that an infected qubit pairs with a healthy
one. Hence, the epidemic follows the differential equation

ds n—s

B 2.4.13
dr  n—17 ( )
which at large n is solved by
ne’
= . 2.4.14
s(r) = " (24.14)

So, in agreement with our expectations, at early times s(7) ~ e, whereas at
large times the epidemic has spread all over the system and s(7) ~ n. It is
convenient to introduce the parameter 7, = logn, called scrambling time, that
allows us to write eq. (2.4.14) as

n eT*T*

s(t) = ———. 2.4.15

(=1 (2.4.15)
Since for 7 — 7, >> 1 the number of infected qubits saturates, the scrambling
time 7, can be interpreted as the time it takes for the perturbation to spread

over the entire system.

We emphasize that the only gates contributing to the complexity of the precursor
are the ones that actively participate in the infection process, the others getting
canceled as explained around eq. (2.4.11). At each time step, s(7)/2 of such
gates appear in U(—7') and the same number is contained into U (7). Therefore,
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the complexity of the precursor W (r) is obtained by summing up the values of
s(7') up to time 7:

C(W(r)) = / s(r)dr’ =nlog (1+e"~ ™)
0
(2.4.16)
e’ if me—7>>1,
n(T — 7y) if 7—71.>>1.

While at early times complexity grows exponentially, long after the scrambling
time it manifests a linear growth. This delay in the linear regime, causing
complexity to be decreased by nrt, with respect to the case linear growth
immediately appears, is known as switchback effect, and is a hallmark of
complexity for chaotic systems. At the light of this, the random circuits
we have been considering are called fast scramblers, since there is no way for a
perturbation to spread over a system faster than 7, = logn [106].
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Figure 2.9: Size and complexity of the precursor as functions of time for n = 10.

2.5 A geometric model for complexity

In the previous section, we have described fundamental properties of
computational complexity in chaotic quantum circuits. Surprisingly, the
complexity time evolution and the switchback effect that we have detected
in these systems are mirrored by a peculiar geometric model introduced in [22],
which we now present. As we will discuss in Ch. 3, this interesting playground
gives us necessary conditions for more formal geometric definitions of complexity
to reproduce the switchback effect.
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2.5.1 The setup

Let us consider a two-dimensional hyperbolic space with curvature radius
L = n/2, whose metric is
21

ds 1

(dp® + sinh? pdb?) . (2.5.1)
This space, called Poincaré disk, is nothing but a constant-time slice of AdS3
spacetime in static coordinates (2.1.5), where we have defined r = sinh p. As
the name suggests, the manifold has the topology of a disk, with center at
p =0 and a boundary at p — +00. A crucial property of our model is that the
Gaussian curvature® of the hyperbolic plane is equal to —4/n?.

We now compactify our space by introducing an equilateral hyperbolic polygon
centered at p = 0 with 4¢ sides, where g denotes the genus of the manifold. In
order to avoid conical singularities, we identify the sides of the polygon two by
two:

Figure 2.10: Poincaré disk compactified by the introduction of an hyperbolic
polygon (in purple). Identified sides are marked with the same symbol. The
blue curve represents an example of particle trajectory, starting from the disk
center.

The claim is that the motion of a non-relativistic particle on such a negatively

9To define this notion, let us imagine to intersect a surface = with normal planes at a
given point p. Each intersection with a normal plane determines a curve £ with a certain
curvature. The Gaussian curvature of Z at the point p is the product of the maximal and
minimal values of the curvature of any possible £. Remarkably, for a two-dimensional space
the Gaussian curvature is half the scalar curvature.
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curved space with Gaussian curvature —4,/n? reproduces the time evolution of
complexity for an n-qubits random circuit. In the geometric setup, complexity is
identified with the distance of the particle from the center of the disk, measured
along the shortest geodesic. In particular, maximum complexity is given by the
length ¢ of the longest minimal geodesic starting from the center of the disk.
To match the quantum circuit result ¢ ~ e”, we can properly tune the number
of polygon sides 4g. Indeed, by the Gauss-Bonnet theorem!'® we know that the
volume of the compactified disk is roughly the same as the genus: V ~ g. On
the other hand, under the assumption ¢ >> n, the volume of the Poincaré disk
with maximum distance ¢ from the center reads
2 ¢/L
V= % / dp sinh p ~ n2e2*/™ (2.5.3)
0

Putting all together, we conclude that taking g ~ " the maximum distance
from the center scales exponentially with n.

2.5.2 Time evolution of the distance from the disk center

A further test of matching between complexity in a random circuit and our
geometric model has to be searched in the dynamics of the non-relativistic
particle moving on the compactified Poincaré disk. Let us suppose that the
particle starts from the center p = 0. With the passing of time, due to the
background geometry the particle freely propagates towards the boundary of the
disk with constant velocity. In this regime, the distance from the origin (read
complexity) linearly grows. Eventually, at the maximum distance ¢ from the
center, the particle hits one of the polygon sides. Then, it re-enters the space
from the identified side, see Fig. 2.10. Recalling that geodesics on the Poincaré
disk are circumferences centered at the boundary, it is clear that the particle
approaches the origin, turns away, hits again one of the polygon sides and so on.
In general, the approaching to the disk center lasts for a very short time, causing
the distance to fluctuate around its maximum value. This continuous exiting
and re-entering the manifold goes on for a long time. Indeed, the only way for
this process to stop is that the particle re-enters the compactified disk with
a small deviation with respect to the radial direction, so that moving on the

10For a two-dimensional manifold M with boundary OM, the Gauss-Bonnet theorem reads

/ KdA+ / Kg ds = 2mx(M). (2.5.2)
M oM

In the above expression, K is the Gaussian curvature of M, k4 measures how OM deviates
from a geodesic (so, it vanishes for geodesics), and x(M) is the Fuler characteristic of
M. Denoting by g the genus of the manifold and by b the number of boundaries, we have
x(M)=2-2g—b.
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corresponding geodesic it approaches the disk center. However, the probability
for the particle of reaching a distance AC less than the maximum value ¢ from
the center is pretty small. Explicitly, since the motion on the Poincaré disk is
ergodic, meaning that the particle trajectories uniformly cover the whole space,
such a probability can be estimated as the inverse volume within a distance
¢ — AC from the disk center:

1 — n
P({—AC) ~ A 2ac/n (2.5.4)

In order to obtain sub-exponential distances, we must take AC ~ ¢ =~ e, leading
to a recurrence time of O(e"). We thus conclude that the simple geometric
model at hand agrees with the complexity evolution sketched in Fig. 2.7.

2.5.3 Switchback effect

Last but not least, we show that the toy model at hand mimics the switchback
effect which characterizes complexity of chaotic quantum systems. As we have
seen, this phenomenon can be detected by the complexity of the precursor
W(r) = e #HTWeH T, In the geometric model we are describing, the
implementation of any unitary operator can be represented by a geodesic
on the compact two-dimensional negatively curved manifold, where the center
p = 0 can be identified with the identity operator 1. So, the precursor is
described by three consecutive curves:

W
igay

W(r)

Figure 2.11: Precursor W(7) in the geometric model. The green curves denote
the forward and backward time evolution operator and the blue curve the
perturbation operator W. The red curve represents the shortest geodesic
reproducing W (7).

Complexity of an operator is interpreted as the length of the corresponding
geodesic. Similarly to the discussion in Subsec. 2.4.3, the length of the path
obtained by concatenating the three curves ™, W, and e *#" provides an
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overestimate of the complexity of the precursor. Indeed, shortcuts generally
exists which lead to a shortest path, as in Fig. 2.11. Then, complexity of the
precursor can be computed as the distance from the disk center measured along
the optimal curve. If we travel on a geodesic for a distance s1, turn of 90 degrees,
move for a distance 2s5, rotate of 90 degrees and move again for a distance sq,
the geodesic distance s3 between the starting and the final points satisfies [22]

cosh (%3) = cosh? (%) + sinh? (%) cosh (2le> , (2.5.5)

with L the curvature radius of the manifold. By applying this formula to the
precursor path of Fig. 2.11, we get

cosh (W(T))> = cosh® (C(W)> + sinh? (C(W)) cosh <46(€_HT)>

n n
2 (1 a1
=cosh” [ — | +sinh” [ — ) cosh (27) ,
n n
(2.5.6)

where use has been made of the fact that L = n/2, 2so = C(W) = 1, and
s1=C (e_iHT) = n7/2. At early and late times we can expand the result,
getting

e’ /2 it 7o —7>>1,

n(T — 7) if 7—7>>1, (2.5.7)

cowr) = {
with 7, = logn the scrambling time. So, the length of the precursor shortest
geodesic matches the asymptotic behaviors of the precursor complexity in the
random circuit model, see eq. (2.4.16). Noticeably, the geometrical model
reproduces the switchback effect. In this case, the delay in the linear growth of
complexity can be ascribed to the presence of shortcuts reducing the length of
the naive geodesic.

2.5.4 Remarks about length and action

In the above argument, we have identified complexity of a unitary operator
with the length of the corresponding geodesic passing from the center of the
disk. However, we could have defined complexity as the on-shell action along
the same curve [22, 23]. The two definitions lead to the same conclusions, up
to a different normalization of the manifold metric that we here discuss.

Starting from the metric

ds* = L? (dp® + sinh® pdf?) | (2.5.8)
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the geodesic length reads

| = L/ \/p% + 02 sinh? pdr, (2.5.9)

while the action can be expressed as

L? .
S = 7/ (p* + 62 sinh® p) dr. (2.5.10)
In the above expressions the dot represents a derivative with respect to time .
During the motion along a geodesic, both the particle velocity and energy are
conserved:

B 2 L2 .
v=IL\/p?+62sinh?p, E= % =5 (P +8smh’p) . (25.10)

As we have discussed, complexity should linearly grow as C = n7/2.

In the length picture, this condition is equivalent to v = n/2, which in turn
requires L = n/2. Then, the Gaussian curvature scales as —1/n?.

In the action picture, we should rather impose E = n/2, which is accomplished
for L? = n. This gives a manifold whose Gaussian curvature scales as —1/n.
In both cases we conclude that the geometric toy model reflects the main
features of complexity evolution for a quantum system of n qubits provided
that the background geometry has a negative Gaussian curvature polynomial
in n~L.

2.6 Complexity and black holes

In this section we discuss the connection between quantum complexity and BHs
in the AdS/CFT framework. As an important step towards the holographic
interpretation of complexity, we first argue that BHs can be interpreted as
quantum circuits. This similarity completes an ideal triangle of analogies
involving random circuits, the toy model introduced in Sec. 2.5, and BHs.

2.6.1 Black holes as quantum circuits

The first description of BHs as processors of quantum information is due to
Hayden and Preskill [107], who guessed that the BH internal dynamics is well
described by a random circuit composed by two-qubits gates, as the one we have
introduced at the beginning of Subsec. 2.4.2. The number of qubits n required
to properly model the BH can be reasonably assumed to be proportional to
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the BH entropy (2.1.22): n &~ Spy. Based on this pattern, in [106] the BH
scrambling time, defined as the time it takes for a qubit perturbation to spread
over the whole event horizon, has been found to be

t, = ﬁ log SBH s (2.6.1)
2

where [ is the inverse BH temperature and the time is measured by an
asymptotic clock. To make contact with the quantum circuits we have studied
so far, we introduce the dimensionless time

2wt

TG (2.6.2)

With this definition we have 7. = logSpy = logn, which is in fact the
scrambling time for a random circuit, see Subsec. 2.4.3. In other words,
no physical systems scramble information faster than BHs.

As a consequence to the BH-circuit analogy, the unitary complexity evolution
outlined in Subsec. 2.4.2 can be rephrased as shown in Fig. 2.12:

Figure 2.12: Putative time evolution of unitary complexity for a BH, which can
be thought of as a chaotic system with finite temperature. The thermalization
process occupies the tiny region enclosed in the red circle. The image reproduces
a picture in [103].

In the initial stage, complexity keeps growing for a time exponential in the
thermal entropy, until it approaches its maximum value. This regime has been
identified with the evolution of the actual BH. After complexity has reached
the near-maximum value, the system enters a complexity equilibrium phase,
which lasts for a doubly exponential time. Then, quantum recurrence causes
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complexity to decrease to sub-exponential values. Such an unstable regime has
been proposed to correspond to the complexity evolution of a white hole [103].}!

During the BH era, from the quantum circuit analysis we expect complexity to
grow as in eq. (2.4.8):

— N . 2.6.
dr n SBH ( 63)

By exploiting eq. (2.6.2), the rate of complexification measured by an asymptotic
observer reads

— =TS 2.6.4
N T Spn, (264)

with T'= B~! the BH temperature. We emphasize that this regime lasts for
an exponential time ¢ ~ €™, which is much bigger than the thermalization
scale, estimated as tiherm < 1P for some positive integer p [14]. Therefore,
complexity overcomes the limitations of entanglement entropy, which saturates
at the thermalization time.

The complexification rate (2.6.4) is extremely high. Actually, it is believed to
be the highest possible: no systems can implement quantum gates faster than
BHs. This conclusion is based on the Lloyd’s bound, which conjectures that
the maximum allowed computational speed of a system is proportional to its
energy E [108]. The bound can be reformulated in terms of complexity as [15]

dC _2F

— < = 2.6.

dt — wh (2:6:5)
For a BH, the Lloyd’s bound reads

dc _2M

— < — 2.6.6

dt — wh'’ ( )

with M the BH mass. For neutral BHs we have M ~ T'Sppy, so the upper
bound on the complexification rate is assumed to be saturated.

If the BH has a conserved charge, as the angular momentum J or the electric
charge @), a tighter bound is given by

dc 2

— < —[(M-QJ-2Q)— (M —-QJ - 2.6.

S (M -0T-8Q)~ (M-~ 8Q)gs) . (26.7)
in which Q and ® are the angular velocity and the electrostatic potential,
respectively. The second term in the right hand side is computed for the ground
state (GS), which is determined for fixed values of Q2 and ®. The modified

1 Referring to the Penrose diagram shown in Fig. 2.5, the white hole is clearly related
to the BH by a time-reversal symmetry. Under this transformation, a complexity growth is
mapped to a complexity decreasing.
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Lloyd’s bound (2.6.7) is in general violated by charged AdS BHs. A refined
version avoiding this issue has been suggested in [109]:

(M —QJ—2Q), — (M —QJ —2Q)_] . (2.6.8)

The first and second contributions in the right hand side are meant to be
evaluated at the outer and inner BH horizon, respectively. Henceforth, when
referring to the Lloyd’s bound we will have in mind eq. (2.6.8). We stress that
the original Lloyd’s bound is based on the assumption that gates transform a
state into an orthogonal one. In general, this is not the case for simple gates
employed in the complexity definition. Therefore, we will consider the Lloyd’s
bound as an appreciated feature rather than a strict condition to be verified by
complexity.

2.6.2 Holographic complexity

In the previous subsection we have pinpointed striking similarities between the
dynamics of BH interiors and random quantum circuits. We now go back to
the two-sided eternal AdS BH introduced in Sec. 2.3, turning to the central
question of finding a dual CFT quantity capable of fully describing the evolution
of BH interiors. The result in eq. (2.6.4) hints that complexity of the TFD
state keeps growing far after the system thermalization, just like the ERB
traversing the two-sided AdS BH. In light of this, complexity seems to answer
our question. However, we are left with a further basic inquiry: which bulk
quantity measuring the size of the ERB is dual to complexity of the boundary
TFD state? Below we discuss the main proposals.

CV conjecture. Naively, one may look at the volume of the ERB as the
candidate geometric quantity exploring the BH interior. Similarly to the Ryu-
Takayanagi prescription, one may consider an elongation of the ERB up to
the boundary time-slice on which the dual TFD state lives. Roughly speaking,
complexity of the TFD state at the given boundary times |TFD(tr,tr)) may
be conjectured to correspond to the space volume of the resulting hypersurface.
To formalize this idea, Susskind and collaborators have proposed [13, 14] to
slice the bulk geometry with codimension-one surfaces anchored at both the
left and right spacetime boundaries. The major requirements are that the slices
do not intersect each other and that they stay away from the BH singularity.
This is accomplished by mazimal volume slices, examples of which are shown in

Fig. 2.13.

As we have previously discussed, for the TFD state to manifest a non-trivial
dynamics we must take t, =t = t;/2, which defines a boundary condition for
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Figure 2.13: Penrose diagram for a two-sided eternal AdS BH, illustrating some
maximal slices involved in the CV conjecture. In the d-dimensional case, every
point of the Penrose diagram hides a (d — 2)-dimensional sphere. So, every
curve into the diagram is a (d — 1)-dimensional surface, the red part of which
represents the ERB traversing the BH.

the bulk slice. At initial time ¢, = 0, the maximal slice lies at constant time
and crosses the bifurcation surface in the center of the Penrose diagram in Fig.
2.13. As the boundary time ¢, grows, the ERB size increases too, as it is clear
from the figure. In the limit ¢, — oo the maximal slice, corresponding to the
red curve in Fig. 2.13, is entirely into the BH. By symmetry arguments, its
volume has been found to satisfy [13, 14]

. dV  8rGL

tz,lgnoo % = m TSBH 5 (269)
where d is the dimension of the bulk spacetime with curvature radius L, T is the
BH temperature and Spp is the Bekenstein-Hawking entropy. A comparison
between this outcome and eq. (2.6.4) has led to the complezity = volume (CV)
conjecture, stating that complexity of the CFT state living on the boundary
time-slice ¥ is proportional to the volume of the maximal codimension-one bulk
surface B anchored at ¥ [11, 13, 14]:

V(B
cv(®) = s “ar

(2.6.10)

A further evidence in support of the interpretation of Cy as the complexity of
the CFT state comes from the switchback effect. In the holographic scenario,
perturbing the TFD state with a precursor U(tg) Wpr(g) U(—to) acting on the
left (right) system is equivalent to introduce on the left (right) spacetime
boundary a particle at the past time ¢7,r) = —to. With the passing of time, the
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particle falls towards the BH event horizon, describing a null shock wave which
perturbs the geometry [110]. As a result, the volume of the maximal slice gets
modified. It has been shown [13, 82] that at time 7, = 27t /8 = 0 the volume
complexity (2.6.10) reproduces the expected result Cyy = Spp log (1 + e‘T‘”_T*)
of eq. (2.4.16). The conjecture also passes the same test in presence of localized
non-symmetric shock waves [111] and multiple shock waves [13, 112].

The CV proposal (2.6.10) can be generalized to any asymptotically AdS
spacetime by substituting the AdS curvature radius L with a suitable scale R
depending on the background geometry. Obviously, in the absence of BH there
is no ERB, so Cy is time-independent. In Fig. 2.14, we sketch an example of
maximal codimension-one bulk surface in global AdSs:

Figure 2.14: Ilustration of the CV conjecture in global AdS3. The red curve
represents the boundary time slice ¥.. The maximal codimension-one surface B
is shown in faded red.

Explicit calculations in different asymptotically AdS spacetimes such as neutral,
charged [113], and rotating BHs [114] have revealed that the volume complexity
growth rate is a positive monotonic function of the boundary time ¢;. Moreover,
at late time the complexification rate saturates the Lloyd’s bound from below,
meaning that the bound is never violated. In [115], a holographic proof of the
Lloyd’s bound has been supplied for asymptotically AdS spacetimes of 3 + 1 or
higher dimension, provided that the weak energy condition is satisfied. Strictly
speaking, contrary to eq. (2.6.8), in certain regimes the bound is non-linear
in the energy. A saturation of the Lloyd’s bound has also been obtained in
asymptotically non-AdS spacetimes like warped AdS, where the late time rate
depends on the details of the background geometry [116]. This non-universality
of volume complexity, already clear from the appearance of the scale R which
should be fixed by hand, is one of the major drawbacks of the CV conjecture.
Another disadvantage is the lack of a deep reasoning behind the choice of the
maximal slice among all the ones attached to the same X.
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CA conjecture. To solve the unfulfilling features of the CV conjecture, in [15]
a new proposal has been put forward. In particular, the maximal codimension-
one surface anchored at the boundary time-slice X is replaced by the union of all
the spacelike codimension-one surfaces attached to the same . The resulting
spacetime region, named Wheeler-DeWitt (WDW) patch, coincides with the
domain of dependence'? of each of the involved slices, and is thus bounded by
past and future null rays sent from ¥ into the bulk.

singularity

-
[l
[¥] 2

CFTy,

singularity

Figure 2.15: Penrose diagram for a two-sided eternal AdS BH, illustrating the
WDW patch involved in the CV conjecture. The WDW patch, shown in red,
can be easily determined by drawing ingoing and outgoing null lines from the
boundaries at times t;, = tg = tp/2.

As it is obvious from Fig. 2.15, the WDW patch penetrates into the BH, and
is thus a good substitute for the ERB as a geometric construction related to
complexity of the boundary state. Starting from the CV conjecture we have

V. _ VL  VwpwA
GL GL? G
where Vi pw ~ V'L is the spacetime volume of the WDW patch and A ~ —1/L?

is the cosmological constant of asymptotically AdS spacetime. The observation
that Viy pw A/G is proportional to the Einstein-Hilbert action

1
o 167TG W DW

C= (2.6.11)

Ign dz/—g (R —2A) (2.6.12)

where g and R are the metric determinant and the scalar curvature of the
bulk spacetime, has inspired the complexity = action (CA) conjecture, stating

12The domain of dependence of a slice B is the set of points which are fully determined by
conditions specified at B itself.
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that complexity of the CFT state defined on the boundary time-slice ¥ is
proportional to the gravitational action of the associated WDW patch:

_ Iwow)
7h '

To clarify the proposal, in Fig. 2.16 we show the WDW patch in global AdSs:

Ca(%) (2.6.13)

Figure 2.16: Hlustration of the CA conjecture in global AdS3. The red curve
denotes the boundary time slice ¥. The WDW patch associated to ¥ is shown
in faded red.

We stress that the CA conjecture involves the complete gravitational action
including the boundary terms, and not only the Einstein-Hilbert action (2.6.12).
We will thoroughly illustrate all the contributions to Iy pw in Sec. 4.1.

Not only the CA conjecture (2.6.13) gets through the same shock wave trials
as the CV conjecture [117], but it also gets rid of the undefined scale affecting
the volume complexity. However, as we will see, the action complexity is in
turn affected by an arbitrary length scale arising from counterterms for the
null boundaries of the WDW patch. Moreover, the C4 growth rate for neutral,
charged [113], and rotating AdS BHs [114, 118] has been found to asymptotically
approach the Loyd bound from above, violating the conjectured threshold for
the computational rate. The universality of the CA conjecture is so solid that
the same outcome is featured by exotic solutions such as BHs in warped AdS
[119].

CV 2.0 conjecture. One of the biggest disadvantages of the CA conjecture is
the violation of the Lloyd’s bound. To circumvent the issue, in [16] a further
holographic dual of complexity has been proposed. The basic idea is to look
at the thermodynamic volume Viy, appearing into the extended first law of BH
thermodynamics [120]:

dM = TdS + QdJ + ®dQ + VindP. (2.6.14)
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In this formalism, the cosmological constant is interpreted as a pressure P =
—A/(87@G), whose conjugate quantity is the volume Vi, of a proper space region.
For a neutral two-sided AdS BH, such a region covers the BH interior. Therefore,
starting from the Einstein-Hilbert action of the WDW patch we get'3

dlgg AN . dVwpw

On the other hand, recalling that A ~ —1/L?, we note that

Vw pw
GL?

Igg ~ %VWDW ~ — (2.6.16)
Putting all together, we deduce that the growth rate of the normalized spacetime
volume of the WDW patch Viypw /(GL?) is given by the product PVi,.
Noticeably, at least for large AdS BHs the thermodynamic quantities M, T'S,
and PV;, are quantitatively the same up to an O(1) constant [16]. So, the
normalized spacetime volume of the WDW patch saturates the Lloyd’s bound at
late times. This observation has led to the complezity = spacetime volume (CV
2.0) conjecture, relating complexity of the CFT state localized on the boundary
time-slice X to the spacetime volume of the corresponding WDW patch:

Vv pw ()

Cvao(X) = Gz

(2.6.17)
Contrary to the CA conjecture, the Lloyd’s bound has been shown to
be respected for neutral, electrically charged, and rotating AdS BHs [16].
Additionally, the CV 2.0 conjecture manifests the switchback effect when the
AdS BH is perturbed by a light shockwave [113].

In the following table we summarize the main features of the three holographic
conjectures:

Linear | Lloyd’s | Switchback Drawbacks
growth | bound effect
c Choice of the maximal slice,
v ambiguous scale R
C y Ambiguity in the null
4 boundaries counterterms
Cva.0 Ambiguous scale

Table 2.1: Pros and cons of the holographic conjectures CV, CA, and CV 2.0.

13The relation between Viypw and Viy, has been explicitly computed in [16].
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Beyond the holographic conjectures. A common peculiarity of the three
proposals we have introduced is that holographic complexity grows linearly at
late times, and the increasing lasts forever. Such a behavior is in sharp contrast
with the expected time evolution shown in Fig. 2.12, where complexity saturates
at a time exponential in the BH entropy. The discrepancy can be understood
from the fact that classical gravity, which is employed in the holographic
computation, does not provide an exhaustive picture of the system. Progress in
this direction has been made in [121], where semi-classical corrections to the
CV conjecture have been computed for BHs in two bulk dimensions. As an
outcome, Cy enters the plateau regime at both a value and a time exponential
in the BH entropy, in agreement with the predictions from quantum circuits.

As a final remark, we stress that what makes the three holographic conjectures
putative candidates for the gravitational dual of complexity are basically two
properties: the late time linear growth and the switchback effect in response to
shockwaves. It has been argued that in asymptotically AdS spacetime there
is an infinite class of quantities defined on codimension-one surfaces [17] and
on codimension-zero regions [18] which share both features (complexity =
anything?). Such a result lends itself to a double interpretation: either there are
some arguments to pick the volume of the maximal slice and the gravitational
action (spacetime volume) of the WDW patch, as dictated by the CV and CA
(CV 2.0) conjectures, or the freedom of selecting the gravitational dual is related
to the intrinsic ambiguity in the complexity definition.






Chapter 3

Geometry of quantum
complexity

This chapter is an adaptation of the published article [122]. At the beginning of
Sec. 3.1, a thorough introduction to complexity geometry has been added.

As we have discussed in the previous chapter, computational complexity is
supposed to capture the interior evolution of BHs in a holographic fashion.
As a starting point to understand complexity of CFT states dual to AdS BH
geometries, it is worth gaining a complete comprehension of complexity in the
much simpler case of quantum mechanics. In Sec. 2.4 we have presented the
traditional notion of unitary complexity for a quantum system of n qubits,
based on the counting of the minimal number of gates required to build up
a quantum circuit implementing the target unitary transformation Ur. This
so-called gate complexity is affected by several drawbacks [20]:

e The set of elementary gates needs to be specified.

e The infinite-dimensional set of unitary operators cannot be constructed
exactly by implementing a discrete number of gates. So, we must introduce
a tolerance € with which we want to approximate the target unitary Ur.
Namely, we consider our circuit Uc to fulfill the job whether

1-27"Tr (UJj UT) <e. (3.0.1)

o Two unitary operators (or states) which are "near" according to their
inner-product, or equivalently whose inner-product is large, can be "far"

53
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in complexity, and viceversa.! Consequently, moving around the unitary
manifold (or the Hilbert space), gate complexity is discontinuous.

Even though the first two ambiguities can be fixed by taking as elementary
gates all the one and two-qubits operators, under which choice any unitary
transformation can be constructed exactly, the third issue is an intrinsic feature
of gate complexity. In this chapter, we explore the geometric approach proposed
by Nielsen [19, 21, 123, 124], which represents a way out of the problem. Actually,
complexity geometry was introduced to find lower bounds of gate complexity. We
will instead take the geometric definition of complexity as being the fundamental
one.

Mainly following [124], in Sec. 3.1 we review some geometric notions that are
useful to investigate unitary complexity, and we derive an explicit formula
for sectional curvatures on the unitary manifold. In Sec. 3.2 we consider the
explicit examples of one and two-qubits systems, which are interesting nutshells
to uncover generic behaviors of unitary complexity. We then move in Sec. 3.3
to the general case of n qubits, focusing on the extent to which some choices
of penalties affect the properties of unitary complexity. In Sec. 3.4 we explore
state complexity and comment on its connection to unitary complexity, framing
the discussion with the formalism of Riemannian submersions. We also derive
a closed-form expression for the metric on the space of states and apply it
to the instructive case of a one-qutrit system. In Sec. 3.5 we finally present
a geometric argument which strongly indicates that, for a suitable choice of
penalties, the maximum complexity scales exponentially with the number of
qubits n. Details of some calculations are deferred to Appendix A.

3.1 Unitary complexity

The general idea by Nielsen is to replace the discrete counting of gates with the
continuous flowing between points on the unitary manifold SU(2"). Namely, if
we choose the elementary gates to be g; = e~ *71% where T} are the generators of
the su(2™) algebra, in the limit §¢ — 0 the circuit made by small steps becomes
a continuous path on SU(2"). More precisely, we can define

Un(t) = e Jo HOVT (3.1.1)

F
in which the path-ordering symbol P reflects the fact that the rightmost gate
acts first. The traceless Hermitian operator H(7) can be expressed as a linear

1For instance, the state of a big system times a single spin up and the state of an identical
system times a single spin down are orthogonal (far in inner-product), but can be easily built
from each others by flipping the spin (near in complexity).
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combination of the su(2") generators:

H(r)=> Y'(r)Ty, (3.1.2)

I

where the control functions Y1 (7) specify which gates act at time 7. In this
geometric setup, unitary complexity is defined as the length of the shortest
geodesic connecting the target unitary Ur(¢) to the identity:

C(U (1)) = min /O Y (7)) dr. (3.1.3)

The minimization over the control functions parallels the construction of the
optimal circuit in the gate complexity perspective. The function F' is referred
to as cost function, and dictates the way we measure distances on the unitary
manifold. The most common choice is

1/k
Fi (V) = (Z ]Y1|k> : (3.1.4)

I

with k£ an integer number. In the following we will specialize to k£ = 2, in which
case the cost function coincides with the distance induced by the Riemannian
metric on the unitary manifold:?
Tr(HK

B(Y() = VD D) . (K= 0B g5
At this stage, the unitary manifold is endowed with the usual inner-product
metric

dst; = Tr (idU UTTy) 6,,Tx (idU UTTy) (3.1.6)
1,7

which is bi-invariant, meaning that it does not change under both left U — ULU
and right U — UUR translations.? Clearly, all tangent directions 77 are treated
the same. However, in order to define complexity in this context we need to
translate the notions of elementary and hard gates in the geometric language.
Hard transformations are obtained by stretching the corresponding directions
on the unitary manifold, assigning to the respective generators 17 a penalty
factor ¢y > 1. Consequently, the cost function is modified as

Foq (Y(7) = \/WZ HO,HE)Y, (HK)= W

(3.1.7)

2Throughout this thesis we assume the normalization convention Tr (T7Ty) = 2™61.

3To explicitly see this, we note that the metric can be expressed as ds[2] =Tr (dUTdU).
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Here G is an Hermitian linear operator associating to every component 77 of
the operator it acts on the proper penalty factor q;:

GH)=> aY'T;. (3.1.8)
I

In our application, we suppose the inner-product (...) to be independent of the
group point U. So, the inner-product can be defined at the origin of the unitary
manifold and then mapped to every point of the manifold by right-translations.
The resulting metric

dsg; =Y T (idU UTTy) (Ty, T;)Tx (idU UTTy) (3.1.9)
1,J

named complexity metric, is automatically left unchanged by any right-
translation, and is thus a right-invariant metric [125, 126]. The underlying
reason for this choice can be understood from the fact that gates act on the
right. Indeed, let us consider a target operator Ur which is constructed by
implementing m gates starting from the operator W [23]:

Ur=gm...1W . (3.1.10)

The minimum number of gates necessary to move from W to Ur does not
change if we right-translate both operators by an arbitrary unitary Ug:

UTURzgm...91WUR. (3.1.11)

In other words, the complexity of building Ut out of W equals the complexity
of building UtrUgr out of WUg, for any Ug. The same is not true for left-
translations, in which case

ULUr = Upgm - . i W = (ULgm . .glUD ULW . (3.1.12)

Clearly, m gates are in general not enough to implement the operator
ULgm --- g1 UE. Therefore, complexity distance is right-invariant but not left-
invariant. By the way, since any point on the manifold can be mapped to
another by right-translations, the space of unitary operators is homogeneous.

3.1.1 Connection and geodesic equation

Several geometric properties of the unitary manifold can be inferred by the
Levi-Civita connection V. A Levi-Civita connection compatible with the metric
(3.1.7) is given by the Koszul’s formula [127], which, thanks to the fact that the
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inner-product can be computed at the identity (and therefore is constant in a
suitable basis), simplifies to

—-2UVxY, 2) = (X, Y], 2) + (2, X],Y) = ([\, 2], X) , (3.1.13)

where X, Y, Z are right-invariant fields interpreted as Hermitian matrices at the
origin. Eq. (3.1.13) allows us to define

1

VY = 2 (X, Y]+ 67X, G(V)] + [V, 9(X)]) - (3.1.14)

Setting Y = X in eq. (3.1.14), we obtain the geodesic equation, which is nothing
but the Euler-Arnold* equation [126]

X +iG7H([X,6(X)]) =0. (3.1.15)

In general, we expect geodesics to have an intricate behavior. Eq. (3.1.15)
admits a simple class of solutions, given by the exponential of an eigenvector
of the penalty operator G. We refer to such solutions as exponential geodesics,
and we study their conjugate points in Sec. 3.5.

3.1.2 Comments on the choice of basis

Homogeneity of the unitary manifold allows us to work in a neighborhood of
the origin, a tangent vector to which is an element of the Lie algebra su(2™).
From now on, we pick up as a basis T7 of this algebra the set of generalized
Pauli matrices o, which are nothing but tensor products of n matrices, each of
which can be either an SU(2) Pauli matrix o; (i = = ,y, ) or the identity 15. A
generalized Pauli matrix is characterized by a weight w,, defined as the number
of SU(2) Pauli matrices appearing in the tensor product o, i.e. the number of
qubits involved by the corresponding operator. In this basis, we will consider
only diagonal metrics G(o) = g0, so that the inner-product (3.1.7) reads

<p7 U> = QJ(Spo y (3116)

where ¢, represents the penalty factor for the generator o normalized as
Tr (02) = 2", The case ¢, = 1 for all o, which we refer to as non-penalized
choice, corresponds to the usual inner-product metric on SU(27).

As a consequence of the algebra of SU(2) Pauli matrices, the basis of generalized
Pauli matrices has some properties that will play a fundamental role in the
computations that follow:

4Recent applications of the Euler-Arnold equations to complexity were discussed in [31, 32].
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e Two elements of the basis p and ¢ either commute or anti-commute:
po=(-1)4op. (3.1.17)

Here d is the number of qubits on which both p and o act, but with a
different SU(2) Pauli matrix. For a given p with weight w # 0, the number
of generalized Pauli matrices o anti-commuting with it is®

o 2]

- w 4n P w 4n
yn—w 2w - = — 3.1.18
Y @reEx ()5 e
dodd=1 k=0
where [...] denotes the integer part. Remarkably, this number does not

depend on the weight w.

e The commutator of two elements of the basis p and o (if not vanishing) is
proportional to another element of the basis. Therefore, the penalty ¢, )
is well-defined. In case [p, o] = 0, we set by definition g, , = 1.

3.1.3 Riemann tensor

We now go back to the investigation of the unitary manifold geometry considering
the basis of generalized Pauli matrices, which can be viewed as right-invariant
frame fields. In this basis, the curvature tensor is [124]

Rpm—u = <va » VmUJ> - <va7' s vp,u> - <Vi[p 0T s ,u> . (3'1'19)

Using eq. (3.1.14), we find:
1 —
Vor=icoalpl,  ea=3 (1 + qqp) . (3.1.20)

Thus, the Riemann tensor reads

Rpcm-,u =Cp,rCo,p <Z [Pﬂ'] ai[UaIU'D —Co,rCo,pu <Z [UaT] ;i[P,M]>
(3.1.21)

—Clpo) . (iilp, 0] 7] )

It is important to note that the component R,,-, vanishes unless the product
of the corresponding generalized Pauli matrices poTp is proportional to the

5We necessarily have d odd and 1 < d < w. To construct a generator o with a given d, we
assign to d out of the w qubits involved by p an SU(2) Pauli matrix different than the one
assigned by p, and to the other w — d qubits either the same SU(2) Pauli matrix assigned
by p or the identity. Then, we fill out each of the remaining n — w entries in the o tensor
product with either an arbitrary SU(2) Pauli matrix or the identity.
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identity. Another interesting observation is that, since eq. (3.1.21) depends just
on commutators, the Riemann curvature of a subgroup of unitary operators
does not depend on the metric data outside the subgroup itself. For instance,
complexity on a one-qubit subgroup depends just on penalties of generators
acting on that particular subgroup.

3.1.4 Sectional curvatures

The sectional curvature K (v, w) at a point Uy of a manifold is defined as the
Gaussian curvature of the 2-dimensional submanifold spanned by geodesics
whose tangent vector at Up lies in the plane determined by (v, w). The general
expression for the sectional curvature is [128]

Raﬂ.y(;vo“wﬁuﬂv‘S
(vav®)(wpw?) — (vaw®)?

K(v,w) = (3.1.22)
Note that the quantity K (v, w) does not depend on the particular choice of
vectors v and w on the plane (v, w).

By homogeneity of the unitary manifold, it is not restrictive to focus on the
sectional curvatures at the origin. Since the generalized Pauli matrices are
orthogonal but not normalized, see eq. (3.1.16), the sectional curvature in the
plane defined by two of them is

R
K(p,o) =22, 3.1.23
(b, 0) = 22 (3.1.23)

From eq. (3.1.21) we find

RPUUP :cP»UCUvP <Z [p,d] ,Z.[(T,,DD 7C[p,0] Nea <Z [Z [p70—} 70-} ,P> . (3124)

If p and o commute, K(p,o) clearly vanishes.
If p and o do not commute, from eq. (3.1.17) we get [p, o] = 2po.
A direct calculation gives:

<7' [p,O'] ,i[p,O']) :4Q[p,o]7 <Z [’L [p,U] 70] 7p>:_4QP' (3125)
Also noting that g, ],0] = g, We get the sectional curvature for [p, o] # 0:
(qP - qg)2
K(p,o)= =34lp,0) T2(ap + ¢o) + ——| . (3.1.26)
Qp qo' q[p)U]

Eq. (3.1.26) reveals that K (p, o) is positive unless g, o) is big enough compared
to g, and ¢,. In other words, negative sectional curvatures are necessarily
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associated to commutators of the form
[easy , easy] = hard , (3.1.27)

where easy and hard refer to small and large penalty factors, respectively. This
result is consistent with the analysis in [20].

The sign of sectional curvatures plays a key role in relation to ergodicity. Roughly
speaking, a geodesic flow is called ergodic if its typical geodesic will eventually
explore all the allowed portions of the unitary manifold. From a general theorem
[129], we know that geodesic flow on a manifold whose sectional curvatures are
all negative is ergodic. Unfortunately, this result is not directly applicable to
unitary complexity. Indeed, the sectional curvatures of the one-qubit subspace
depend just on the one-qubit penalty factors, and at least two out of three
independent sectional curvatures in the one-qubit directions are always positive
(see Sec. 3.2.1). By the way, some examples in which ergodicity is preserved in
the presence of some positive sectional curvatures exist, e.g. [130].

Ergodicity and negativity of sectional curvatures are necessary ingredients for a
quantum chaotic behavior of complexity geometry [23]. To get a feeling of this,
let us consider two geodesics starting at the origin of the unitary manifold and
evolving under infinitesimally close local Hamiltonians. If the sectional curvature
in the direction of such tangent vectors is negative, geodesics diverge. This
positive geodesic deviation expresses a strong dependence on initial conditions,
that is an essential feature of chaos.

3.1.5 Ricci tensor and curvature

The Ricci tensor is obtained from the Riemann tensor as Ry,; = ¢"*Rporp-
Given that in our basis the metric is diagonal and R,sr, is non-vanishing only
for poTp x 1, we deduce that R, is diagonal too. Geometrically, the Ricci
tensor can be interpreted as a sum of suitable sectional curvatures. In particular,
given an orthonormal basis {ey} with £k =1,..., N and such that e; = v, the
Ricci tensor is completely determined by [128]

Ropvo? = ZK (v, ex) (3.1.28)

In the same way, the scalar curvature can be expressed as

N
R=Y " Rapefep =Y K(p,o). (3.1.29)
=1
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Thus, in order to get a negatively curved unitary manifold it is enough that
negative sectional curvatures dominate over positive ones. Even though we do
not know about any mathematical theorem relating the sign of R to ergodic
geodesic flows, we expect this property to be a detector of ergodicity.

3.2 Few qubits

As an explicit application of the technology introduced in the previous section,
we start by considering the simplest cases of one-qubit and two-qubits systems.
More specifically, we investigate the behavior of sectional and scalar curvatures
in relation to various penalization of the algebra generators. As we will see,
some outcomes generalize to systems of large number of qubits.

3.2.1 One qubit

The generators of the su(2) algebra are simply the Pauli matrices {0, 0y,0.}.
Without loss of generality, we choose as penalty factors ¢,, =1, ¢5, = @, and
¢o. = P. From eq. (3.1.26), the sectional curvatures K;; = K(0;,0;) are

o —3P%24+2P+2PQ+Q*+1-2Q
Ty — )

PQ
_20)2 2 _
K, — 3Q°+2Q +2PQ + P°+1 QP’ (3.2.1)
PQ
o —3+2P+2Q+ P?+Q? - 2PQ
yz — PQ 9
and the scalar curvature is
—P)2—-2(P 1
Ro o@D Z2AP+Q)+ 1 (3.2.2)

PQ
The signs of sectional and scalar curvatures are shown in Fig. 3.1, from which
we deduce that two out of the three sectional curvatures in eq. (3.2.1) are
positive in the whole parameter space. An important remark is that these
quantities are not enough to compute the sectional curvature in an arbitrary
plane, which can be extracted from the Riemann tensor. We checked that the
values in eq. (3.2.1) correspond for all P, @ to the maxima and minima of the
sectional curvature.

In Sec. 2.4 we have seen that the maximal complexity in chaotic systems is
large, in general exponential in the number of degrees of freedom. Even though
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3.0

Figure 3.1: Regions of negativity of sectional curvatures in the (P, Q) plane.
In the white region all the sectional curvatures are positive. The blue shaded
regions correspond to a negative scalar curvature.

it might seem unreasonable to require this to happen in systems of few qubits,
a toy model with large maximal complexity can be obtained in the limit of
penalties P, ) approaching infinity.
A possibility is to set

P=1, Q — oo, (3.2.3)

in which case the sectional and scalar curvatures diverge:

R=8-2Q, K,.=4-3Q, K, =K,.=Q. (3.2.4)

Another option is

P=Q — 0, (3.2.5)
leading to small and positive curvatures:
8 2 1 4 3
R:F_ﬁa Kﬂcy:sz:ﬁa Kyzzﬁ_ﬁ' (3.2.6)

Finally, we can take
P=p5Q — 0, (3.2.7)

with 8 > 0 a constant. In this limit, we find that the sectional curvatures
approach to finite constants. For § # 1, the scalar curvature is negative and
equal to R = —2(8 — 1)2/8.

Although all these limits share an infinite volume of the unitary manifold
(measured with the complexity metric), they are very different from the point
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of view of complexity. In the case (3.2.3) one generator is forbidden, but the
two non-penalized generators are enough to build whatever unitary we want:
maximal complexity is finite. On the other hand, in the cases (3.2.5) and (3.2.7)
two generators are forbidden, and the only allowed generator can produce just
a special class of unitary, i.e. rotations along the x axis: maximal complexity
goes to infinity.

3.2.2 Two qubits

The two-qubits case is the simplest environment in which we can investigate
what happens if operators are penalized according to the number of qubits they
act on. To address this question, we take g, = A for generators with weight
wy = 1 and ¢, = B for generators with weight w, = 2. The non-vanishing
sectional curvatures K(p,o) in eq. (3.1.26) can take three values:

1 ,_ A _ 4B-34
A “ B ‘T T pr

The value a arises when w, = w, = 1, the value ¢ when w, = w, = 2, and the
value b when w, # w,. The multiplicity of each value is®

a (3.2.8)

N,=12, N,=T72, N.=36. (3.2.9)

Summing up the non-vanishing sectional curvatures with their multiplicity, we
get the scalar curvature

3A2 —12AB — B?
AB? '
Let us specialize to A = 1 and B = ¢ > 1, thus penalizing the weight-two

generators, denoted as hard (h), compared to the weight-one generators, denoted
as easy (e). The scalar curvature reads

R=-12 (3.2.10)

-3+ 12q+ ¢*
q? ’
and is always positive. Remarkably, no singularity appears in the curvature if

we send ¢ — oo. In this penalization scheme, the structure of the algebra of
generators is

R=12 (3.2.11)

[e,e] =e, [e,h] =h, [h,h] =e, (3.2.12)

which gives rise to positive sectional curvatures, as discussed in Subsec. 3.1.4.
Consequently, the most intuitive choice of penalties is not appropriate to mimic
complexity of chaotic systems (see also [20] for the same conclusion).

6We will present a general formula for the counting of non-vanishing sectional curvatures
in Appendix A.1.
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If we instead make the more unrealistic choice of penalizing the weight-one
generators, setting A =p > 1 and B = 1, the scalar curvature becomes

3p?—12p—1
R=-1222 — 2P~ (3.2.13)
p
In this case, the structure of the algebra of generators is reversed
[h,h] =h, [e,h] =e, [e,e] =h, (3.2.14)

and gives rise to negative sectional curvatures at large enough p. This result
provides a quantitative explanation to some intuitions discussed in [20].

We point out that the algebra structures (3.2.12) and (3.2.14) always arise
when we split the set of generators into two classes, one of which is a maximal
subalgebra.

3.3 Many qubits

Having gained some intuition on complexity of unitary operators for one-qubit
and two-qubits systems, we now consider quantum systems composed by an
arbitrary number n of qubits. We are mostly interested in the large-n limit,
which, even though still far from thoroughly modeling quantum field theories
involved in holography, under particular conditions manifest chaotic effects that
parallel the dynamics of black holes [20, 82]. In this perspective, in Sec. 2.6
we have outlined striking similarities between the switchback effect in quantum
circuits and the way black holes react to shock wave perturbations [13, 82, 112].
In Sec. 2.5, we have argued that the switchback effect takes place in a toy model
based on the motion of a particle on a negatively curved two-dimensional space,
provided that the Gaussian curvature of the manifold scale as 1/n or 1/n? in
the large-n limit (depending on the identification of complexity with geodesic
distance or action along the geodesic) [22, 23]. Recalling that the sectional
curvature defined in eq. (3.1.22) is the Gaussian curvature of a two-dimensional
submanifold, we can regard the toy geometry as a two-dimensional section of
the unitary manifold [23]. Thus, in order to get a satisfying description of the
switchback effect in the context of complexity geometry, the typical sectional
curvatures of the unitary manifold should be negative and should scale as 1/n
or 1/n? for large-n. Regardless of the convention we consider (distance of
action), the takeaway message is that divergence of sectional curvatures for
n — oo gives rise to a singular behavior that should be avoided. For few qubits
systems, in which case this requirement is meaningless, negative curvature is
still a necessary ingredient to reproduce the switchback effect [131].
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3.3.1 Preliminaries

With the purpose of exploring which penalization schemes suitably reproduce
the aforementioned properties of curvatures, in this section we analyze different
choices, all characterized by the penalties being just functions of the weight of
the corresponding generator: ¢, = g,(w,). To ease the notation, we denote the
penalty associated to a generator of weight w, = w by ¢,,. The number of such
generators is

Ny =3¢ (") . (3.3.1)

w
As described in Sec. 3.1.4, if two generalized Pauli matrices p and o commute,
the sectional curvature K(p,o) = 0.7 If instead p and o do not commute, the
value of the sectional curvature K(p, o) depends just on the penalties of p, o,
and their commutator. With our assumptions, this translates into a dependence
on the weights of the involved generators. Setting w, = M and w, = N, the
weight of [p, o] can take the values (see Appendix A.1)

wr, =|M —=N|+1+2r, (3.3.2)

where the integer r has the following range

OSTﬁmin(N—l,[n(MN)l}) for M >N,

2
(3.3.3)
-(N-M)-1
Ogrgmin(M—l,[n ( 5 ) }) for M < N,
with [...] the integer part. In light of this, it is convenient to define the curvature

of the section spanned by generators with weight w, = M and w, = N by
K(p,0) = K(M,N,r). From eq. (3.1.26), we have

1 _ 2
qmM4N Wy

Denoting the multiplicity of such sectional curvatures by A'(M, N, r), an explicit
expression of which is derived in Appendix A.1, the scalar curvature can be
computed as
R=>">"N(M,N,r)K(M,N,r). (3.3.5)
M,N r
In this section, we employ such a formalism to investigate the geometric
properties of the unitary manifold for various penalization schedules.

7Given a generalized Pauli matrix, 4™ /2 basis generators commute with it, see eq. (3.1.18).
So, about one half of the total sectional curvatures vanish by construction, independently of
the penalty factors.
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3.3.2 Draconian penalties

Any operator in SU(2") can be built as a combination of one-qubit and two-

qubits operators [132]. This result suggests the somewhat minimal choice of
penalty factors

1 for w<2,

Quw = { z (3.3.6)

q for w> 2,

studied in detail in [124]. This penalization scheme does not distinguish between
different values of the weight w > 2, and was thus called draconian in [20]. The
possible values of sectional curvatures, given by eq. (3.3.4), are summarized in
Table 3.1:

lp,o] € lp,ol€h
p,0 € e K=1 K=4-3¢q
p,0€h K:4q23 K:%
pEecech K=gq K:q%

Table 3.1: Values of non-vanishing sectional curvatures for all choices of p, o in
the draconian model. We denote by e and h the set of easy (w < 2) and hard
(w > 2) generators, respectively.

For ¢ = 1 we recover the non-penalized choice, which corresponds to a bi-
invariant metric on SU(2"). In this case all the non-vanishing sectional
curvatures are equal and positive. The interesting region with negative curvature
is instead at large ¢, in which limit it makes sense to consider only the sectional
curvatures at leading orders. In particular, we keep just the O(q) and the O(1)
terms. In this approximation, the only non-vanishing sectional curvatures are

K(1,1,0) = K(2,1,0) = K(2,2,0) = 1,
(3.3.7)
K(3a27O)ZQ7 K(27271):4_3q7

with multiplicities

N(1,1,0) = 6n, N(2,1,0) = N(2,2,0) = 18n(n — 1),
3.3.8
N(3,2,0) =N (2,2,1) =54n(n — 1)(n — 2). ( )

Then, the scalar curvature is

R = —54n(n — 1)(n — 2)q + 6n(36n% — 99n + 64) + O(1/q) , (3.3.9)
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in agreement with the exact result computed in [124]. From there we find that,
in order to get a negative scalar curvature, ¢ has to grow exponentially with
n. Namely, we need ¢ < 4™ or larger. In this regime the scalar curvature is
dominated by a small number (polynomial in n) of sectional curvatures whose
magnitude grows like |K| =~ ¢ ~ 4". Such a singular behavior, as discussed
in [23], prevents this model from describing some fundamental processes of
complexity evolution, such as the switchback effect.

3.3.3 Towards a more sustainable taxation policy

In order to avoid the singular geometry arising from the draconian schedule, in
[23] a moderate choice was advocated:

{1 for w <2,
quw =

c4v—2 for w > 2, (3.3.10)

where ¢ is an O(1) positive constant. The exponential scaling ¢, o« 4% is
suggested by the draconian model, in which case the condition ¢ o 4™ ensures
a negative curvature. By contrast, in the moderate model (3.3.10) typical®
sectional curvatures are negative and vanishes polynomially in the large-n limit,
enabling the switchback effect.

Despite the moderate schedule goes in the direction of a more progressive
taxation than the draconian one, there is still a minor source of inequality: the
very low income guys at w = 1 are taxed just the same as the working class at
w = 2. In order to promote social justice, we are motivated to introduce the
following choice of penalties (see also [104])

quw =", (3.3.11)

which we refer to as progressive. The constant o > 1 generalizes the scaling
at large w to g, o v, and can be used as an expansion parameter for the
analytic understanding of the model. In particular, from eq. (3.3.4) we see that
sectional curvatures scale at most as o at large o. We point out that, with the
progressive schedule (3.3.11), the maximal complexity is infinite by construction
at fixed n for @ — oo, since one-qubit operators are not enough to produce the
most general operator in the unitary space (for instance, they cannot produce
operators which entangle two previously unentangled qubits). Physically, we
are thus interested in the limit of large but finite .

8 A typical section is defined as a two-dimensional surface on the unitary manifold whose
tangent plane is spanned by linear combinations of two Hamiltonians containing only generators
of weight w = 2.
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In principle, the progressive model can be generalized as

_J1 for w < wy,
Gw = {a“’_w‘) for w > wy, (3.3.12)

with wg > 2. With this choice of penalties, we expect that the maximal
complexity at fixed n does not diverge for @ — oo, because the combination of
one-qubit and two-qubits operators allows us to build an arbitrary operator in
the unitary space. From eq. (3.3.4), we see that at large « sectional curvatures
scale at most as «®°~1. As the curvature diverges, the large o limit of (3.3.12)
provides a singular geometry.

3.3.4 Progressive penalties

In this subsection, we consider the basic progressive model (3.3.11) and explore
the geometry of the resulting unitary manifold, deferring the cumbersome
calculations to Appendix A.2.

At the leading order in «, the only non-vanishing sectional curvatures take the
values K = 1 and K = —3 with multiplicities

Np=6n(2x 771 —4"+3), N_ = % —3n, (3.3.13)
respectively. The scalar curvature is thus
R= —%-1-971:371 (4" —2x 77, (3.3.14)

which is negative for n > 3. The correction of the curvature at the next-to-

leading order is
4TL
SRM) = gn(n —1—. (3.3.15)

In order to get a feeling on the average sectional curvature, we divide R by the
total number of sectional curvatures between couples of elements in the basis,
which we denote by

n=>4"-1)>%-(4"-1). (3.3.16)

The average sectional curvature becomes tiny at large n and a;, i.e.

- R 6 7\" 9 nn-1)
K=—~—= — — 7
U 7n<16) "

1
— —. 3.3.17
4n 2 Q@ ( )
At higher order in «, we do not have an analytic expression for the generic
n qubits case. However, if n is fixed to be some not too large value, we can

explicitly compute the exact K at all orders, since the computation involves
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sums containing a finite number of terms. The exact average sectional curvature
is plotted in Fig. 3.2 as a function of « for a few values of n. Note that nothing
special happens for the value a = 4, which instead plays an important role in
the draconian model. Interestingly, there is a minimum at finite . An explicit
analysis reveals that the series for K in the expansion parameter a~! is, at
large n, an alternate sign series with slow rate of convergence. For example, in
order to get the K minimum in the plot for n = 10, we have to expand up to

the order a~°.

R
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Figure 3.2: Exact value of R/n (blue curve) plotted as a function of « in the
case of progressive penalties, for n = 5,10,15,20. The asymptotic value at
a — oo of eq. (3.3.17) is shown in black. The minimum in the picture appears
for n > 8. Increasing n, the minimum moves at a lower value of o and its shape
tends to become more and more steep. Note that when n = 20, for a ~ 4 the
O(a®) average sectional curvature is already very close to the exact result.

In conclusion to this investigation, we remark that the progressive penalization
scheme for @ — oo has many similarities with the one-qubit case for P = fQ —
oo and S # 1, see eq. (3.2.7). In both models we expect maximal complexity
to diverge, while sectional curvatures remain finite, so that R approaches a
negative finite value.
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3.4 State complexity

Up to now, we have specialized to the complexity of unitaries. In this section,
we shift the focus on the geometry of the space of states. Geometrically, this
space is obtained as a quotient of the space of unitary operators, where all
the transformations that build the same state (up to a phase) starting from a
reference one are identified. Complexity of the target state is then defined as
the minimum complexity of all the identified unitaries. Interpreting the state
complexity as the length of minimal curves on the space of states defines a
map between two Riemannian manifolds, which turns out to be a Riemannian
submersion. After recalling its general definition in Subsec. 3.4.1, in Subsec.
3.4.2 we apply the formalism of Riemannian submersions to complexity geometry
for a system of n qubits, obtaining an expression for the metric on the space
of states with arbitrary penalty factors. Besides this achievement, in Subsec.
3.4.3 we introduce the O’Neill’s formula, which provides a lower bound on the
curvature of the space of states. As explicit applications of the collected results,
in Subsecs. 3.4.4 and 3.4.5 we consider the simple but instructive cases of
one-qubit and one-qutrit systems, respectively. Finally, in Subsec. 3.4.6 we
explore the underlying relation between geodesics on the unitary and state
manifolds.

3.4.1 Submersions

In this subsection, we briefly review the concept of Riemannian sumbersion,
referring to the textbooks [127, 133] for more details. Let us consider two
Riemannian manifolds (M, gog) with dimension m and (B, hp) with dimension
b < m, and a smooth map 7 : M — B with surjective differential dw. For any
y € M, the differential dm : TM — T B induces a linear map between the vector
spaces Ty M and T, B, where x = 7w(y). Since dr is surjective, it has maximal
rank, and thus a kernel of dimension f = m —b. We call V,, = ker(dm,) the
vertical space at y. Its orthogonal complement in T, M, induced by the metric
g, is called the horizontal space at y and denoted by H,. For the submersion to
be Riemannian, H, has to be identified with T, B in an isometric way. In other
words

9(X,Y) = h(dr(X),dr(Y)), VX, Y eH,. (3.4.1)

For the sake of clarity, a pictorial depiction is shown in Fig. 3.3.

Among the known examples of Riemannian submersions, we are here interested
in quotients of Riemannian manifolds by an isometric group action (see for
example the textbooks [127, 133]). In particular, let G be a closed subgroup
of the isometry group of (M, g3), and take B = M/G. Then, a metric on B
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M

T.B

Figure 3.3: Schematic representation of a submersion, based on [133].

exists such that the projection 7 : M — B = M /G is a Riemannian submersion
[127, 133]. As we will see in the following sections, this construction helps us
in understanding properties of the space of states starting from the space of
unitaries.

3.4.2 Submersions and complexity geometry

We now apply the notion of Riemannian submersion to complexity geometry.
To this purpose, we take M = SU(2") provided with a right-invariant metric
(the unitary space), and G as the subgroup of the isometries of M which leaves
the reference state invariant up to a phase, namely G = SU(2" — 1) x U(1).
Explicitly, an element V' of G, which we refer to as unbroken subgroup, acts on
the reference state [1)o) as

V [tho) = €' o) . (3.4.2)

Consequently, a unitary U which prepares the state |[¢)) starting from the
reference one

Ulo) = [¢) (3.4.3)

is physically equivalent to an operator of the form U’ = UV, which build the
same state up to a phase:

U'|ho) = € |y), — U ~U. (3.4.4)

The group B of such equivalence classes represents the space of states. So, as
we have previously commented, the projection 7 from the unitary space to the
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space of states

SU(2”)

SO 10 = (3:4:5)

m:SU(2") - B=

is an isometric submersion. We are now going to prove this remarkable result
by fixing a specific coordinate system.

To make contact with Sec. 3.1, we consider a diagonal penalty matrix in the
basis of the generalized Pauli matrices, with the property (see eq. (3.1.16))

(p,0) =G5 0po = ;]—ZTr(p o). (3.4.6)

In order to determine the metric on the space of states it is convenient to
perform a change of basis. In particular, we pick up a basis that distinguishes
between broken generators p; and unbroken ones 7,:

wl:(pjvTa)7 1 S]S2(2n71)7 1 <a< (2n71)2’ (347)

with normalization
Tr (W Wim) = O, - (3.4.8)

The generators of the two bases are related by
1
o= Xl: w; Tr (wy o) W= o ZJ: oTr(w o). (3.4.9)
We can thus express the penalty scalar product in the basis w; as

1
M = (Wi, W) = 3on anTr (w1 0) Tr (W 0) - (3.4.10)

Introducing the following notation for the exponential of broken and unbroken
generators ‘ ‘
Uo =€, Vy=elm, (3.4.11)

where 6; denote the coordinates in the space of states and A, the additional
coordinates in the unitary space, a generic element of SU(2") can be written as
U = UgVj. We can then compute

AUUT = (dUe Vi + UedVa)ViUL = dUsUL + UgdVa VUL, (3.4.12)
with o oV
dUe = =2 db; AV = =2 dA, . 4.1
Ve 00; Y O (3.413)

In this way, the right-invariant forms defined on SU(2") are given by

X, = —iTr(dUU w,) = —i(Ad+ )rs Tr [(UgdU@ + dVAV,I) ws} ;o (3.4.14)
©
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in which we have used the adjoint action
UL w, Uo = (Adys )rstws (3.4.15)
We can now write the metric in the unitary space as
ds® = Mo X, X = My (ug + 1) (U + ) (3.4.16)

where

Mlm - Mrs (AdUg)rl(AdUé)sm )
(3.4.17)
u; = —1Tr (UédU@ wl) y v = —1Tr (dVAVAL wl> y

in such a way that M;,, depends just on 6;, u; contains just (6;,dd;), and v,
includes just (Aq,d\,;). Note that this decomposition also holds if M, is a
generic symmetric matrix. By distinguishing between broken and unbroken
generators w; = (p;,7,) as in eq. (3.4.7), we trivially have that v; = 0. Then,
the unitary metric (3.4.16) reads

N I u;
2 [ ib
ds® = ( Ui Ug + Vg ) ( Mai’ Mab ) ( ub'ﬁvb )

= (Mz - MicMc_alMaj)uiuj + Mapfufs

(3.4.18)

where we have defined
fa=vq +uq + ]\;I;dll\;[djuj . (3.4.19)

Since the term My fa f» in eq. (3.4.18) is positive-definite, the problem of finding
the minimal infinitesimal operator which synthesizes the state with coordinates
0; 4+ df; from the state with coordinates 6; is solved by the equation f, = 0.
Consequently, the metric on the space of states CP?"~! can be identified as

ds? = (M;; — MM, Mo )uju; . (3.4.20)

This construction generalizes the result in [20] to an arbitrary number of qubits.
We explicitly checked that the metric on CP' (single qubit case) coincides with
the result found in [20]. In Subsec. 3.4.5 we will apply our result to qutrits.
From eq. (3.4.18), it follows that the projection map

T (9‘7‘, )\a) — (HJ) (3.4.21)

is a Riemannian submersion, where 7r*1(0j), for fixed 0, is parametrized by
Aa- The explicit expression for the horizontal space at arbitrary ¢; is given by
fa(X) = 0 for any generic vector X in the tangent space.
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3.4.3 Submersions and curvature

As we have previously discussed, sectional curvatures play a central role in
determining the properties of complexity geometry. Contrary to the space
of unitaries, non-homogeneity of the space of states makes the computation
of the corresponding sectional curvatures Kg more challenging. The close
connection between the unitary and state manifolds, expressed in the language
of Riemannian submersions, helps us in circumventing this obstacle. Namely,
O’Neill’s formula [25] relates the sectional curvatures Kg on the state manifold
to the sectional curvatures K on the unitary manifold, which are much easier
to deal with. In details, O’Neill’s formula reads

3 ([l ha))?
4 |h1|?he|? — (h1, ha)?’

Kg(hi,hy) = K(h1, ha) + (3.4.22)

where hy, are horizontal fields in the unitary space, [h1, ha] is their commutator,
hy = dr(hy) are vector fields in the state space, (...) is the scalar product from
the metric on the unitary manifold, |...| is the norm induced by such a scalar
product, and V is the projector on the vertical space.

O’Neill’s formula shows that the sectional curvature of a plane tangent to
the space of states can always be expressed as the sectional curvature of
an appropriate plane tangent to the unitary space plus a positive-definite
contribution coming from the commutator of horizontal vectors. Therefore, this
expression can be used to compute the curvatures on the state manifold without
even knowing its metric.

For illustrative purposes, in the next sections we explicitly apply the toolkit
of Riemannian submersions to the simplest cases of one-qubit and one-qutrit
systems.

3.4.4 Submersion for one qubit

The geometry of a one-qubit system has been extensively studied in [20]. In
this section we review such an analysis in the light of the results of Riemannian
submersions.

The space of states CP! has the topology of a sphere, named Bloch sphere.
Starting from the reference state [¢g), corresponding to the north pole, we can
build the state |1) specified by the (6, ¢) angles by implementing the following
unitary

Ue = exp g (0zcos¢+oysing)| , (3.4.23)
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with 0 < 0 <7 and 0 < ¢ < 27w. On the other hand, the reference state is left
invariant up to a phase by the action of the transformation

VA =exp (z %)\) . (3.4.24)

Consequently, the SU(2) transformation preparing the generic state |¢) is

e cos (g) isin (g) —3i(A+29)
p— = 7 .4-2
S (zsmu)ew% e cos (9) —

The submersion from the unitary to the state manifold is realized by the
projection

m: (N 6,9)— (0,0), (3.4.26)

and the vertical space is spanned by 0.

The metric on the unitary space with penalties ¢,, = 1, ¢,, = @, and ¢,, = P
is

@2:i{mﬂMUUHuD?+QGMMUUMMD?+PUHMUUHHDQ,
) (3.4.27)
wihere

U = B—Ude + g—gdgb + a—UdA (3.4.28)
Using the unitary metric, we can find the horizontal vector fields, which are
defined to be orthogonal to the vertical direction Oy:

(Q — 1) sin(0) sin(2¢)

h = 8 — 8 Y
LT (P cos?(0) + sin(0) (Q cos?(¢) + sin?(¢))) A
—2P cos?(6) + 2P cos(f) — sin?(0)((Q — 1) cos(2¢) + Q + 1)
ho = 04 + 5 — Oy .
2 (P cos?(6) + sin®(0) (Q cos?(¢) + sin®(¢)))
(3.4.29)
Note that dm(h1) = 0y, dm(h2) = 0.
We can now use eq. (3.4.22) to find the curvature of the state manifold:
P 3 V([ ho])P?
R =2Kg(hi,he) =2K(hy,he) + = 3.4.30
sthuoha) = 2RO 1)+ 3 o — (e 4%
An explicit calculation gives
R:%, (3.4.31)
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for the numerical values P = 6, (Q = 3.

where
a=8{-2(Q-1)[Q* = P>+ P+ (P—1)(P—Q)cos®§] sin® # cos® ¢
+P-1)[-2(PP-Q*+Q) — (P—1)(Q — 1)(P — Q) cos® ] cos® 6 + P?
+HP - 1)(P-Q)(Q—1)*sin"Gcos’ ¢+ (P+Q)(Q—1)}
B=PQ[(P—1)cos’ 6+ (Q — 1)sin? G cos® ¢ + 1]*
which matches the expression directly obtained from the states metric in [20].

A plot of Kg(hy,hy), K(hi,hs), and their difference AK is shown in Fig. 3.4
for particular values of the penalties.

3.4.5 Submersion for one qutrit

Up to now we have specialized our discussion to systems of qubits, which are
the most relevant in the quantum information context. In general, one may be
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interested in qudits, representing m-level systems. In this section we consider
the simplest generalization, namely the system of one qutrit (m = 3), and we
show how the formalism of Riemannian submersions can be readily applied.
In the case at hand, the unitary manifold is M = SU(3), containing as a
maximal subgroup G = SU(2) x U(1). The corresponding state manifold
is M/G = CP?, which is parametrized by four real coordinates (6;,¢;) with
0<60; <m 0<¢; <2mandi=1,2. Conventionally, in the one-qutrit basis
{]0),]1),]2)}, we take as a reference and target states

1 cos 01
lYo) = (0], |9) = | €1 sin 6 cos s | . (3.4.32)
0

€'2 gin #; sin s

The unitary transformation preparing |¢) from the reference state is”

g®_ 1 ! TR
itz \B VI+aE0 - e )

€1 gin 0, cos Oy €'2 gin 0, sin O
_— Ry =

(3.4.33)

zZ1 =

cos 01 cos 01

The group of transformations leaving the reference state invariant up to a phase
is G = SU(2) x U(1). In order to construct the proper element of such a group
we follow an iterative procedure. First, the SU(2) factor can be inherited from
the single qubit result of eq. (3.4.25)

(2P _ —i(A2+A3) o A
(2) _ ( e -cos A1 e sin Aq
U (67’0‘2"’_/\3) sin )\1 e—z)\z cos )\1 ) . (3434)

Then, embedding the matrix in SU(3) and adding an overall global phase
e 0 0
p=| 0 e ™ 0 |, (3.4.35)
0 0 e

corresponding to the U(1) factor, we get

£2iM 0 0
V,&s) N eiP2=A1) cog Ny —e~ e FAsFA) i Ay | (3.4.36)
0 eilaha=Ad)gin A, e~ A2t A1) cog )y

which depends on four real coordinates A;.

91In this section, the superscript (K) refers to the group SU(K) to which the element
belongs.



78 GEOMETRY OF QUANTUM COMPLEXITY

Prior to determining the metric on the space of states from eq. (3.4.20), we
need to specify the penalty matrix M,s. As we have pointed out at the end of
Subsec. 3.2.2, commutators of the form [e,e] = h, which are expected to give
rise to negative curvature, always occur when we penalize the generators of a
maximal subalgebra. This corresponds to choose as a penalty matrix

M,, = diag(P, P, P,P,1,1,1,1) (3.4.37)

with P > 1, where the first four components refer to the generators 7, of
SU(2) x U(1), and the last four components to the broken generators p;. Note
that by taking 0 < P < 1 we instead penalize the broken generators p;, and
an algebra of the form [e,e] = e is realized. In this case we expect the space
manifold to not manifest regions with a negative scalar curvature.

To check these expectations, we analytically compute the metric on the state
manifold given by eq. (3.4.20) starting from the left-invariant form w; defined
in eq. (3.4.17). The result is

2P sin? 6, cos? 0y
A(61)

2P sin? 6,
A(6h)

C(61,09)
A(01)B(61)

ds% = d6? + do3 + do? + d¢?

(3.4.38)
2P sin* 6, cos? 6,
A(61)B(01)

D(01) (cos? O2(dgy — dpo)? + 2dp1des) |

where
A(0) = (P —1)cos(201)+P+1,  B(#)=(P—1)cos(46,) + P +1,
C(61,02) = Psin® 6y [B(61) — cos(202) (2P cos(26) + (P — 1)sin*(261))] ,
D(01) = 3(P — 1) cos(20,) + P — 3.

The resulting scalar curvature is

15
h=%

(1_1> L _56P  96P +4—4P(3P+14)
P A2(01)  B2%(6h) (P +3) A(6h)

(3.4.39)
—8(P — 1)(9P + 19) cos? 1 + 3P(P — 18) + 3

(P +3) B(6h)

We observe that the metric depends only on the angular coordinates 6;, while
the Ricci scalar just on 6;. This is due to the amount of symmetries in the
penalty matrix of eq. (3.4.37). In the left Fig. 3.5 we plot the Ricci scalar as a
function of #; for different values of the penalty P.

As expected, when 0 < P < 1 the scalar curvature is everywhere positive,
and it reaches a constant value R = 24 when P = 1, corresponding to the
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Figure 3.5: On the left: Scalar curvature in eq. (3.4.39) for the state space CP?
with penalty factors P applied to all the generators of the maximal subgroup.
On the right: Scalar curvature for P — oo in eq. (3.4.40).

non-penalized choice. On the other hand, when P > 1 there is always a region
with negative curvature which increases its size accordingly to the increasing of
the penalty. In the limiting case P — 0o, meaning that the motion along the
maximal subgroup directions is forbidden, the Ricci scalar reads

lim R= 3 {[11 sec (261) + 12] sec (20) + 4 sec> 61 +5} . (3.4.40)
P—o0 2

As it can be seen in the right Fig. 3.5, in this case the Ricci scalar is negative
and contains singularities. In the opposite limit P — 0, we instead obtain an
everywhere positive and divergent Ricci scalar, due to the singular term scaling
as P~!. The behavior of the curvature in this limit is similar to the one-qubit
case with @ = 1 and arbitrary P, which was studied in detail in [20].

3.4.6 Submersions and geodesics

The computation of state complexity can be reformulated as the search of
the shortest geodesic connecting a state to the reference one. Riemannian
submersions helps us out again, relating geodesics in the state manifold B to
geodesics in the unitary manifold M. An important result is that if a geodesic
in M is horizontal'® at some point, then it remains horizontal. The projection
of a horizontal geodesic in M by the submersion 7 : M — B is still a geodesic
in the space of states B. Moreover, being our unitary space M complete, every
geodesic of B can be built as the projection of a horizontal geodesic in M [26].
It is important to stress that the projection of a non-horizontal geodesic in
general does not provide a geodesic on B.

According to eq. (3.1.15), a simple class of geodesics on the unitary manifold is
given by the exponential of an eigenvector of the penalty operator G. Combining

10 A geodesic is called horizontal if the vector field on the curve is horizontal.
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with the previous result, the exponential of an eigenvector of G which is also
orthogonal to the unbroken subgroup at the origin is projected to a geodesic in
the state space B. In the one-qubit case, which we will thoroughly examine in
Subsec. 3.5.3, such horizontal eigenvectors are trivially identified with the o,
and o, generators of su(2). In the remainder of this section, we discuss how to
determine broken generators that are also eigenvectors of G in the n > 1 case,
supposing as before that penalties depend just on the weight.

To get a feeling on the problem, we start from a two-qubits system. Taking as
reference state |00), the unbroken subgroup is generated by

1®0z; Uz®17 0,0,
0, (1 —0,), oy ®(1—-0,), 1l-0,)®0,., (1-0.)®0y,
0z R0y — 0y Q 0y, 0z R0z +0y R0y .

(3.4.41)
Namely, the generators in the first line change the phase of the reference state,
whereas the remaining generators leave the reference state completely invariant.
The orthogonal complement to the unbroken subgroup is generated by

01 +ao0,), o,@1+aoc,), (l+aoc,)®0,, (L4+aoc,)®0a,,

Sy =0, Q0,4+ 0y ® 0y, S;rzox@)ar—oy@Uy,

(3.4.42)
where the coeflicient «, depending on the penalty factors, is chosen to ensure
orthogonality with the unbroken generators in eq. (3.4.41). Note that just 52i
in eq. (3.4.42) have a definite weight w = 2, so these are the only generators of
horizontal exponential geodesics.

We now generalize this argument to the n-qubits case. Taking as a reference
state |00...0), an infinitesimal transformation with weight w = n containing
just the o, , SU(2) Pauli matrices acts on it as

00...0) = ]00...0) +e|11...1) , (3.4.43)

with € an infinitesimal complex number. Since € has two real degrees of freedom,
this class of 2™ operators comprises 2 — 2 unbroken generators (with ¢ = 0)
and 2 broken ones. The latter can be built by introducing

1
A = Z Oy @ ... ® 0O, (3.4.44)

Z) (k17»--7kn)
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where the sum runs over all the permutations (ki,...,k,) which include s
generators o, and n — s generators o,. Then, the two operators

k even k odd
Sr= Y itaAp,  S;= Y itttap, (3.4.45)
0<k<n 1<k<n

are both broken by the reference state and orthogonal to all the unbroken
w = n generators containing just o, and o,. This construction generalizes the
operators in the last line of eq. (3.4.42).

We now look for other generators orthogonal to the vertical space. Inspired by
the two-qubits case, we consider the 2n operators of the form

Sio1®(L+aio.), (3.4.46)

with the coefficient ai; chosen to guarantee the orthogonality with the unbroken
generators ST | ® (1 — 0.). Note that the operators (3.4.46) are linear
combinations of w = n,n — 1 generators.

Tterating the construction, we take 1 < s < n and we focus on the 2 (Z) operators

Si o ®(1+ as02)°, (3.4.47)

with a, determined by the condition of orthogonality to the unbroken operators
S @(1l-0.) ®f:1 1 ®;:1 0, where b, c are some integer numbers. For each
integer s, the operators in eq. (3.4.47) are linear combinations of generators
with weight

n—-s<w<n. (3.4.48)

This procedure leads to all the 2(2™ — 1) horizontal vectors in the unitary space,
which project to the CP?"~! directions in the state space. From eq. (3.4.48),
we argue that in case penalties ¢,, depend on the weight w of generators, as in
the progressive model, the s = 0 broken unitaries S are the only horizontal
eigenvectors of G. Consequently, the only horizontal exponential geodesics are
generated by linear combinations of S; and S, .

If instead some penalties for different weights are degenerate, we can find more
eigenvectors of G which are orthogonal to the unbroken subgroup. For instance,
in the draconian model all the generators with weight 3 < w < n are equally
penalized, implying that all the broken unitaries with 0 < s < n — 3 generate
horizontal exponential geodesics. In Subsecs. 3.5.4 and 3.5.5, we will exploit
these outcomes to gain information on state complexity for the draconian and
progressive model, respectively.
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3.5 Towards an exponential complexity

The definitions of unitary and state complexity require to determine the shortest
path connecting the identity to a given unitary transformation, or the reference
state to the target state, respectively. As we have previously seen, an important
result concerning Riemannian submersions is that geodesics in the space of
states can be obtained as projections of horizontal geodesics in the unitary
space. A convenient way to address the problem of finding globally minimizing
geodesics is thus to start from the unitary manifold. The naive answer would
be to move along a single geodesic flowing from the identity to the operator of
interest. Even though at short distances this is the right solution, it eventually
breaks down. Indeed, for a given geodesic there exists a point, named cut
point, after which the geodesic ceases to globally minimize the distance from
its starting point [134]. The set of all the cut points of geodesics starting from
Uy is called cut locus of Uy, and it encodes useful information on the manifold
topology.

Due to the homogeneity of the unitary manifold, it would be enough to study
the cut locus of the identity. However, this is not an easy task (see [20, 134] for
results in the context of a one-qubit system). We will instead tackle the problem
of finding minimal paths by looking at conjugate points, which are defined as
pairs of points on a manifold that can be joined by a continuous one-parameter
family of geodesics. From a general result, a given geodesic starting from U fails
to be globally minimizing after its first conjugate point. Contrary to cut points,
the converse is not true: there could be a globally shorter path well before a
conjugate point is reached. This obstruction can be circumvented in case the
position of the conjugate point, according to the bi-invariant non-penalized
metric on the unitary manifold, is near to the identity. When this happens, the
cut point is unlikely to appear before the conjugate point.

In this section, we exploit the techniques developed in the previous discussion
to find explicit classes of geodesics and their conjugate points, which play an
important role in the determination of the optimal path. Our main purpose is to
probe how different choices of penalty factors influence an important order-zero
property that complexity must satisfy in order to fit the expectations in [103]:
in the limit of large number of qubits n, the maximal complexity should scale
exponentially with n.

3.5.1 Conjugate points and Raychaudhuri’s equation

A useful tool to investigate conjugate points is the Raychaudhuri’s equation, that
we briefly recall (see e.g. [135] for a comprehensive review). Let us consider a
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congruence of geodesics!! orthogonal to a family of hypersurfaces in an arbitrary
Riemannian manifold. We denote by u® the tangent vector field to the geodesics,
satisfying u®u, = 1. Supposing the geodesics to be in affine parametrization, we
have u®Vgu® = 0, where V is the covariant derivative. In order to examine the
evolution of geodesics, we introduce deviation vectors £ between neighboring
geodesics, such that £*u, = 0. All information on how geodesics fail to remain
parallel is contained in the tensor

Bosg = Vgug , (3.5.1)

which dictates the behavior of the deviation vectors through u” Vg€ = Bgfﬁ .
In case the congruence of geodesics is orthogonal to a family of hypersurfaces,
B,p can be shown to be symmetric. Moreover, defining the transverse part of
the manifold metric gog as

hap = gap — uals (3.5.2)
B, can be decomposed into a trace and traceless part

1
Buog = ﬂ@ hag + 008, (3.5.3)
where d is the manifold dimension, © = By, is the expansion scalar and o,p the
(traceless and symmetric) shear tensor. The expansion scalar © measures the
rate of change of an infinitesimal volume AV transverse to the congruence, i.e.

1 dAV

O=xv

(3.5.4)
where ) is the affine parameter running along a reference geodesic of the family.
If the scalar © approaches —oo at some point Ay along a geodesic, it detects
the presence of a conjugate point for the geodesics congruence. In other words,
the geodesic we are moving on ceases to be globally minimizing for points
with A > Ag. The evolution of © along the geodesic flow is governed by the
Raychaudhuri’s equation [136]

do 1

ﬁ = 7m@2 — O'aﬁa'(yﬁ — Raguauﬁ 5 (355)
where R, is the Ricci tensor. In the next subsection, we will find explicit
solutions O(A) to the Raychaudhuri’s equation (3.5.5) for a special class of
geodesics.

1A congruence of geodesics in a region R is a family of non-intersecting curves such that
each point of R belongs to one and only one curve.
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3.5.2 An application to a simple class of geodesics

As we have seen in Subsec. 3.1.1, the geodesic equation on the unitary manifold
admits a class of solutions given by the exponential of an eigenvector of the
penalty operator G. For such exponential geodesics, the tangent vector u® is an
element of an orthonormal basis in the algebra, such that g,su®(o)u’(o) = 1.
Considering the metric in eq. (3.1.16), the contracted Ricci tensor

RO’U

Ry = Ragu®(0)u’(0) = .

(3.5.6)

is constant along such curves, making the Raychaudhuri’s equation more
manageable. Analytic solutions to eq. (3.5.5) can be found in case the shear
tensor o, vanishes along the geodesics congruence.
Let us suppose this condition to hold, and let us consider a family of geodesics
starting at the same point, implying © — oco. In this case, we can neglect the
term R,pu®u” in eq. (3.5.5), corresponding to taking the flat space limit. This
approximation leads to
do 1 9 d—1
d/\+d—1@_0 = ®_>\—kf (3.5.7)
with k an integration constant. For the family of geodesics to start at the same
point A = 0, we set £ = 0. Let us now look at

e 1
ot O R =0, (3.5.8)

Requiring that at small A the solution reproduces the flat space one, we find

— Jd= DR, cot (, / del )\> . (3.5.9)

The conjugate point shows up only for R, > 0, namely at

N = VAL (3.5.10)

VR,

However, the shear tensor is in general non-vanishing. So the value )\g, obtained
by neglecting the positive-definite term 0*?a,5 in eq. (3.5.5), gives us an upper
bound to the position A. of the conjugate point along the geodesic:

mvd—1
VR,

Ao < Ao = (3.5.11)
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Note that, keeping the Ricci curvature fixed, Ay scales exponentially with the
number of qubits due to the factor v/d — 1 ~ 2™. This is a first evidence of the
exponential nature of the maximal complexity.

We remark that particular situations exist in which 0,3 = 0 and the bound
(3.5.11) is saturated. To explore when this condition is verified, we consider the
equation for the evolution of o, [137], which in Euclidean signature reads'?

d; = — . 10@/3 — 0';0'5—\, + mhaﬂdw O~s
(3.5.12)
— Layps uvué - mRaB .
In the above equation,
_ 1
Rop = hlhRys — ﬁRﬁméhw (3.5.13)
is the projected trace-free part of R,z and
Co oy = Rasgvs — Rapgys + Rypgas — RBysgas
ayp d—2
(3.5.14)

9apgys — Gabs9yp R

e N - 2)

is the Weyl tensor. From eq. (3.5.12) we get that o,3 = 0 provided that
1 -
Ca’yﬁﬁ U’Y'Uza + mRaﬁ =0. (3515)

We now separately compute both terms involved in the above expression.
Considering the metric in eq. (3.1.16), we get

Caa,Ba

Canps 0 (0)u’(0) = q

(3.5.16)
Recalling that in our basis Raege = —Racep 7 0 only if @ = 5 # o and that
both the metric and the Ricci tensor are diagonal (see Sec. 3.1), we conclude
that Caoge 7# 0 only if @ = B # 0. Thus the only non-vanishing components of
the Weyl tensor contracted with the normalized velocity are

R, + R, R

Cpapﬁua(a)uﬂ(o):qp K(p,o)— P +(d71)(d72) )

(3.5.17)

Dong

12We denote the directional covariant derivative as o

=u'Vy0oaa-
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with p # o. Regarding the tensor Rag, a direct calculation reveals that the only
non-vanishing components of the transverse part of the metric are h,, = g,
with p # 0. Consequently, R, vanishes unless a = 8 # o, in which case

Ry, =14, [Rp - ﬁ (R— Rg)} : (3.5.18)

Putting eqs. (3.5.17) and (3.5.18) together, we deduce that 0,3 vanishes along
the congruence if
1

dp {K (p,o)— leg} =0 (3.5.19)
for every p # o.
In other words, a geodesic given by the exponential of o develops a conjugate
point exactly at A = Ao whether (d — 1)K (p,0) = R, for every p # o. If the
algebra contains elements p commuting with o, this condition is equivalent to
R, = 0. Therefore, the only non-trivial case in which the condition is verified
is a one-qubit system, which we will study in detail in the next subsection.

3.5.3 Conjugate points for one qubit

In the following, we employ the results introduced in the previous discussion
to some concrete examples, the simplest of which is a one-qubit system. As
in Subsec. 3.2.1, we introduce the penalties ¢,, = 1, ¢5, = @, and ¢,, = P.
The resulting unitary manifold is a generalized Berger sphere, which can be
parametrized by the Euler angles (0,,6,,6.). Expressing a group element as

U = e19:92 1049y g0 (3.5.20)
the metric tensor extracted from eq. (3.4.27) reads (see also [20])

1 = ¥ 2Psin26,
Gij = 5 N4 P 0 , (3.5.21)
2Psin260, 0 2P

where
==2 [P sin? 20, + cos? 20, (Q sin? 20, + cos? 292)] ,

U =(1-Q)cos26,sindb,, Y=(Q—-1)cos40, +Q+1.
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As it can be directly checked starting from the metric in eq. (3.5.21), the
exponential of generators o, 0y, 0, are geodesics. Such operators are given by

Go: O,=X\, 0,=0,=0,

(3.5.22)

We have seen that the presence of conjugate points for this class of geodesics
can be detected by the Ricci tensor

201 (P-Q)P)
fe=""pg
RyQ(Q+P;)C(2QPH), (3.5.23)
P _2P+Q-D(P-Q+1)

z PQ )

where we denote R, . = Rs, o,,0.- As we have shown in Subsec. 3.5.2, each
geodesic G with k = x,y, z develops a conjugate point at

V2
VR’

provided that R > 0. In Fig. 3.6 we depict the regions of the parameter space
(P, Q) in which this happens. Following the discussion at the end of Subsec.
3.5.2, the bound on the position of the conjugate point of Gy, is saturated if
Ry = 2Ky = 2Ky, with ¢ # j # k. We have then a few exact results:

Ae <o, Ao = (3.5.24)

« for P =Q, G, has a conjugate point at \. = 7P (see Fig. 3.6)'%;

o for P =1, G, has a conjugate point at \. = %;
T

o for @ =1, G, has a conjugate point at A\, = it

13In the picture, the three-dimensional Berger sphere is projected to the three-dimensional
Euclidean space by the mapping y; = 12%, with

a1 = sinfy cosfy cos O, + cos Oz sinfy sinf., az = cosby sinby cosd, — sin by cos by sinf. ,

a3 = cos Oy cos Oy sin @, + sin @y sinfy cos@., b= cosbycosfycosh, —sinb;sinbysind, .
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0002

Figure 3.6: Left: Regions where each R, , . is positive. Right: Exact conjugate
point (the black spot) of G, for P = Q = 0.4 in stereographic projection.

It is interesting to consider the limit in eq. (3.2.3), with P =1 and Q — oo. In
this case G, is the only exponential geodesic with a conjugate point, which moves
at A = 7/y/Q and 0, = 7/Q. Then, the geodesic G, stops being minimizing
very close to the origin. For this reason, sending the penalty @ to infinity does
not correspond to getting a large complexity in the o, direction: a shortcut
with length scaling as 1/4/Q is certainly available just after the conjugate point.
This behavior, that is related to a singular limit in the curvature (3.2.4), is
an indication of low maximal complexity. The same conclusion applies to the
specular case Q = 1 and P — oo, and is a distinctive hallmark of penalizing
a single generator. Indeed, it is a known fact that the maximal distance of a
point on the Berger sphere from the identity is never larger than a O(1) number,
independently of the value of the penalty [20, 138].

Another limit worth mentioning is P = Q — oo, as in eq. (3.2.5). Here, the
Ricci curvatures are all positive:

2 4 2
e BER=p 5

Consequently, G, has an exact conjugate point at §, = A = 7P, whereas G, .
have conjugate points at A < m/P/2, corresponding to 6,60, of O(1). As
expected from the curvatures in eq. (3.2.6), there is no singularity in geodesics.
Note that, while the distance of conjugate points of G , diverges, their position
in the coordinate 6, . approaches a finite value for P — co. The limit of large
penalty may indeed correspond to a large maximal complexity, because no
obvious shortcuts are available. Such an empirical conclusion is supported
by numerical computations: the points with large complexity lay nearby the
conjugate point, so maximal complexity scales as v/P. This agrees with the
diameter of the Berger sphere with two equal penalty factors [138].

R, = (3.5.25)
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We now explore geodesics on the state manifold CP', providing us with
information on state complexity. As explained in Subsec. 3.4.6, geodesics
in CP! can be obtained as projections of horizontal geodesics in the unitary
manifold through a Riemannian submersion w. Taking as a reference state
|0), the unbroken subgroup is generated by o,. Therefore, the exponential
geodesics G, shot in the orthogonal directions are horizontal. For any P, Q,
the projection of these curves by the submersion 7 gives us geodesics on the space
of states. To numerically check this result, we solved the geodesic equations
derived from the states metric, which in Bloch sphere coordinates (6, ¢) reads

L[ Q Qo
= : 5.2
Jii = ( Q21 Q22 (3:5.26)

with
Q11 = Pcos® 0 cos? ¢ + PQ cos? Osin® ¢ + Qsin? 6,

Q12 = Qo1 = P(Q — 1) sinf cos O sin ¢ cos ¢,
Q90 = Psin?0 (Q cos? ¢ + sin? ¢) ,

T=4 [sin2 0 sin® ¢ + P cos® 0 + Q sin? 0 cos? (b] .

In Fig. 3.7 we show the geodesics on the Bloch sphere for the case P = @ = 10.
The figure reveals that the region of maximal complexity is located just before
the conjugate point in the o, direction. Such a point lies inside the drop
delimited by the self intersection of the black curve. As it is clear from the
figure, no geodesics of length less than A\ can penetrate inside the drop.

\, 402

Figure 3.7: Geodesics with length A = 2.5 for P = @ = 10, starting from the
reference state (0, ¢) = (0,0). The geodesics are plotted in different colors, and
their endpoints are joined by the black curve.
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3.5.4 Conjugate points for the draconian model

In order to study conjugate points in the draconian model we make use of the
results from [124] for R,, where o is a generalized Pauli matrix with weight w:

n

1 /4
w:l, RU:2(37’L—2)+q2<2—2(37’L—2)>,

1 /4n
w=2, Rg24q(n2)+8(6n11)+q2(28(3715)),

n

174 1

n
w >4, RU:;<42+4w(3n—2w))—ql24w(3n—2w).
(3.5.27)
These expressions are valid for arbitrary number of qubits n and penalty ¢. In
particular, for ¢ = 1 we recover the non-penalized choice ¢,, = 1, where all the
R, are the same, namely R, = 4" /2. The requirement to have a negative scalar

curvature is that ¢ scales at least as q o< 4™.

In studying conjugate points along the exponential geodesics, it is important
to keep track not only of the distance A from the identity, but also of the
position in a coordinate 6, which runs along the geodesic and does not scale
with the penalty. Such a 6 can be defined as the geodesic length measured by
the non-penalized bi-invariant metric. In our normalization conventions, an
exponential geodesic can be expressed as

Uy (8) = €', (3.5.28)

where o is the generalized Pauli matrix tangent to the geodesic. Note that this
curve comes back to the identity after a period

0, =2r. (3.5.29)

In the large n limit of the non-penalized case ¢,, = 1, the upper bound on the
location of the conjugate point in eq. (3.5.11) gives

o = b =~ V2 (3.5.30)

for all the weights w. Therefore, the cut point is met for A < )y in every
direction. This implies that the maximal complexity is less than /2, which is
independent of n.
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Let us now consider the regime with negative scalar curvature ¢ ~ 4™. By
means of eq. (3.5.11) with d = 4™ — 1, we get an estimate of the distance of
conjugate points from the identity:

2"
w=1, Ao &~ , 0o = Mo,
0 Jon 0 0
2" T Ao 1 =«
w:37 Ao & N =, 927%777 0.
ERRVETRRRV PRV AV PR
A
w>4, o &~ m/2q ~ V21 2" Goz—om\/iﬂ',

Va

where 6y is the geodesics length according to the bi-invariant metric.

The geodesics with w = 1 have a conjugate point after a length exponential in
n. However, from eq. (3.5.29) we have 6, < 6 at large n, meaning that the
geodesics pass through the identity many times before reaching 6y. So, this
cannot correspond to a cut point.

The geodesics with w > 4 instead have a conjugate point at 6y of O(1), with
a length scaling exponentially in n. Unfortunately, we do not have a strong
indication that the cut point coincides with the conjugate point, so we cannot
conclude that maximal complexity is exponential in n. Still, being 6y of O(1),
the possibility that the cut and conjugate points coincide is not as unrealistic
as in the w = 1 case. Note that, with very good approximation, the distance of
the conjugate point from the identity is independent of w for w > 4.

Finally, the geodesic with w = 3 have 6y ~ 0. Therefore, the conjugate point
is very close (according to the bi-invariant metric) to the identity and it is
reasonably a cut point. However, the distance A from the identity is of O(1),
so this does not teach us anything about the possible exponential growth of
complexity at large n. Also, the exponential dependence 8y < 27" shows that
draconian penalties are by construction singular.

Regarding the complexity of states, at the end of Subsec. 3.4.6 we have argued
that all the tangent directions orthogonal to the vertical space with 0 < s < n—3,
see eq. (3.4.48), generate exponential geodesics projectable by a Riemannian
submersion 7. The above considerations can thus be extended to the state
manifold, with a caveat on the position of conjugate points.

Let us consider a horizontal geodesic in the unitary manifold M

Y(t) : [a,b] = M (3.5.32)

and let vy(¢g) be the first conjugate point along the geodesic starting from ~y(a).
Then, the projected geodesic 3(t) = w(y(t)) has a conjugate point for ¢, < g
[26]. In other words, the conjugate point of the projected geodesics might occur
before.
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3.56.5 Conjugate points for the progressive model

We come back to the more promising penalization model ¢, = a®~! and
investigate the location of conjugate points of exponential geodesics. In
Appendix A, we compute the Ricci contraction with the unit vector pointing in
the direction of a generalized Pauli matrix o of weight w at the leading order
in a. The result is

Ry = 2w (2w—1 - 22<"—w>+1) (3.5.33)
for w > 1 and Ry = 2. Thus, R,, is positive for w = 1 and
2

The conjugate point for w = 1 is estimated at

w2"
V2o
Again, eq. (3.5.29) tells us that 6, < 6y at large n, so this conjugate point
cannot correspond to a cut point.

On the contrary, the conjugate points for the generators at large w satisfying
eq. (3.5.34) gives us interesting information. In this class, the largest positive
component of the Ricci tensor is

Ao = 6y = (3.5.35)

R, =n(2" —4), (3.5.36)

so the exponential geodesics generated by a o of weight w = n have a conjugate
point at
7 on/2 0 Ao 7 on/2
ho~ s hE=TRS
The smallest positive value of R,, is instead realized for slightly different values

of the integer w, depending on the value of n modulo 3. In particular, we have
to distinguish among the following cases:

(3.5.37)

P ; 2 ,
n=3, w= ”;3, Ry = 22/3 <1+3n)%n22”/‘30.67,
M + 4
n=3a+1, w= "; , Ry = 223 (n+2)2'/3 ~ n227/31.26,
M +5 7(2n + 5
n=3a+2, w=-oT Ry, = 92n/3TN ) sanag g

3 b
(3.5.38)
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where a is an non-negative integer. In all cases R,, ~ n 22"/3 up to order one
factors. This gives a conjugate point at

T 22n/3 o 1 92n/3
)\0 ~ \/ﬁ y 90 = W ~ W .
Intermediate values of the weight give conjugate points distances scaling in
between the ones in eqs. (3.5.37) and (3.5.39). In order to have small 6, in
the large n limit in such results, we must necessarily take a > 4. In addition,
the value of a should be large enough to trust the leading order result in eq.
(3.5.33). Indeed, from Fig. 3.2 the Ricci curvature seems to converge to the
asymptotic value at large o quite fast.
Since 0y — 0 for large n, we expect the exponential geodesics with 2n/3 < w < n
to be globally minimizing up to 6y. This strongly indicates that the cut point
distance of such geodesics is in the window

(3.5.39)

T 2n/2 T 22n/3
<X < 3.5.40
T <hs (35.40)
Consequently, the maximal complexity is bigger than
22n/3
U (3.5.41)

/\max = 7 ’
and scales exponentially in n.

One may wonder if this is just an artifact of the large o limit: in fact in this
regime we expect the maximal complexity to diverge by construction. In order
to clarify this subtle point, let us consider higher order corrections to R,, and
to Ag. In Appendix A we show that the O(a~!) term vanishes for all the Ricci
components apart from w = 2, which does not contribute to conjugate points.
So we need to go to O(a™2).

To make the computation simpler we focus on w = n, that provides the larger
value of R,, at the leading order. In this case, the non-vanishing a2 terms in
the sectional curvatures in egs. (A.2.1) and (A.2.2) contributing to R,, are

3 2
2 _ 2 _
0K (n,2,0)=——,  dKP(n,3,0)=—,
SK®? 2,0)= -2 SK® 1,0)= =
(nanf ?)iia23 (TL,TL— 7)*0427
SK®@(n,N,1) = for 4<N<n-1. (3.5.42)

a2’
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A direct calculation gives

(n=Dn(@"=16)n—2(2"-4) ., n°2"

n=n(2"—4 .
R n( )+ 602 602

(3.5.43)

Then, at the next-to-leading order in «, the length of the geodesic built from
the exponential of a w = n generator before the conjugate point is

7 on/2 1
Mo~ ——[1— 2. 5.44
0 ﬁ( 12a2n> (3.5-44)

In order to trust the approximation, a should just grow slightly faster than
n for large n, for example quadratically. From this polynomial increase of «
with n, we get an exponential increase of complexity. We believe this to be a
strong indication that maximal complexity is exponentially large in n with a
progressive choice of penalties.

We remark that our argument does not provide a rigorous proof to this property.
For example, we have neglected the shear term in the Raychaudhuri’s equation,
which may cause the conjugate point to appear before. It would be interesting
to improve the analysis studying the impact of these terms. We leave this as a
problem for future investigation.

We conclude our discussion with a brief comment about state complexity. In
Subsec. 3.4.6, we have inferred that in the progressive model there is a two-
dimensional space of vectors which are both orthogonal to the vertical space
and eigenstates of the penalty operator. Such vectors are given by arbitrary
linear combinations of SF in eq. (3.4.45), which contain only generators of
weight w = n. Therefore, the previous calculation in unitary space for w =n
also applies to state complexity, with the caveat that the conjugate point in the
space of states might occur before [26].

3.6 Discussion

In this chapter we have studied several aspects of complexity geometry for
systems of n qubits, referring to the definition introduced by Nielsen and
collaborators [124]. We have focused on the two different but strongly related
notions of unitary and state complexity, quantifying the difficulty of building a
unitary operator [19, 21, 123, 124, 139] and a state [11, 13, 14, 82], respectively.

Regarding unitary complexity, defined on the homogeneous manifold SU(2"),
two basic properties are required for complexity to manifest a chaotic behavior:
the geometry must be negatively curved and maximal complexity must be
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exponentially large in the number of qubits n.

Consistently with the analysis in [20], in Sec. 3.1 we have shown that negative
sectional curvatures K (p, o) are always associated to easy generators p, o whose
commutator provides a hard generator, where easy and hard refers to small and
large penalty factors, respectively.

On the other hand, in Sec. 3.5 we have proposed an argument to unveil the
exponential scaling of complexity, based on the search of parametric regimes in
which the angular position of conjugate points approaches the identity, while
their complexity distance from the identity is exponential in n.

In Sec. 3.2 we have investigated the one-qubit system, which is as simple as
useful to unravel some basic properties of complexity geometry for generic
n. On the one hand, at least two out of three sectional curvatures in the
Pauli matrices basis are positive. But eq. (3.1.26) teaches us that sectional
curvatures K (p, o) depend just on the penalties of the generators p, o and their
commutator. So, since all generators acting just on a specific qubit form a closed
subalgebra of su(2"), we deduce that for generic n some sectional curvatures are
necessarily positive as well. On the other hand, some large penalties regimes in
the one-qubit case generalize to large n. There are two prototypical situations:

1) P =1and Q@ — oo, see eq. (3.2.3). Easy generators are enough to
construct any unitary operator, so maximal complexity is finite. Some
sectional curvatures diverge, thus the geometry is singular.

2) P=pQ — oo with 8 # 1, see eq. (3.2.7). Easy generators are not enough
to construct any unitary operator, so maximal complexity goes to infinity.
Sectional curvatures do not diverge and negative values can be realized.

For large n we have a huge arbitrariness in the choice of penalty factors. In Sec.
3.3, we have analyzed two prototypes:

1) draconian penalties, defined by eq. (3.3.6). In the large penalty limit, for
fixed n, complexity does not diverge, and the scalar curvature in eq. (3.3.9)
becomes negative and singular. There are no regimes in which conjugate
points give us information on the exponential nature of complexity.

2) progressive penalties, defined by eq. (3.3.11). In the large penalty limit,
for fixed n, complexity diverges, and the scalar curvature in eq. (3.3.14)
is negative and finite. We have a robust indication of exponential scaling
of complexity.

We point out that our conjugate points-based argument does not provide a
strict proof to the scaling of maximal complexity. Though our method is
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inconclusive for draconian penalties, in which case an exponential lower bound
to maximal complexity was already been found by Nielsen et al. [21] by
exploiting gate complexity, it provides a first evidence for progressive penalties.
Recently, in [140] an exponential scaling of maximal unitary complexity for
both the draconian and the progressive model has been proved by means of the
Bishop-Gromov theorem [141], which upper bounds the volume of geodesic balls
in homogeneous manifold. The same conclusion has been drawn in [142] by
approximating complexity geometry with gate complexity, and lower bounding
the length of a path on the unitary manifold by the number of gates required
to reproduce the corresponding unitary operator.

In Sec. 3.4, we have observed that unitary and state complexity [14],
which is more relevant for holographic applications, are directly related by
Riemannian submersions [25, 26, 133]. By employing this formalism, we have
provided a closed-form expression for the metric in the space of states, see eq.
(3.4.20). In principle, one may extract from such a metric sectional curvatures
and geodesics. However, Riemannian submersions allow us to avoid these
cumbersome computations.

In particular, sectional curvatures of the states manifold are related to sectional
curvatures of the unitary manifold by O’Neill’s formula [25]. Moreover, geodesics
in the space of states can be found as projections of horizontal geodesics from
the unitary space, whose conjugate points are realized for a complexity equal or
less than the unitary one.



Chapter 4

Subregion complexity in AdS;
and in the BTZ black hole

This chapter is an adaptation of the published article [143]. Below, we add a brief
introduction to complexity of mized states and its holographic interpretation. Sec.
4.1 has been inserted to illustrate the various contributions to the gravitational
action. The comments on the choice of the gravitational action counterterm for
null boundaries at the end of Sec. 4.1 are adapted from Sec. 3.5 of the published

article [144].

In the previous chapter we have introduced a formalism to investigate complexity
of pure states in n qubits systems. In analogy to entanglement entropy, it is
interesting to extend the notion of complexity to mized states. Three main
proposals for a quantum information notion quantifying the difficulty of building
mixed states have been put forward in [34].

The first proposal, named purification complexity, is based on the idea of
substituting the target mixed state p with a purification of the state itself.
Namely, if p is a density matrix on a Hilbert space H 4, a Hilbert space Hp and a
pure state 1)) on H4® H g can always be introduced such that p = Try,, (|)(¥]).
The state |1¢) represents a purification of p.

The other possibilities, named spectrum complexity and basis complexity, split
the process of building the target state p into two steps: creation of the spectrum
and creation of the basis of eigenstates.

Basically, the three notions of mixed state complexity can be defined as follows:

o Purification complexity Cp is identified with the lowest complexity of all
purifications of the target mixed state p.

97
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e Spectrum complexity Cg is defined as the lowest purification complexity
of all states pgpec With the same spectrum as p.

e Basis complexity Cp corresponds to the complexity of building p from the
less complex pgpec-

For the sake of clarity, we provide a schematic illustration of such definitions:

States with the same
spectrum as p

p

Reference state

Figure 4.1: The three main definitions of mixed state complexity. The picture
is a reproduction of a figure contained in [34].

In principle, a good definition of mixed state complexity is expected to
reduce to state complexity in case the target state is pure. For this reason
spectrum complexity, which gives Cg = 0 for pure states, can be discarded
[34]. Investigation of purification complexity in QFTs have been conducted in
[35, 36, 66], while a study of basis complexity for harmonic lattices has been
carried out in [37]. Another possibility is to relate mixed state complexity
to quantum fidelity susceptibility [39], which asses how close two states are.
Fidelity susceptibility defines a Fisher information metric, that directly measures
the distance between mixed states with no need to perform the purification
procedure. See [37, 145] for works in this direction.

In the AdS/CFT framework, the question raises of which bulk quantity is dual
to some notion of mixed state complexity in the boundary CFT. As a known
result in holography, the reduced density matrix living in a CFT subregion
corresponds to a causal codimension-zero bulk region named entanglement
wedge, which is attached to the RT surface and the boundary subregion [38]. It
is thus natural to conjecture that mixed state complexity is dual to the same
quantities involved in the holographic complexity proposals (see Subsec. 2.6.2),
restricted to their intersection with the entanglement wedge. The resulting
conjectures are:
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o Subregion-CV [39], relating complexity of a state defined in a boundary
region A to the volume of the extremal codimension-one bulk surface R 4
bounded by A and its HRT surface I' 4 [96]:

V(RA)} '

SCV (A) - aRAH:l?‘lXU T4 |: GL

(4.0.1)

o Subregion-CA [40] (or subregion-CV 2.0), relating complexity of the
boundary mixed state to the gravitational action I (or the spacetime
volume Vi) of the intersection W4 between the WDW patch and the
entanglement wedge of the boundary subregion A:

SCa(A) = %, SCy2.0(A) = %Zig;v*‘). (4.0.2)

In Fig. 4.2 we show a sketch of the three holographic proposals:

> &

Figure 4.2: Tllustration of the proposed gravitational counterparts of mixed state
complexity in global AdS3. The red and blue curves represents the boundary
subregion A and its RT surface 74, respectively. On the left: Subregion-
CV conjecture. The extremal codimension-one surface R 4 whose volume is
interpreted as subregion complexity is shown in red. On the right: Subregion-CA
and subregion-CV 2.0 conjectures. The boundaries of the entanglement wedge
and of the WDW patch are shown in orange and pink, respectively.

In order to identify the correct quantum field theory dual, the holographic
conjectures have been tested in several scenarios, e.g. [144, 146-156]. In this
chapter we focus on the case of planar AdS3 and the Banados-Teitelboim-Zanelli
(BTZ) black hole [41, 42], taking as a boundary subregion a line segment.
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4.1 Recipe for the gravitational action computation

According to the (subregion-)CA conjecture, (subregion) complexity is dual
to the gravitational action of a bulk spacetime region YW bounded by null
codimension-one surfaces. Boundary terms providing a well-defined variational
principle in such cases have been discussed in [157, 158]. The resulting action
reads

I=Iy+Ip+1I7+1y, (4.1.1)

where Iy is the Einstein-Hilbert action of the codimension-zero spacetime region,
I is the contribution from the codimension-one bounding surfaces, 17 is the
term coming from the codimension-two joints at the intersection of the bounding
surfaces, and I, is a counterterm which guarantees the reparametrization
invariance of the action. We now describe each term in detail.

Both AdS3; and BTZ spacetime are solutions to the Einstein’s field equations
obtained by the Finstein-Hilbert action

— 1 3

where g denotes the determinant of the spacetime metric. The scalar curvature
and cosmological constant are

6 1
with L the AdS curvature radius. The action contribution Iy is given by eq.
(4.1.2), by restricting the integral to the region W of interest.

The codimension-one boundary contributions can be divided into two main
terms:
Ig = Icuy + Iy - (4.1.4)

The first contribution, coming from timelike and spacelike boundaries, is the
Gibbons-Hawking- York (GHY) action [159, 160]

1
Icny = —— [ d*z/|h| K. 4.15
v = gog [ VI (4.15)

In this expression, h,,, is the induced metric on B and K = h*¥ K, is the trace
of the extrinsic curvature K,, = hﬁh‘lfvpng, where n, is the outward-directed
normal to the surface B. The second term, coming from null boundaries, is
[157, 158]

IN:/deAﬁk, (4.1.6)
B



RECIPE FOR THE GRAVITATIONAL ACTION COMPUTATION 101

where A runs along the null geodesics generating the surface B, S is the transverse
spatial directions to such generators, and « is the determinant of the induced
metric on S. The constant x is defined by the geodesic equation

KMV kS = Kk (4.1.7)

with k# the null generator. In other words, k measures the failure of A to be an
affine parameter. Consequently, we can set k = 0 by a wise parametrization
choice, getting rid of the term Ixs.

At the intersection of bounding codimension-one surfaces, where the boundary
is non-smooth, the joint term /7 comes into play. The joint contributions
involving just timelike and spacelike intersecting surfaces have been investigated
n [161]. In our computations, we will meet only joints involving at least one
null boundary. In this case, the proper action contribution is [157]

1
Iy =—— 4.1.
J 8’/TG/jd:E\/Ea, ( 8)

where o is the determinant of the induced metric on the codimension-two joint
surface and a depends on the kind of joint. Let us denote by k, k the one-forms
normal to null boundaries, by t the one-form normal to a spacelike boundary,
and by s the one-form normal to a timelike boundary. We take such one-forms
to be outward-directed from the spacetime region of interest. Following the
conventions of [40, 162], we have

Clog ‘Tk’ null-null joints, with ¢ = —sign(k - k) 81gn( )
a= 4 Clog|k-t| spacelike-null joints, with { = —sign(k - t) sign(§ - k),
Clog|k -s| timelike-null joints, with ¢ = —sign(k - s) sign(t - k),
(4.1.9)
in which £, § and k are vectors in the tangent space of the appropriate surface
B, orthogonal to J and outward-directed from the bulk region W. For the sake
of clarity, we show a schematic representation of these three kinds of joint in
Fig. 4.3.

The joint contributions in eq. (4.1.8) are affected by the arbitrariness of choosing
the normalization of null normals k,k. Such an ambiguity can be partially
removed by requiring that k- 9; = +« at the spacetime boundary [40, 113, 162],
with 0; the timelike Killing vector in the boundary theory and a a positive
constant. Still, the constant « can be arbitrarily chosen. For the gravitational
action to be invariant under reparametrization, the counterterm

1 .
= 1 4.1.1
Qt&Gwaﬁ@%Mm (4.1.10)
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k
7

=+
>

Figure 4.3: The three kinds of joints involving null boundaries, with explicit
orientation of the normal one-forms and tangent vectors. Null surfaces are
shown in orange, spacelike surfaces in pink, and timelike surfaces in blue.

must be added for each null boundary [157]. In the above expression, L is
an arbitrary length scale and © = 0y log./7 is the expansion scalar of the
congruence of null geodesics on B, defined similarly to eq. (3.5.4). Even though
the surface term (4.1.10) has been found to not modify the complexity of
formation and the late time complexity growth rate for eternal black holes, in
such cases it does affect the intermediate time behavior [113]. In dynamical
scenarios it is crucial to reproduce important features of complexity, such as the
conjectured late time bound on the growth rate and the switchback effect [69, 70].
Therefore, we will always include the counterterm I.; in our computations.

We point out that the counterterm ensuring reparametrization invariance of the
action is not necessarily unique. To discuss this, we borrow some notation from
[157]. Let us consider a null hypersurface B defined by the function ®(z#) = 0.
The hypersurface can be described by parametric equations z# (A, QA), where A
is an affine parameter of null geodesics and #4 is constant on each null generator
on the hypersurface. Both the vectors

oxt ozt
HETN T gen

4.1.11
a)\ ) ( )
are tangent to B, while &, is the null normal to the hypersurface. We denote by

YAB = guveses (4.1.12)
the induced metric on the transverse directions 64 and by
BAB = eieévuky 5 (4113)

the tensor describing the behavior of the congruence of null generators, similarly
to eq. (3.5.1). In principle, in presence of null boundaries we can add to the



SUBREGION COMPLEXITY FOR A SEGMENT IN ADS3 103

integrand in eq. (4.1.10) any functional of combinations of the Riemann tensor
R Apcp computed from the transverse induced metric v4p, without spoiling
the variational principle [157]. Moreover, terms containing the tensor Bap are
also allowed. Therefore, a priori we could have a counterterm of the type

Leo(R, Rap, Rapep, Bas, ©), (4.1.14)

chosen so that the gravitational action is invariant under diffeomorphisms.

When computing the gravitational action in this thesis, we will always work
in (2 + 1)-dimensional spacetimes. Consequently, the null hypersurface B is
two-dimensional and the induced metric y4p is one-dimensional, which implies

A

N . 1
Rapep =0, Rap =0, R=0, BAB:§@7AB. (4.1.15)

This leads to dramatic restrictions in the choice of the counterterm, leaving no
space for curvature terms other than the geodesic expansion parameter © which
we have already included in eq. (4.1.10).

4.2 Subregion complexity for a segment in AdS;

As a warm-up, we review the AdS3 calculation of subregion-CA for a boundary
segment [35, 40, 163]. AdS3 spacetime can be built as a solution of a gravity
theory with negative cosmological constant, whose bulk action is given in eq.
(4.1.2). As we have seen in Subsec. 2.1.1, the metric in Poincaré coordinates

reads
2

L
ds? = = (—dt? + dz* + da?) , (4.2.1)

with L the AdS length. In the holographic picture, this geometry is dual to a
CFTs with central charge
3L

- 2G
We take as a boundary subregion a strip of length [ at the constant time-slice
t = 0. Exploiting the translation invariance in the z-direction, it is not restrictive
to consider a symmetric strip z € [—é, é} The relevant spacetime region in
our computation is the intersection between the entanglement wedge [38] of the
subregion and the WDW patch [15, 117] anchored at the boundary time-slice.
The gravitational action diverges, so a regularization is required. This can be
accomplished in two common ways [40], which are illustrated in Fig. 4.4:

c (4.2.2)

¢ Regularization A: the WDW patch is anchored at the spacetime boundary
z =0 and a cutoff is then introduced at z = .
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Regularization A Regularization B

Figure 4.4: The two regularization choices commonly used in the (subregion-)CA
conjecture. The Penrose diagram of an eternal two-sided AdS BH has been
chosen for illustrative purposes.

¢ Regularization B: the WDW patch is anchored at the cutoff surface z = ¢.

Throughout this thesis work, we will mostly use regularization B; a comparison
with regularization A is discussed in Appendix B.1. Note that in regularization
B the intersection points between the WDW patch, the entanglement wedge,
and the cutoff z = € represent codimension-three joints (see Fig. 4.5), which
we have not taken account of in eq. (4.1.1) but a priori can contribute to
the gravitational action. In Appendix B.1 we will check that regularization A
gives a similar result as regularization B without including such a contribution.
Therefore, we believe that the codimension-three joint at most shifts the action
of an overall constant.

We now build the spacetime region involved in subregion-CA conjecture. The
RT surface [9] is given by the spacelike geodesic

l

2
t=0, 2+ = (2> ; (4.2.3)

which is a semicircle of radius /2. It is convenient to parametrize the curve as
N 2
ZRT — (2) —x2. (424)

The boundaries of the entanglement wedge are formed by null geodesics
emanating orthogonally from each point of the RT surface in both the past and
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00t

Figure 4.5: On the left: Intersection of the WDW patch with the entanglement
wedge in the (z, z,t) space. The boundary of the entanglement wedge is in
yellow, while the boundary of the WDW patch is in red. On the right: Joint
curves projected in the (z,z) plane, with zgy in black, z;,; in blue and the
cutoff z = € in red.

future directions. In AdS3, such null geodesics meet at the past and future tips
of the domain of dependence of the boundary subregion. The entanglement
wedge is thus a cone, whose null boundaries are parametrized by

taw = + (; - m) . (4.2.5)

The null boundaries of the WDW patch, which is attached to the regulator
surface, are instead described by

twpw = (2 —¢) . (4.2.6)

In the above expressions, the plus and minus sign applies to the future and

past boundaries, respectively. The intersection curve between the entanglement

wedge and the WDW patch boundaries is
(1 +2¢)? — 422

1
Zint = W or Lint = ig\/(l + 25)(1 — 4Z + 25) . (427)

The introduction of the UV cutoff € restricts the range of allowed values for the
z-coordinate over the relevant region to —Zpmax < * < Tmax, Where

ZTmax = TrT(2 =€) = <é)2 — 2, (4.2.8)
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Having identified the region involved in subregion-CA proposal, in the next
section we explicitly calculate the gravitational action (4.1.1). Note that our
geometric construction is symmetric under the two reflections ¢ — —¢ and
x — —x. Due to this amount of symmetry, we will restrict our investigation to
the spacetime region ¢ > 0,z > 0, and include the proper symmetry factors in
the end.

4.2.1 Action computation

Referring to the analysis in Sec. 4.1, the gravitational action of the region
shown in Fig. 4.5 has four main contributions:

I=Iy+Iv+1I7+1. (4.2.9)

Bulk contribution. The scalar curvature of AdSs is constant, so the Einstein-
Hilbert action (4.1.2) is proportional to the spacetime volume. As it is clear from
the right Fig. 4.5, the bulk contribution can be split into two parts, separated
by the joint curve z;,:(x) of eq. (4.2.7). The first region ¢ < z < z;,.(z) is
delimited by the WDW patch null boundaries, so we have

1 Tmax Zint twpw dt

_ L f,Ll (E),L
 167Ge 447G 8 8tG

(4.2.10)

The second region zin (z) < z < zgrr(z) is instead delimited by the entanglement
wedge null boundaries, thus

Tmaz tew dt

int

(4.2.11)

L 5 L(7% +38)

=5 ( )+ e

s7¢ 8\7) T Teanc
The total result of the bulk action is
L 1 L l Lx

NS = 4(1), + T — 4= — 4.2.12
(W+ W) 47TG€+27TG0g<>+16G ( )

Null boundary terms. A hypersurface B described by the scalar equation
®(2*) = 0 has a normal vector k, = —0,,®. In case B is null, k,k* = 0 and the
vector is also tangent to the hypersurface. In particular, it can be shown [135]
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that B is generated by null geodesics which have k* as a tangent vector. In our
case, the null normals to the WDW patch and entanglement wedge boundaries
are given by the following 1-forms

zdz n xdx
V22422 /22 22
where «, 8 > 0 are arbitrary constants that will not affect the final result.

Denoting by (k*)* and (w®)* the corresponding null vectors, it can be checked
that they satisfy the geodesic equations

(kE)V, (kF) =0, (W)Y, (wF) =0, (4.2.14)

kT =a(xdt—dz), wr=p <idt+ > , (4.2.13)

meaning that the null surfaces are affinely parametrized. Consequently, the null
surfaces contributions (4.1.6) vanish: I = 0.

Choosing an affine parametrization for the null generators also allows us to
express the scalar expansion of the congruence as [135]

0 =V, k" (4.2.15)

Thus, we can readily evaluate the counterterm (4.1.10) on each null boundary:

o In agreement with the calculations in [38], the counterterm on the
entanglement wedge boundary vanishes because © = 0.

e For the boundary of the WDW patch, we obtain

L Tmax Zint dZ
oW — / d / —1
ct 27TG 0 v e 22 ©8
L1 Le L £ yelL?
= e s (072) ]+ g () s (o2

+ﬁlog<§)+ﬂ.

Lz
“12

(4.2.16)

Joint terms. In the spacetime region ¢ > 0,x > 0 under consideration there
are three joint contributions (4.1.8), all coming from the intersection between
two null codimension-one surfaces:

o The first joint is at the cutoff z = e, where the future and past boundaries
of the WDW patch meet. We have

k™ k"
\/Eziv log
€ 2

2

2S ], (4.2.17)

2

= log
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so from the general expression (4.1.8)

cuto L l €
15 = ———~"1o g(az). (4.2.18)

e The second joint is at the RT surface, where the future and past boundaries
of the entanglement wedge intersect. Here we obtain

21L wh .- w™ o2 — 4x2?
Vo = a log ’2 ‘ =log |B —z | (4.2.19)
which give
2¢el wL
= L (S)10g (2E1) £ 7L 4.2.20
J T 8aG ® ( ) 7z ) " 96a (42.20)

e The last joint term comes from the intersection between the future
boundaries of the WDW patch and entanglement wedge, where

AL(1 + 2¢)

= 4.2.21
Ve (Il —2x+2)(l+2x+2)’ ( )
kT -wh af(l =2z + 2¢)2(1 + 2z + 2¢)?
log|———| =1 4.2.22
S & 1T 162 (422 + (1 + 20)7) (42.22)
Therefore, the joint evaluates to
: L € af el 5L
I = - log (7)1 L 12.23
T T T 8aG B\ Og( 2 L2> 192G (4.2.23)
Summing up all the joint contributions, we get
Itot Q(Icutoﬁ I‘? ) + 4IIIlt
(4.2.24)

=gt (0p) + grgon (1) es () - T

As expected, this result is independent of the normalization constant 8 of
the null generators w*. Indeed, no counterterm is required to remove the
arbitrariness in choosing 3, in agreement with the vanishing of the expansion
scalar © of the corresponding null surfaces. Also, when summing the joint term

(4.2.24) with the counterterm contribution (4.2.16) the dependence on « cancels.
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4.2.2 Complexities

By adding all the contributions, subregion action complexity is

JAdS I L 2L l 2
SCAS — t;)rt _ # {25 log (L) —log <L) log <€) + 7;} . (4.2.25)

Instead, from eq. (4.2.12) spacetime volume complexity is

2 (1 l 2
SCoah = =cd——2log(~) — — . 4.2.26

V2.0 30 : og - 1 ( )
Such results are in agreement with [35]. In both expressions, we recognize a
term proportional to the entanglement entropy of the segment

l
SAdS = Cog (2 ) | 4.2.27
3log (- ( )
We conclude that holographic subregion complexity for a single interval has a
leading divergence proportional to the segment length, a subleading divergence

proportional to the entanglement entropy, and a constant finite piece. In the
following section, we check whether this expression also holds in the BTZ case.

4.3 Subregion complexity for a segment in the BTZ
black hole

Likewise AdS3 spacetime, the BTZ black hole is a solution of gravity in 2 4 1
dimensions with bulk action (4.1.2). The metric of the planar BTZ BH with
non-compact coordinates (t, z, z) is [41, 42]

.2 dz? 2
ds? = = (—far + & v a2},  f=1-(2) , (4.3.1)
22 f Zh
where L denotes the AdS radius and zj, the (inverse) radius of the event horizon.
The mass per unit volume, the temperature, and the entropy density are
L? 1 L?
= T _~ 9 T= ) S = TS >
167Gz} 2z, BH = 4G,

(4.3.2)

respectively. In Fig. 4.6 we show the geometric construction to be considered

for the estimation of subregion action complexity for a symmetric boundary

strip = € [—é, é] lying at t = 0.
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0.0 0.5 . —

A zr7(X)

Zini(X)

Figure 4.6: Region relevant to the action computation for a segment in the
BTZ case, with [ = 5. On the left: Intersection between the WDW patch and
entanglement wedge in the (z, z,t) space. The boundary of the entanglement
wedge is in yellow, while the boundary of the WDW patch is in red. On the
right: Intersection curves in the (z,z) plane, with zgr in black, z;,; in blue
and the cutoff z = € in red.

The RT surface is a spacelike geodesic on the constant time slice ¢ = 0 anchored
at the edges of the boundary subregion [75]:

T+ =

2
Zh log <J+ 1)2 +log 2= I E 2 — (L4 ) 5222 + T2
4 J—1 FH+J2E -+ 32+ T4 ) |7

(4.3.3)
where

J = coth (;) : (4.3.4)

Zh

The geodesic turning point is at x4 (z.) = 0, with

l

Since z, < zp for every value of the segment length [, the geodesic never
crosses the BH event horizon. So, contrary to holographic complexity, subregion
complexity is not a good candidate to probe the BH interior, at least in the
static case. We will see in Ch. 6 that in dynamical backgrounds the HRT
surface does explore the BH interior [75].
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For later purposes, it is convenient to invert eq. (4.3.3), getting

cosh (i) — cosh (3—:) (436
cosh (i) +1 . o

ZRT = Zh

In our static case, the entanglement wedge coincides with the causal wedge [164—
166], which can be constructed by sending null geodesics from the boundary
causal diamond of the subregion into the bulk. The explicit expressions of such
geodesics are [165]

- ) 2 V22 4 52(22 — 22) + 5z
mEW(Zm]) = 710g ( h ( h) )

2 2 + (2% = 21) — jz
(4.3.7)
- _ Iz 22 +j2(22 - 22) — 2
t z,j)=x |-+ —1o h h
Ew(z, ) 5T 3 g< T P

Solving the first eq. (4.3.7) for j = j(z,2) and plugging the result into the
second equation, we get the closed-form expression for the entanglement wedge
boundary:

V22, cosh (%)

\/222 + 27 cosh (i—f) -z}

On the other hand, the WDW patch is bounded by the radial null geodesics

(4.3.8)

l
tpw = £ 5~ zp, arccoth

2
thrzzhe)

(4.3.9)
Zn — 2 2p + €

V4
twpw = izh log <

The intersection between the WDW patch and entanglement wedge boundaries
is thus

cosh [24 + arctanh (i)} — cosh (i
Zh Zh

Zp
sinh [ 5L + arctanh ()]

lint = twDw , Zint = Zh ) . (4.3.10)

The resulting spacetime region is located at —zpmax < & < Tyax, With

g2 l
max = =¢)= h 1-—= h|— . 4.3.11
x 24 (z =€) = zp arccos l 2 cos (2%)] (4.3.11)

We can now move to the computation of the gravitational action, focusing on
the t > 0,2 > 0 region.
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4.3.1 Action computation

The gravitational action of the region in Fig. 4.6 has four main contributions:

I=Iw+In+I17+1,. (4.3.12)
Bulk contribution. Asin the AdS case, we split the integration region into two
parts, separated by the intersection curve (4.3.10). In analogy with the first line

of egs. (4.2.10) and (4.2.11), the total bulk action is then Ih; % = 4(I}, + I3,),
that leads to

Bz L /xmax " 4 sinh [ + arctanh ( )} 4z,
cosh (

W T 8rGzy, e

5— + arctanh ( h)) — cosh (%) €

sinh 1—2x blnh2 l+22+22), arctanh(e/2p)
2z 4zp

2coth [ — )1
+2co (Zh> og sinh (%) sinh2 {l—2¢+22;L i;itanh(E/Zh :|
(4.3.13)

The integral can be analytically solved, giving

L 1 L 2z l wL
Bz - ~ log | 22" sinh | — Sy 4314
W nG: oG ( sinh\ 92, ) )t 16a (4:3.14)

Null boundary terms. Prior to computing the remaining contributions, we
need to determine the null normals to the bounding surfaces. To this purpose,
we employ an affine parametrization, which can be found by describing geodesics
through the Lagrangian

L= 5—2 (—f(z) 2+ %Z) + 332) , (4.3.15)

in which the dot represents a derivative with respect to the affine parameter .
Since the Lagrangian is independent of ¢ and x, there are two motion constants:

19 L2 , 1oL L*
Also imposing the null condition £ = 0, we get
22
=12 —=E?>-J2f(2). (4.3.17)

From eqgs. (4.3.16) and (4.3.17), the tangent vector to the null geodesic is

22 2

. 2,2
Vi = (i, 5 ) = (WE Z NG, LZJ) L (4318
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Lowering the index, we get the normal one-form to the null geodesic
B %f(2)
f(2)

The null geodesics bounding the WDW patch are x-constant curves, so they
are characterized by J = 0. This gives the normals

V =V,dae" = —~Edt + dz + J da . (4.3.19)

d
k* = kXdat = a (idt - fé)> , (4.3.20)

where « is an arbitrary positive constant.
On the other hand, the null geodesics bounding the entanglement wedge are
normal to the RT surface, i.e.

dxt
Vi %@) =0, Xgr(@) = (0. 2rr, 2) (4.3.21)

with zgrr given in eq. (4.3.6). Combining such a condition with eq. (4.3.19), we
find a relation between F and J, which fixes

wt = widm“ = B (+dt + adz + bdx) , (4.3.22)

where 3 is again a positive constant and

z 2?2 cosh [ & z22sinh (&
h Zn h Zh
a= , b=

(22 — 22) \/22 + 22 sinh? (%) (22 — 22) \/22 + 22 sinh? (%)
(4.3.23)

We are now ready to consider the null surface contributions to the action.
The term in eq. (4.1.6) vanishes because we used an affine parametrization:
In = 0. The counterterm in eq. (4.1.10) comes from two kind of boundaries:

¢ On the entanglement wedge, since the expansion scalar © = Vu(wi)“
vanishes, we have I5W = 0.
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e On the WDW patch, a direct calculation gives

Tmax Zint dz
oW — 5 G/ dﬂc/ — log
T

L 'T;Il‘lax
141
2 G( Tlog ) €

oy ()
21G 0 Zn {COSh (%) — cosh ( ) + arctanh (ZL)}

Lzha cosh ( + arctanh ( )) — cosh (Zih)
1+ log 72

7(12

L
2

+

X

X

cosh (— + arctanh (
(4.3.24)

Joint contributions. In the spacetime region ¢t > 0,x > 0, there are three
null-null intersection curves contributing to the joint term of eq. (4.1.8):

e The joint at the cutoff, given by the intersection between the future and
past boundaries of the WDW patch, is

ICutOff L /xmax dﬁ lOg 042 Zi 82
-~ 87G J, € L2(22 —€2)

e The joint at the RT surface, lying at the intersection between the future
and past boundaries of the entanglement wedge, is

sinh (ﬁ)

L Tmax
= — / dx
87Gzn Jo cosh (zih) — cosh (z—:)

(4.3.25)

52 2 cosh ( h) — cosh (i—f)
2L2 cosh? <i)

Zh

X log




SUBREGION COMPLEXITY FOR A SEGMENT IN THE BTZ BLACK HOLE 115

o The joint at the intersection (4.3.10) between the future null boundaries
of the WDW patch and entanglement wedge gives

X

int L Tmax Sinh (ﬁ + arCtanh (%))
It = / dx - -
8nGzy Jo cosh (# + arctanh <£)> — cosh <i)
h Zh Zh

2
er/zhaﬂzﬁ {cosh (%h + arctanh (i)) — cosh (i)}
L 1+ €22/ cosh (i + arctanh (ﬁ)) — 2%/ #n
(4.3.27)

X log

Adding up all the above expressions, we find the total joint contribution

If,})t _ 2<I;1toff + I‘I;T) + 41}1t. (4.3.28)

4.3.2 Complexities

We have analytically solved all the above-mentioned integrals, the cumbersome
results of which we do not write down here. In order to simplify the expressions,
we have made use of various dilogarithm identities, including

1+t 1 Y 5
Li, Le; — Li, <u) — Lig <1+i€§) — Lis L;L
1+e? 1+e2 1+ez

Tn? y v—1 2
- + 41og? (1 —|—65) + log {4y — 8log (e) + 8log (sinhy>} ,
6 Y Y 2

(4.3:29)

which can be proven by taking a derivative of both sides of the equation with
respect to y. Subregion action complexity for a boundary line segment is then

prz_ ¢ [0 (Y D (25 tog (22 gion (L)) 4 T
SCy 7 = 52 {25 log <L> log ( T log . sinh o + S
(4:3.

30)

8 Re

Introducing the entanglement entropy for the line segment
c 2zp l
SBTZ — Zlog [ = sinh (| — | | , 4.3.31
3 & € 2 ( )
we can express subregion action complexity as

e Ly (DY g, (B SPT e
SCL ° = 6 log <L> log ( T — + 51" (4.3.32)
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From the bulk contribution to the gravitational action in eq. (4.3.14), we deduce
that subregion spacetime volume complexity for a boundary line segment is
2cl 2

T 4SBT — . 4.3.33
3¢ 6° (4.3.33)
Note that eqs. (4.3.32) and (4.3.33) have the same structure as eqs. (4.2.25)
and (4.2.26) of the AdS case, which is recovered for z, — +o0.

BTZ _
SCys =

A useful cross-check can be done in the large subregion limit [ > z;,. Keeping
just the terms linear in [ in eq. (4.3.30), the expression reproduces subregion

TZ,R

action complexity SCE computed for one side of the Kruskal diagram

34, 149): ) )
BTZ.R c 1 L 1 2L

R_CZ 12 —) - =1 — 1. 4.3.34

SC, 62 L og(L) Py og(L (4.3.34)

Note that the loge divergence is suppressed by the segment length I.

Subregion volume complexity of a boundary segment for the BTZ BH has been
computed in [39, 147]:
2c¢c (1
SCeT2 = (2 _ 7, 4.3.35

% 3\z 7 ( )
which is non-trivially independent of temperature. Indeed, subregion SCy in
BTZ is a topological quantity: for multiple intervals, the authors of [147] found
the following result by means of the Gauss-Bonnet theorem

SCIS = ScBT% = e (l“ — 2y + = m> : (4.3.36)

3 € 2
In this formula, l;o; is the total length of the boundary segments, y is the Euler
characteristic of the extremal codimension-one surface involved in subregion-CV,
and m is the number of ninety degrees junctions between the RT surface and
the boundary segments themselves. It would be interesting to check whether
a similar result could be established for subregion-CA and subregion-CV 2.0
for multiple line segments. This motivates us to study the simplest case of two
segments in AdSj.

4.4 Subregion complexity for two segments in AdS;

In this section we evaluate subregion action complexity for a disjoint subregion
on the AdS3 boundary. In particular, we consider two segments of equal size
! with separation d, lying at the constant time slice ¢ = 0. For simplicity,
we take a symmetric configuration, with the boundary subregion given by
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x € [-l—d/2,—-d/2]U[d/2,l+ d/2]. The holographic entanglement entropy
is the length of the shortest geodesic anchored at the edges of the subregion.
There are two possibilities [81, 90]:

e The minimal geodesic is the union of the RT surfaces for the individual
disjoint segments.

e The minimal geodesic connects the two disjoint segments.

The two cases are shown in Fig. 4.7:

z z
RT,
RT,
RT1 RT2
e ! e

Figure 4.7: The possible RT surfaces for disjoint subregions.

For fixed segments length [, a critical distance dy exists for which the two curves
have the same length, namely

do = (V2 - 1)I. (4.4.1)

For d > dy the locally minimizing geodesic is given by the configuration in the
left Fig. 4.7, whereas for d < dg by the right one.

For the first configuration we have two non-intersecting entanglement wedges,
SO
1 AdS 1 AdS
SCH=28C;7", SCyrg0 =28Cy5% - (4.4.2)
For the second configuration a new geometric construction is required, a

schematic representation of which is shown in Fig. 4.8. Similarly to the
previous calculations, we make use of regularization B (see Fig. 4.4).

As we have seen above, the RT surface is the union of the spacelike geodesics
connecting the two boundary segments. Denoting such geodesics by RT; and
RT3, we have

24 d\° a\ 2
ZRTy = (2> -2, ZRT, = <2> — 2, (4.4.3)
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1.0 z
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Figure 4.8: On the left: Bulk region relevant to the subregion-CA calculation
for two segments in AdSs. On the right: Projection in the (z, z) plane of the
codimension-two intersection curves. The regions in which the bulk integral is
split are numbered.

Xmin  Xint Xmax

respectively. Due to the introduction of the cutoff surface at z = ¢, RT5 is
truncated at * = £x,,;, and RT; at £ = £2,4,, Which are defined by

2 2
Tmin = “ (g) - 52; Tmax = <d—22l> - 52 . (444)

All points of the entanglement wedge are causally connected to the RT surface
RT; URT; and to the boundary domain of dependence of the subregion [38].
Therefore, the null boundaries of the entanglement wedge, built by sending null
geodesics from RT; and RT5, are

20+ d d
tew, :i(i—x/z%wﬂ) : tEWQ:i<—2+ 22—|—x2)
(4.4.5)

The WDW patch, anchored at the cutoff in the present regularization, is bounded
by the usual null surfaces

tWDW =4 (Z — E) . (446)

Since the resulting spacetime region is symmetric under ¢t — —t and © — —=,
hereinafter we focus on the region ¢ > 0,z > 0. The intersection curve FE
between the future boundaries of the entanglement wedge (4.4.5) is

l 1 2

=, zp = =\ (d+1)" — 422 . (4.4.7)
2 2
The intersection F' between the future boundary of the WDW patch (4.4.6) and
the future boundary of the entanglement wedge anchored at RT is

te =

422

1
tr=cd42(l—g)— — 0
S K Ut Rl v ey

:| R zrp =1t +e¢. (448)
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The intersection G between the future boundary of the WDW patch and the
future boundary of the entanglement wedge anchored at RT5 gives
d 22 €
tc=—+———= =t . 4.4.9
el 1T a9 o g =lgte ( )
Solving the condition zp = zp = zg, we find the intersection point among such
three curves:

iy = Y =29) [;l r20+e)l (4.4.10)

4.4.1 Action computation

The gravitational action of the region in Fig. 4.8 can be computed as

I=Iw+Iv+1I7+1,. (4.4.11)

Bulk contribution. As shown in Fig. 4.8, the total bulk contribution can be
divided into 7 parts:

Iy =4) Ly, (4.4.12)

Tmin tEWQ dt
Iy =——+ dx / dz / =,
ZRTy z

where

<

Il
>~
3
Q

) Tmin ZRTy tEwl
Ly, =——— d d
w 47rG x/ Z/ 2'3 ’
Tint twpw dt
B, =—— d d =
w 47TG Ein x/ Z/ 23’

Tint tew dt
= dx/ dz/ s (4.4.13)

23’

Tmin

s Tint ZRTy tEW]

Tmin

Tmaz twpw dt
- m/ M/ @
T V4
int

. Tmaz ZRTy tew, ¢
Iy, = 47TG dx/ dz/ —

Zint

s

Il
=~
3
Q
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Evaluating analytically all the integrals and summing them up, we obtain

—— 4+ — +38 tanh{/ ——
= og 2 + 5 + darctan Py

AN CED)) . d(d + 20)
_QF”< d+l )‘L”<_ d+1 ) }'

Null boundary terms. The null normals to the bounding surfaces can be
determined similarly to the case of a single line segment in AdSs, see Sec. 4.2.
The affine parametrization of such normals sets Iy = 0 and, as usual, the
counterterms for the entanglement wedge boundaries vanish. We are thus left
with the counterterm for the boundaries of the WDW patch, which we separate
into two contributions:

Tint zG dz Laz
Ty = — d lo ,
&I 271'G’ x/ 8 ( )

Tmin

Tmaz Laz
ICt’H:R dIE/ g< e )

Joint contributions. We have to include several joint contributions to the
action, each of which involves two codimension-one null surfaces:

2
fy— L {21_21 dd+2l) 7

(4.4.14)

(4.4.15)

e The joint at the cutoff z = ¢ comes from the intersection between the
future and past boundaries of the WDW patch, whose null normals are

k* = o (xdt —dz) . (4.4.16)
The contribution is
log (") (22)
L [Pmes LT L llog (&
I, =——— d S L2, 4.4.17
c A7 G . € 2rG € ( )

Tmin

e The joint at RT; is given by the intersection of future and past boundaries
of the entanglement wedge with null normals

(4.4.18)

4 z T
w; = +dt + dz + dr ) .
1 5( V22 4 22 V22 4 22 )
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This term reads

; 13 /zmm p d+2l : 32 ((d + 2l)2 — 4x2)
= - X O
= "onc (d+20)? a2 © 4L
L B2e L (d+20)p% L=
=—1 1 — ] - 1 20)1 .
i 108 (€)1og ( L2) I 108 4+ 20 log 7 48G
(4.4.19)

« Similarly, the joint at RT5 is given by the intersection of future and past
boundaries of the entanglement wedge with null normals

+ z X
Wy = +dt — dz — dx | . 4.4.20
2 7( V722t 22 /22 ¥ 22 ) ( )
The corresponding contribution is
L Tmin d ,y2 (d2 _ 4$2)
Ipr, = ——— d 1
R ="9rG ), @42 ar2
(4.4.21)
L Y2 e L d~? Lm
=—1 1 — ) - log (d) log —- + — .
Ing 8 (e)log ( L2 ) InG o8 (D108 7 + 157

o For the joint at the curve E, the involved null normals are wi and w3 .
The contribution reads

2 2
L Tint d+1 ﬁy((d—i_l) —4dx )

Ig = — d 1 . 4.4.22

R /0 Tary e " e (4:4:22)

o For the joint at the curve F, the involved null normals are k* and wi .
The term gives

2
2
2L Tmazx d+2(l+€) Ckﬂ ((d+2(l+5)) —4{E2>
Ir = — T 5 log 5
TG Jo  (d+2(+2)" —42% 71612 ((d +2(14e)% + 41:2)
(4.4.23)

o For the joint at the curve G, the involved null normals are k* and w3 .
The contribution is

9T, rmd d—2e o ay (d—2e + 22)° (d — 2e — 22)°

= —_— €T g
G Sy, 422 — (d— 2)? 1612 [4332 +(d— 25)2}
(4.4.24)

Ig
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4.4.2 Complexities

Adding up all the contributions and using polylogarithm identities, we find

s [ (E) o (2 (A2 7
SCA37r2{alog<L> log(L log = 1

10g<§>+10g< 2(d+1) )]10g<(d+l+\/l;l(d+2l))2>

d(d +21)

. d(d + 20) . da(d + 20)
+L12< d—+1 >L12< d+1 )}
(4.4.25)

From the bulk contribution (4.4.14) we can instead extract the subregion
spacetime volume complexity:

2¢ |21 d(d+2l) = [ d
2
SCyap 3 {5 08— 3 + 2 + 8arctan FY

L lLiQ <«/d(d+21)> i (_ d(d+21)>

+

(4.4.26)

d+1 d+1

} |

The divergences of eqs. (4.4.25) and (4.4.26) are the same as the corresponding
quantities in eq. (4.4.2). In particular, the subleading divergences are still
proportional to the entanglement entropy

2
§ = C1op dd+2D)

. 4.4.27
3 52 ( )

On the other hand, the finite part is a more complicated function of the subregion
parameters d, [ compared to the single interval case.

4.4.3 Mutual complexity

Let us a consider two subsystems A, B of a physical system. The mutual
information is defined as

I(A|B) = S(A) + S(B) — S(AUB), (4.4.28)

where S(A) = —Tra (palog pa) denotes the entanglement entropy of the reduced
density matrix obtained by tracing over the system external to A. As we have
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seen in Sec. 2.2, entanglement entropy is subadditive: S(AU B) < S(A) + S(B)
[81]. As a consequence, mutual information is a positive quantity.

In parallel to entanglement entropy and mutual information, a quantity involving
subregion complexity and measuring the correlations between two physical
subsystems was introduced in [35, 149] and called mutual complexity:

AC = S8C(pa) + SC(pB) — SC(paus) - (4.4.29)

In all the three holographic conjectures AC is a finite quantity, because the
divergences appearing in each term exactly cancel out. If mutual complexity is
always positive (negative), subregion complexity is subadditive (superadditive).

By construction, subregion-CV and subregion-CV 2.0 are superadditive, i.e.
SC(paup) > SC(pa)+SC(pp). This is confirmed by the expressions of subregion
complexity for two boundary segments in AdSs. In particular, for subregion-CV
we can refer to eq. (4.3.36). For distances d < dy between the two segments we

get A
ACy = —3077. (4.4.30)

Superadditivity of subregion-CV can be understood from the fact that the
volume of codimension-one surfaces is positive, and the disconnected surfaces
in the left Fig. 4.7 are contained into the connected surface on the right.
Meanwhile, for distances d > dg the RT surface is disconnected, thus ACy = 0.
Note that at the critical distance d = d the volume mutual complexity manifests
a discontinuous jump, while mutual information vanishes [146, 147]. This
observation generically holds for all three holographic conjectures.

Regarding the subregion-CV 2.0 conjecture, from eq. (4.4.26) we find that the
mutual complexity for two disjoint intervals at a distance d < dj is

ACya.0 = SCiry o — SChq,

de d(d+2l) =* d
= 2 0g BT T farctanh 4] ——
3 l 0g =3 5 arctanh |/ -, (4.4.31)

T (w /d(d + 21)) i (_ d(d+ 2l)>

d+1 d+1

)

see Fig. 4.9 for a plot. Similarly to subregion-CV, ACy 1. is negative-definite as
expected, because the spacetime volume is positive and the bulk region involved
in the first configuration of RT surface is smaller than the second one.

Instead, for subregion-CA no general argument is known which fixes the sign
of AC. To gain some insights, we exploit the result obtained in the previous
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-20

do
l

V2 —1].

Figure 4.9: Mutual complexity ACys. as a function of % e [0,
We have set ¢ = 1.

subsection for two boundary segments. For d < dy, we find from eqgs. (4.4.2)
and (4.4.25) that action mutual complexity is

2L 2 2
Y

L 2 2
i 2(d +1) (d+1+\/d(d +21))?
— |log <L> + log (d(d—i— 21))] log < B )

. d(d + 21) . d(d +21)
—Liz <d+l> L, <_d+l> } '
(4.4.32)

In Fig. 4.10 we plot the function AC4 for various values of = L/L. The
figure clearly shows that this quantity can be either positive or negative. In
particular, for n = 1/2 the action mutual complexity of consecutive intervals
d — 0 switches from —oco to +00, as can be directly deduced by the small d
expansion

ACA ~ =% log (2n) log 22 (4.4.33)

A~3ﬂ_2og(n g\ |- 4.

For nn < 1/2 subregion-CA is subadditive for all values of d/I. Conversely, for
n > 1/2 subregion-CA enters a superadditive regime at small enough distances
d/l. If we also have n > ng = 2.465, subregion-CA of two disjoint intervals is
always superadditive. It is important to stress that we should require n > 1
in order to have a positive-definite subregion action complexity. Then, it is
not possible to achieve a universally subadditive subregion complexity in a
physically consistent setting.
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— n=0.2

— n=0.5
— =1
— =2
— n=5

0.2 0.3 04 1

Figure 4.10: Mutual complexity AC4 for several values of 7 = L/L as a function
of % € [0, % = /2 —1]. In order to have a positive-definite subregion action
complexity, we must impose n > 1. The other values of 17 have been included
for completeness. We have set ¢ = 1.

A similar behavior of subregion-CA has been found for the thermofield double
state, where the subsystems correspond to the whole time-slices in the two
disconnected spacetime boundaries. Namely, for asymptotically AdS BHs in D
dimensions, it has been shown that subregion-CA is subadditive when n < 7jp
and superadditive for n > fp [34, 149]. The critical value #jp is given by the
zero of the function [34]

gp(n) = log((D = 2)n) + % (%(1) — o <D1_ 1)) + g — fw, (4.4.34)

where ¢g(z) = I'(2)/I'(2) is the digamma function. In our case D = 3, we have
’]73 ~ 0.1.

4.4.4 Strong sub/superadditivity for overlapping segments

Given two partially overlapping subregions A and B, entanglement entropy
satisfies the strong subadditivity property [81]

AS(A,B) = S(A) + S(B) — S(AUB) — S(ANB) > 0. (4.4.35)

Inspired by this relation, a generalization of mutual complexity (4.4.29) to
bipartite systems with A N B # ) has been proposed [35]:

AC(A, B) = 8C(pa) + SC(pr) — SC(paur) — SC(pans) - (4.4.36)

Divergences in the four contributions cancel, so AC is a finite quantity. If
AC is always positive (negative), subregion complexity is said to be strongly
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subadditive (superadditive). The sign of mutual complexity is in general non-
trivial. To perform a preliminary analysis, we can exploit the results presented
in the previous sections.

Let us consider as subregions two line segments of lengths a, b, whose intersection
is a segment of length c¢. The union of these intervals is a segment of total
length a + b — c. Since AC is completely determined by subregion complexity
of a single segment, we have all the necessary ingredients to investigate strong
sub/superadditivity of subregion complexity in BTZ spacetime. Specifically,
from egs. (4.3.32), (4.3.33) and (4.3.35) we find

ACHTZ = 1o (20) 257

A - Og( 77) 2 )

ACBTZ — _4AGBTZ, (4.4.37)
ACE™ — ¢,

where ASBTZ is the quantity defined in eq. (4.4.35), computed for the two
overlapping intervals in the BTZ background. From the strong subadditivity
of entanglement entropy (see Sec. 2.2), we deduce that subregion-CV 2.0 is
strongly superadditive, while subregion-CA is strongly subadditive for n < 1/2
and strongly superadditive for > 1/2. Finally, subregion-CV saturates strong
superadditivity. The same conclusions apply to AdSs, where ASBTZ in eq.
(4.4.37) is replaced by the corresponding quantity AGAdS,

4.5 Discussion

In this chapter we have studied the subregion-CA and subregion-CV 2.0
conjectures in AdS3 and in the BTZ background, arguing that:

e For a single segment subsystem, subregion complexity in AdSs and BTZ
spacetimes is directly related to the entanglement entropy, see eqs. (4.3.32)
and (4.3.33).

e For a disconnected two-segments subsystem, subregion complexity in AdSs
is a more complicated function of the lengths and relative separation of
the intervals, see eqs. (4.4.25) and (4.4.26). The takeaway message is that
subregion complexity carries a different amount of information compared
to entanglement entropy. In particular, mutual complexity (defined in
eq. (4.4.29)) for two disjoint segments is not proportional to mutual
information.
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While subregion-CV and subregion-CV 2.0 are superadditive by construction,
we have found that the sign of action mutual complexity AC4 of a disjoint
two-segments subregion in AdS3 drastically depends on the parameter 1 = L /L
(see figure 4.10). After imposing 7 > 1 to have a positive-definite subregion
action complexity, we are left with two possibilities:

o If n > ng = 2.465, subregion-CA is superadditive.

o If 1 < n < g, subregion-CA is superadditive for small segments distances
d and subadditive for larger d < dy = (v/2 — 1)I.

Additionally, we have shown that in both AdS3 and BTZ spacetimes subregion-
CV and subregion-CV 2.0 are strongly superadditive, just as subregion-CA in

the physical regime 1 > 1. Strictly speaking, subregion-CV saturates strong
superadditivity.






Chapter 5

Subregion complexity in
warped AdS;

This chapter is an adaptation of the published article [144)].

The AdS/CFT correspondence has unveiled a deep relation between geometry
and quantum information: the area of minimal surfaces into asymptotically AdS
is proportional to the entanglement entropy of boundary subsystems [9, 167, 168],
and geometric quantities exploring the interior of AdS BHs are conjectured to be
dual to complexity of the boundary state [11, 13-15, 117]. The question arises
whether such a connection extends to different spacetimes. Evidence of this
has been found for an ultraviolet modification of the AdS/CFT correspondence,
named WAdS/WCFT correspondence [44-46, 48, 49], which posits a duality
between (2+ 1)-dimensional gravitational theories in asymptotically warped anti-
de Sitter (WAdS) spacetime and a class of non-relativistic (1 + 1)-dimensional
QFTs, called warped conformal field theories (WCFTs), living on its boundary.
More precisely, a WCFT has as global symmetry group SL(2,R) x U(1), which
contains translations 2+ — z% 4 a* and a chiral scaling transformation == —
Az~ , where 2% denote the spacetime coordinates and a®, \ are constants. The
infinite-dimensional local symmetry group is instead given by the Virasoro and
the U(1) Kac-Moody algebras [47].

The WAdS/WCFT correspondence mainly relies on the fact that WAdS3
spacetime is a continuous deformation of AdSs, with isometry group SL(2,R) x
U(1). In addition, several holographic results can be generalized to this
framework. For instance, an analog of the Cardy formula for WCFT,
reproducing the Bekenstein-Hawking entropy of WAdS3; BHs was derived in

129
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[48]. Also, agreement has been found between the entanglement entropy in
WCFT; and the holographic counterpart determined by semi-classical particle
trajectories in WAdS3 [50-54]. Motivated by these findings, holographic
complexity was studied in asymptotically WAdS3 spacetimes by employing
CV and CA proposals [116, 119, 169, 170].

In this chapter we compute the divergences of subregion-CA, subregion-CV,
and subregion-CV 2.0 for the left (right) factors of the thermofield double state
dual to WAdS3 rotating BHs. Then, we investigate the temperature dependence
of all the three conjectures and the additivity properties of subregion-CA, also
drawing a comparison with the BTZ case presented in the previous chapter. In
details, in Sec. 5.1 we start with a review of some basic properties of warped BHs
realized as solutions in Einstein gravity. In Sec. 5.2 we compute the divergences
of both CA and subregion-CA for warped rotating BHs. In Sec. 5.3 we perform
a similar analysis for subregion-CV and subregion-CV 2.0. Calculations for
warped non-rotating BHs are deferred to Appendix B.

5.1 Black holes in warped AdS; spacetime

Warped AdS3 can be obtained by expressing AdS3 as a Hopf fibration of the
real line over AdSs, and multiplying the fiber by a warping factor depending
on a real parameter v2 [43]. For v? > 1 we obtain stretched AdS3, whereas for
v? < 1 we get squashed AdSs. The warping procedure can be accomplished
by deforming AdSs along either timelike or spacelike fibers, providing different
classes of WAdS3 spacetimes.

Black hole solutions in asymptotically WAdS3 are known for the spacelike
stretched case (12 > 1) [44, 171, 172], and are described by the metric

45" _ e + dr”
02 W2 +3)(r—ry)(r—r_)

+ 2(r)ds?
(5.1.1)

+ (21/r (2 1 3)) dtdo ,
with
U(r) =302 = 1)r+ 2 +3)(ry +7_) —dv/ror_(12 + 3). (5.1.2)
Introducing a parameter 7y defined as

Av/rir_ (V2 +3) — (2 +3)(ry +7_) (5.1.3)

312 -1) ’

To = max (Ovpo) ’ pPo =
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such that ¥(pg) = 0, the coordinates range is: 7y < r < 00, —00 < ¢ < 00 and
0 ~ 6 4 2m. In the above expressions, r_ and ry denote the radii of the inner
and outer event horizon, respectively, so 7_ < r,. The special case v? = 1
reproduces the BTZ BH [41, 42]. For v? < 1 the metric is instead pathological,
because it admits closed timelike curves.

The WAdS3 BHs described by eq. (5.1.1) can be built as solutions of Topological
Massive Gravity [171, 172], New Massive Gravity [173], linear combinations of
such mass terms [174], and string theory constructions [175-177]. In this thesis
we will focus on realizations in Einstein gravity with matter [178, 179], which
we illustrate in the next subsection. Regardless of the model in which eq. (5.1.1)
is obtained, the temperature and angular velocity of the outer horizon are [44]

T v +3 Ty —T_ 0_ 2
Al 2ur, — /(W2 4 3)yror_ (2ury — /(W2 +3)ror )’

(5.1.4)
On the other hand, the entropy and the conserved charges of the BH depend
on the gravitational action we choose. In Einstein gravity, the entropy is
proportional to the area of the outer event horizon

S = %(2ur+ — /(W2 +3)ryr_), (5.1.5)

while the mass and angular momentum are [178, 179)

1, (V24 3)rpr_
M= ﬁ(y +3) ((T_ +ry) — V+> ) (5.1.6)
J = %(u2 +3) (rvur(gz—i—?)) —(ry +ro)V/ (V2 + 3)r+r> . (5.1.7)

As we will see, these quantities enter the divergences coefficients of holographic
(subregion) complexity.

5.1.1 An explicit realization in Einstein gravity

WAdS3; BHs can be realized as solutions in Einstein gravity coupled to matter.
Nonetheless, all the known explicit constructions have some pathology in
the matter content. For instance, in [180] WAdS; BHs are obtained as
solutions whose sources are perfect fluids with spacelike quadrivelocity. We
instead consider the model introduced in [178], namely Maxwell-Chern-Simons
electrodynamics coupled to Einstein gravity. For the resulting geometry to be
free of closed timelike curves (v? > 1), a ghost-like kinetic Maxwell term is



132 SUBREGION COMPLEXITY IN WARPED ADS3

required. One may be wary of results collected in such an unphysical scenario.
In this regard, we point out that the same theoretical setting has been studied
in [119], where the asymptotic growth of action complexity has been found
to be proportional to the product between the Hawking temperature and the
Bekenstein-Hawking entropy, as expected. Therefore, the CA conjecture seems
solid enough to survive to the existence of ghosts in the theory. Consistent
outcomes have also been found for the CV conjecture [116]. In this chapter
we will take the same perspective, assuming that the holographic proposals for
subregion complexity are not spoiled by the presence of ghost fields.

The model we are going to work with is Einstein gravity in 2 4+ 1 dimensions
with a negative cosmological constant. The matter content is a U(1) gauge field
with both Maxwell and Chern-Simons terms [178]. The bulk action is

=k [ 2 79 (-2 5) - S

(5.1.8)

/ dx—=gL,
w

where the coefficient of the Maxwell kinetic term can take the values xk = +1.
The scalar curvature and cosmological constant are

6 1

respectively. The equations of motion for the gauge field read [119]

D=2 p (5.1.10)
Kv—9
while the Einstein’s equations are
1 K s, 1 o
GNV - ﬁgl“/ = §Tuy, TNV = FMUFI/ - Zg“VF Fpo’ 5 (5111)

where G, is the Einstein tensor and 7},, the energy-momentum tensor.
With the gauge choice

A=adt+crdd, F=cdrndd, (5.1.12)

in which a and ¢ are constants, the Maxwell and Einstein’s equations fix

v ]2 B 3(1—v?)

Note that we cannot simultaneously avoid closed timelike curves (¥? > 1) and
ghosts (k = +1). We will take v? > 1, causing the kinetic term for the Maxwell
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field to have the "wrong" sign (k = —1).

Even though the action depends explicitly on a through the Chern-Simons term,
such a gauge parameter is not constrained by the equations of motion. By the
way, the only value of a for which the mass M is associated to the Killing vector
0/0t and does not depend on the U(1) gauge transformations is [119, 179]

L 3% —1)
a= A= (5.1.14)

For this value, the Lagrangian density reads

‘
IT=16rG\/—gL = —§(u2+3). (5.1.15)

5.1.2 Eddington-Finkelstein coordinates

For our purposes, it is convenient to introduce null coordinates. This can be
easily accomplished by using the Arnowitt-Deser-Misner (ADM) decomposition
of the metric (5.1.1)

ds®> = —N2dt® + f;%\; + 2Y%(df + Nt)?, (5.1.16)
e s BRI ) - 1)
T = Z\II(T)’ N* = T2 )
N = 2ur —\/rar_(v?2 4 3) . (5.1.17)

2772
The (subregion-)CA computation we will perform in the next section involves
the construction of the WDW patch, whose boundaries can be parametrized by

the set of null coordinates u, v introduced in [181]. Null geodesics at constant u
and v satisfies (df + N%dt) = 0, then from the metric (5.1.16) we get

2 82
Wdr, d'U = ”U#d:c“ = dt —+ Wd?” . (5118)
These one-forms are both normal and tangent to the null boundaries of the
WDW patch. The integral curves of u® and v® are null geodesics in the affine
parametrization, thus satisfying

du = uydat = dt —

uVauf =0,  v*Vao? =0, (5.1.19)

where V, is the covariant derivative.
By integrating eq. (5.1.18), we find the Eddington-Finkelstein coordinates

u=t—1r"(r), v=t+r"(r), (5.1.20)
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where the tortoise coordinate r* is

aon [T dr” " = 2TN? _ (V2 +3)(r—r_)(r—ry)
r (7') - f(T') ) f( ) 02 T\I/(T)

Eq. (5.1.21) can be directly integrated, leading to an explicit expression for 7*.
For ro # r_, corresponding to non-extremal BHs, we have [181]

r*(r) = \/3 (2 —1) {\/m_(m_ - po) log ( Ir—r| )
i o (Vv =0+ VT poyis)”

(5.1.21)

EEETII ( r—r_| )
e e (Vrvr—=po +r = poy)’
+2log(v/r + v =po)} -
(5.1.22)

Note that the tortoise coordinate r* is divergent at the spacetime boundary
r — 00, with leading behavior

21
lim 7*(r) = 73(1/ )

lim. 213 logr. (5.1.23)

Generic values (r4,r_) describes a rotating BH, whose Penrose diagram is
the same as the one of the Reissner-Nordstrom BH [181], see Fig. 5.2. In the
extremal limit 7 = r_, the BH temperature is zero and there is no thermofield
double. Consequently, the Penrose diagram has just one boundary. In this
thesis we will not consider this case. Non-rotating BHs have vanishing angular
momentum J = 0, and are obtained by one of the following conditions:

Ty 4V2
_=0 — = . 5.1.24
" ’ r_ v2 43 ( )

The corresponding Penrose diagram is the same as the one for the Schwarzschild
BH in 3 + 1 dimensions [181], see Fig. B.2. Since the two conditions in eq.
(5.1.24) can be mapped into each other by an isometry [181], we will always
consider the simpler one r— = 0, r; = 7, when referring to non-rotating
BHs. The holographic conjectures for such solutions are extensively studied in
Appendix B.2.
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5.2 Subregion action complexity

5.2.1 Comments on regularization

In this section we determine the divergences of (subregion-)action complexity
for a two-sided rotating WAdS BH, deferring the analog computation for the
non-rotating case to Appendix B.2. To this purpose, we introduce a UV cutoff
close to the spacetime boundary at r = A.

As we have seen in Ch. 4, in asymptotically AdS two different regularizations
can be used [40] for the CA conjecture, see Fig. 4.4. In regularization A the
WDW patch is anchored at the spacetime boundary, whereas in regularization
B the WDW is attached to the cutoff surface. By an explicit computation
performed in BTZ spacetime, in Appendix B.1 we have shown that the two
regularizations lead to the same divergences of subregion-CA, provided that in
regularization A appropriate counterterms are introduced at the cutoff surface
[182].

In Fig. 5.1 we show the Penrose diagram for a two-sided WAdS rotating BH, but
the following discussion also applies to the case of WAdS non-rotating BHs. As it
is clear from the picture, the Penrose diagram structure of asymptotically WAdS
resembles that of asymptotically Minkowski spacetime, and is thus radically
different from AdS. In particular, the 45 degrees boundaries correspond to the
future null infinity and past null infinity. The right (left) corner, representing
spacelike infinity, corresponds to r — oo and arbitrary ¢. Generalizing
regularization A in WAJS is not straightforward, since this would cause the
corner of the WDW patch to be located at the spacelike infinity for all values
of the boundary time, thus making complexity an unphysical time-independent
quantity. Therefore, in order to compute (subregion) action complexity, we
employ regularization B. The works [119, 169, 170], in which the CA conjecture
in asymptotically WAdS is investigated, make use of regularization B as well.
With this choice, the expected result for the complexity rate at late time

Ca x TS is obtained in Einstein gravity [119].

5.2.2 Action complexity for rotating WAdS black holes

The spacetimes we are dealing with in this chapter have a left and a right
boundary, where two copies of WCFTs are located. The time coordinates
on each boundary, denoted by t; and tgr, are defined at the cutoff surface
r = A, where the limit A — +o00 is understood. As explained in Subsec. 2.3.2,
we assume the boundary times to increase upward at both the left and right
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Figure 5.1: In WAJS, the causal structure is similar to asymptotically Minkowski
spacetime. Regularization A would give a WDW patch whose corner is located
at the spacelike infinity, thus providing a time-independent complexity. We
point out that in regularization B the WDW patch covers the entire BH interior
in the limit of infinite cutoff A.

boundaries, so that the thermofield double state (TFD) dual to the two-sided
BH geometry is time-dependent [101]. It is not restrictive to consider the
symmetric configuration
t

tp =tp = 51’ (5.2.1)
Furthermore, we focus on the TFD state at zero boundary time ¢, = 0, which,
bearing in mind that the action growth rate has been found to be positive [119],
has the minimum action complexity by time reflection symmetry.

In this section we compute the divergences of the total action of the WDW
patch in the rotating WAdS BH geometry. The calculation for the non-rotating
WAAJS BH involves slightly different details that are sketched in Appendix B.2.1.
By the way, the result is recovered in the r_— — 0 limit of the rotating case as
expected.

The Penrose diagram and the corresponding WDW patch for the rotating WAdS
BH are depicted in Fig. 5.2. We indicate with r,,; and r,,2 the position of the
null joints at the top and bottom vertices of the WDW patch, respectively. In
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Figure 5.2: Penrose diagram and WDW patch at ¢, = 0 for the rotating WAdS
BH.

terms of the tortoise coordinate, such joints are described by

t t
§b+T7\—7’*(Tm1) =0, gb — 1y + 7 (rme) =0, (5.2.2)
where r} = r*(A). At t, =0, we get
A =1 (rm1) =" (rm2) =77(rm) . (5.2.3)

From the picture we note that the configuration is transparently symmetric, so
the actions of the future and past BH interiors are equal.

Unfortunately, eq. (5.2.3) cannot be solved exactly. Since the tortoise coordinate
r* — 400 at both r = A — oo and r — r_, we study the behavior in their
neighborhood:

e Nearby r =r_, we find

312 -1)

rrm) == v2+3

Alog|rm —r_ |+ B+ O(rm —7_), (5.2.4)
where B is a constant and

A:

>0. (5.2.5)
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e Aroundr = A

)

32— 1)

3 logA+C +O(A™Y), (5.2.6)

Ty =
where C' does not depend on A.

Putting all together, eq. (5.2.3) implies

m—T— = A p AB0=) | (5.2.7)

The action of the WDW patch has several contributions, which we have
thoroughly illustrated in Sec. 4.1:

I=Iw+Iip+17+1.. (5.2.8)

The only difference lies in the bulk contribution Iy, which contains additional
terms due to the matter fields, see eq. (5.1.8). We now individually evaluate
each contribution.

Bulk contributions. We follow the calculation in [119]. The integrand of the
bulk action is constant, implying that this contribution is proportional to the
spacetime volume enclosed in the WDW patch. It is convenient to separate this
bulk region into three parts, as indicated in Fig. 5.2:

T [ t
I&V:@/ dr <2b—|—7“/*\—r*(r)) ,

A
I, = %/ dr (ry —r*(r)), (5.2.9)

T+

T [ tp " «
Igvzw/rmdr <—2+TA—’I“ (r)) ,

where Z is defined in eq. (5.1.15). A factor of 27 comes from the integration
over the angular coordinate 6, by exploiting the spherical symmetry of the
region of interest. For future purposes, we distinguish between the bulk terms
in the BH interior and in the exterior region. Namely, the interior bulk term is
given by

. ¢ o
Ly = 2(Iyy + Iyy) = —E(VQ +3) {(M — Tm)TA — / dr T*(T)] - (5:2.10)
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The last integral in eq. (5.2.10) is finite, because the function 7*(r) has integrable
singularities in r & r_,ry. So, the divergent part of the internal bulk action
comes from the first contribution and reads:

ﬂ$:_£§3@14m4—nﬂ%A+Om%. (5.2.11)

On the other hand, the external bulk term is
I%tzﬂav———u + 3) / dr (ry —r*(r)) . (5.2.12)

Expanding eq. (5.1.22), we get the behavior of 7*(r) at large r:

r(r) = alog(dr) + § + 1 +0(), (5213)
where
B mlog (\/ﬁ"" \/W) \/Tlog (\/74_ m)
(12 +3)(ry —7r-)
_ /32 -1) VB -1)
=" i3 7‘m(ﬂ0—2r+—2h). (5.2.14)

The divergences of (5.2.12) are then

14
Jext — 4G(V +3) [—aA + (ary +7)log Al + O(A?)

—%\/3(1/2 -1 A+ %\/3(1/2 —1)(po —2r_) log A+ O(A%).

(5.2.15)

Null boundary terms. In principle we have to take into account the surface
terms coming from the null boundaries of the WDW patch. However, these
can be set to zero by employing an affine parametrization for the boundary
geodesics, as in eq. (5.1.19).

Joint terms. The action of the WDW patch has four null-null joint
contributions: two on the cutoff surface » = A and two in the region inside the
black and white hole at r = r,,,. They can all be directly evaluated from eq.
(4.1.8):

LkR

¢
Iy=g>= d@flo

. o=LY(r) =1 Z\I/('r), (5.2.16)

where k;, and ki are normal one-forms defined on the boundaries meeting at
the joint. The joints at the cutoff surface have ( = —1, while the ones in the
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interior of the black and white holes have ( = +1. The null normals are given
in eq. (5.1.18), that leads to

kr-kgp  ufv, cﬁ?f(r)
2 2 2 f(r)’

where « is the arbitrary constant arising from the ambiguity in normalizing the
null normals. From eq. (5.2.16), we get a general expression for the null-null
joint in the radial position r = ry:

e { Tk
Iy = CkE\/Z‘I’(m) log

The joint inside the black (white) hole, located at r = ry,, gives

- 14
Iy =— @\/rmlll(rm) log

(5.2.17)

2 fre)
a? 27 (r)

. (5.2.18)

ﬁ (V2 + 3) (P — 1) (P — 74)
a? T W (rim)

(5.2.19)
_t
T 8G

Each joint nearby the cutoff surface reads

ﬁ (V2+3)(A=r_)(A—ry)
AV (A)

3(2—=1)(ry —r_) logA+ O (A°) .

4
15 = el AW (A) log

(5.2.20)
2 1243

1
=A—+302-1log|—5——=
sq VW =Dl S aa
Summing the contributions of the four joints, we obtain

It =2 (I +15)

’+O(A0).

_ b
ppTe

2 2 +3

3?2 -1) {Alog Z307-1)

‘ + (ry — r)logA} +0(A°) .
(5.2.21)

Counterterm for null boundaries. The counterterm in eq. (4.1.10) must be
included for each null boundary, in order to render the action reparametrization
invariant: ’

I =55 Bd&d/\ Vo O log |LO| . (5.2.22)

To evaluate the counterterm for the future right boundary of the WDW patch
along the null lines described by the Eddington-Finkelstein coordinates (u,v),
it is convenient to perform the change of variable A — r, using

or . 2«
oy == K—ZT(T). (5.2.23)
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Therefore, the integral becomes

fet = 4G/ dr af ;63{2;“ )‘

i (5.2.24)
_ R A dr O (r¥(r)) aL 9p(r¥(r))
16G P m 202 r\I}(r) '

By symmetry, the counterterms for the four null boundaries of the WDW patch
are the same. By the fact that U(r) is linear in r, we deduce that the only
divergence arises from r = A:

272

¢ L
I =4l = A /B (7 = Dlog -

3(v° - 1)‘ +O (A% . (5.2.25)

Total action. Summing up all the contributions, the divergences of the total
action are

¢ L?
It = Y 3(v? ){log(e (v? —|—3)> ]A
(5.2.26)
¢ Po 0
+ V3= (B —r)oga+0(2%)
Similarly to the AdS case, the divergent contribution in the counterterm exactly
washes away the dependence on the ambiguous constant o appearing in the
divergent contribution of the joints.

5.2.3 Action of internal regions and subregion complexity

We now investigate the divergences of subregion-CA for the left (right) factor
of the thermofield double state, taking as a subregion the whole left (right)
boundary time-slice. Choosing as a boundary time ¢, = 0, subregion action
complexity is given by the gravitational action of the portion of WDW patch
external to the BH, namely region 2 shown in Fig. 5.2. Subregion-CA can
thus be found by subtracting from the total action (5.2.26) the contributions
of the interior of the black and white holes. We emphasize that the external
action obtained by this subtraction procedure has to be interpreted as twice
the subregion action complexity of the left (right) factor of the thermofield
double state at t, = 0. Therefore, a factor 1/2 is intended when referring to the
holographic interpretation. With this purpose in mind, we start by evaluating
the gravitational action of the internal regions. Again, we focus on the rotating
WAJS BH, relegating the non-rotating case to Appendix B.2.2.



142 SUBREGION COMPLEXITY IN WARPED ADS3

Bulk contribution. The bulk part of the internal action has already been
computed in eq. (5.2.11).

Joint terms. In the BH (white hole) interior, there are four null-null joints of
the form (5.2.18). As shown in Fig. 5.3, one is located at r = r,,, and three lie
at the event horizon r = ry:

Figure 5.3: Joints involved in the computation of the WAdS BH interior action.

By symmetry, the same joints can be found inside the white hole. In the
A — 400 limit, in which r,, — 7r_, all these contributions are in principle
divergent since f(ry) = f(r_) = 0. As it happens in AdS [34], we will see that
due to the opposite sign of nearby joints these divergences partially cancel.

To perform the calculation of the joint terms on the horizon, it is useful to
introduce the Kruskal coordinates (U, V') defined for r > r_ as in [181]

U =sign(r —ry) el ()=t sign(r —ry)e bt
(5.2.27)
V = eb*(r*(T')+t) — eb*v’
where ) _ (A +3)(re —r)
ry ve+o)ry —r
b* = = . 5.2-28
2 2y/r ¥(ry) ( )
Below, we will make use of the relation
log |[UV] = 2b,r*(r) = f'(ry)r*(r). (5.2.29)

We point out that, since r, — —oo for r — r, (see eq. (5.1.22)), the external
BH horizon for the right boundary corresponds to U = 0, whereas the external
white hole horizon for the right boundary corresponds to V = 0.
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In order to regularize the divergence of joint terms at the horizon, we follow
the prescription given in [34]. The idea is to move the joints off the horizon
by introducing the infinitesimal regulators €7, €y. Then, we evaluate the total
contribution of two joints with the same coordinate V = ey . Given that such
terms have opposite signs (i, from eq. (5.2.18) we get a resulting contribution
proportional to

2 flry, ) 2 flry,.e,) TULey
1 - 1,V . - 2,EV — !
8| o2 27 (ry) 8|2 27 (ry) /ruz,gv f(r)f(r)
/ "Urev dr / * *
~ f'(ry) = r) [ (rvy,ey) =7 (PUs.ev )] (5.2.30)
TUg,ey f({r)
U
= log [Uiev| — log |Uzev | = log ﬁl ;
2

where in the last line use has been made of eq. (5.2.29).

This expression tells us that in the limit e,y — 0, the sum of two consecutive
joints at the horizon is regular. By symmetry of the manipulations we have
performed, the same argument applies if we exchange U <> V. Combining such
results, we conclude that

lo ﬁf(TU,v)
8oz 27 (ry)

=log|UV|+ F(ry4), (5.2.31)

where the function F(r) is regular at the horizon and reads

e f(r)

Fr) =log | G2 570y

— fllr)r(r). (5.2.32)

Exploiting the symmetry of the geometry, the total joint contribution for the
internal action is twice the contribution from the BH interior:

ﬁ f(rm) ‘
a2 2Y (ry,)

I = -2 x é {T(rm) log

2 f(rey o) 2 f(ruy.e.) 2 f(reyve)
T log | — L fwev /) Z SV Yoev/| Z S\ eu, Vo) )
+Y(re) [og a? 20 (ry) a? 20 (ry) a? 2Y(ry) } }
(5.2.33)
This expression simplifies to
e _ 4 2 frm)
int _ ™ * v £~ m
I = o () 207 + F(r) 2GT0h>mg(ﬂ2T&mA
(5.2.34)
14

= SV Dy — 1) log A+ O(A”).
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Counterterm for null boundaries. The counterterm for the internal action
is the same as eq. (5.2.24), with the integral running from r = r,, to r = r,.
Possible dependence on the UV cutoff A can arise only from the lower endpoint
of integration r = r,,,. However, putting the expansion (5.2.7) inside the integral,
we explicitly checked that no divergent pieces appear.

Internal and external action. Putting together all the terms contributing
to the internal action, we obtain

I = BTy ) log A+ O(A)
(5.2.35)
4,/3(12 - 1)
_ VO T ) S 1oe A A°
23 (TS log A+ O(A%),

where in the second line we have expressed the result in terms of the BH
temperature (5.1.4) and entropy (5.1.5). Contrary to the AdS case [34, 149],
the internal action is divergent. To explain this outcome, we again refer to
Fig. 5.1. When in regularization B we send the UV cutoff A to infinity, the
WDW patch include all the BH interior. Such a region is responsible for the
linear growth of action complexity at large time [119]. Therefore, we deduce
that taking the A — 400 limit is equivalent to sending the boundary time to
infinity with finite cutoff, which gives a divergent internal action.

Subtracting the result (5.2.35) from the total action (5.2.26), we find the
divergences of the external action, which is interpreted as twice subregion
complexity:

I = é\/i’)(ﬂ——l) [log (Z(u2 + 3)) — 1} A

(5.2.36)
+ é\/S(ﬂ -1 (% - r+> log A + O(A?).

We will extensively comment this outcome in Sec. 5.4.
5.3 Subregion volume and spacetime volume com-
plexity

5.3.1 Volume complexity for rotating WAdS black holes

In this section we compute the divergences of (subregion-)volume complexity for
the rotating WAdS BH. The corresponding analysis for the non-rotating WAdS
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BH is addressed in Appendix B.2.3, where the finite part is also evaluated. In
[116] the finite part of volume complexity has been found to grow in time, with
a late time rate proportional to the product between the Hawking temperature
and Bekenstein-Hawking entropy of the BH. We here focus on the thermofield
double state at time ¢, = 0, whose volume complexity is thus minimal.

The extremal codimension-one surface anchored at ¢, = 0 lies at constant time
t = 0 into the bulk and connects the whole left and right boundary time-slices
at t; =0 and tg = 0. The RT surface lies on the outer event horizon r = r,
corresponding to the bifurcation surface in the Penrose diagram of Fig. 5.2.
The bifurcation surface splits the extremal codimension-one surface into a left
and right part, whose volume we denote by V(L) and V(R), respectively. By
symmetry such volumes are equal, then

Ve = V(L) + V(R) =2V (L). (5.3.1)

According to subregion-CV, V(L) (V(R)) is interpreted as the subregion
complexity of the left (right) factor of the thermofield double state at ¢, = 0.

The volume can be directly computed from the determinant of the induced
metric on the ¢t = 0 bulk slice:

V(L) = 2n? /A dr G(r),

(5.3.2)

T (3(1/2 —Dr+ @2 4+3)(ry +r-) —4dv/ryor_ (V2 + 3))
4024+ 3)(r—r_)(r—ry)

Nearby the outer horizon r — r, the function G(r) can be approximated as

Glr) = ——2—+ O (Vr—77)

G(r) =

r—T4+
(5.3.3)
ry (41/2r+ + (W2 +3)r- —dvyrer_ (V2 + 3))
9= A%+ 3)(ry —r_) '
Inserting such an expansion into the integral we get
2 e 2 et g 2
27l / dr G(r) ~ 2m/ / dr —Z— =~ 4nl’gy/e. (5.3.4)
Ty ry VI — T4+

Therefore, there is no divergence arising at the horizon.
At r — oo, the function G(r) behaves as

302 —1) v (vlr+r) = Vi 07 +3)) |

1
G(r) = R N O ~+0 <T2> . (5.3.5)
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Upon integration, the first two terms give rise to a linear and a logarithmic
divergence. So, we conclude that

3(r2-1) . 32r G2
v?+3 (V2 +3)3/2,/3(12 — 1)

Interestingly, the logarithmically divergent term is proportional to the BH mass
M, expressed in eq. (5.1.6).

V(L) = mf? Mlog A+0O (AY) . (5.3.6)

5.3.2 Spacetime volume complexity for rotating WAdS black
holes

According to subregion-CV 2.0 conjecture, mixed state complexity is related
to the spacetime volume of the intersection between the WDW patch and the
entanglement wedge of the boundary subregion. For the left (right) factor of
the thermofield double state at ¢, = 0, the bulk region of interest coincides with
the left (right) portion of WDW patch external to the black and white holes.
Since the integrand in the bulk contribution (5.1.8) to the gravitational action
is a constant, (twice) the result can be directly borrowed from eq. (5.2.15):

yest _gpp V3D )30 ) ("0 )1ogA+O(A0).

bulk 12 +3 9
(5.3.7)

The contribution to the spacetime volume from the interior of the black and
white holes can be similarly obtained from eq. (5.2.11):

3?2 -1)

int 3
Vbulk = 47T€ 1/2 i 3

(ry —r_)log A+ O(A?), (5.3.8)
which added to the external contribution gives the spacetime volume complexity
of the thermofield double state at ¢, = 0.

5.4 Discussion

In this chapter we have computed the divergences of subregion complexity for
the left (right) factor of the thermofield double state dual to (non-)rotating
WAJS BHs, by employing subregion-CA, subregion-CV, and subregion-CV 2.0
conjectures. We now examine the main features of these results, focusing on
the differences with the asymptotically AdS case v? = 1.

Structure of divergences. For the BTZ BH, all the notions of holographic
subregion complexity present a linear divergence in the cutoff A [34, 149].
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For WAdS BHs, we have found that all the versions of holographic subregion
complexity have a linear and a logarithmic divergence in A. Regarding subregion
action complexity, the coefficient of the linear divergence, as in the BTZ case,
can be either positive or negative depending on the value of the length scale
L. On the other hand, the coefficient of the logarithmic divergence is just
a function of the BH parameters F(ry,r_), or equivalently F(T,J). Such a

function changes from case to case, namely:

o For SC4 (5.2.36), F(ry,r-) oc Ky = & —r, with a positive coefficient.

o For SCy (5.3.6), F(ry,r_) o M with a positive coefficent.

o For SCya, (5.3.7), F(ry,r_) oc K_ = £ —r_ with a negative coefficient.

Sub/superadditivity. Taking as a subsystem the whole left (right) boundary
at t, = 0, the mutual complexity defined in eq. (4.4.29) reads

AC = SC(L) + SC(R) — C'°" = SC™* — ¢tot = _sC™* | (5.4.1)

For AdS BHs the internal action I'™ at ¢, = 0 is finite [34, 149] and its sign
depends on the value of the length scale L. In turn, depending on the sign of I'"*,
subregion action complexity SC4 can be either subadditive or superadditive,
see the analog discussion in Sec. 4.4.3.

Instead, for WAdS BHs the internal action '™ in eq. (5.2.35) is always positive
and independent of the counterterm length scale L. Consequently, AC4 is
negative, and SC 4 of the left and right factors of the thermofield double state
is superadditive. By construction, SCy and SCy2 o are also superadditive.
However, SCy for the left and right factors of the thermofield double state
saturates superadditivity at ¢, = 0, whereas SCy 2, does not, see egs. (5.3.1)
and (5.3.8), respectively.

Temperature behavior. For neutral AdS BHs, SCys decreases with
temperature. SC4 does the same if L > L/2, otherwise it increases with
temperature. Instead, in 2 + 1 bulk dimensions SCy is a topological quantity
independent of temperature [147].

For WAdS BHs, the leading dependence of subsystem complexity on temperature
is governed by the coefficient of the log A term. It is thus convenient to define

oM . 0Ky o 0K

HJ:@?J’ Tt or 1y 9T 1y

(5.4.2)

Introducing the parameter

e=r_/rq, 0<e<1, (5.4.3)
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the specific heat at constant angular momentum H; can be directly calculated
from egs. (5.1.4), (5.1.6) and (5.1.7) as

_OMory  OMOr—
T or, 0T " or_ OT

_atry V1) (E (—3V2 +20y/ (V2 +3)e + 3) - 2y\/m)

4G e(v2(4e — 1) = 3) ’

, (5.4.4)
where the quantities dg—;: and 687; have been computed from the inverse of the
matrix

or orT
(%Tj %TJ) : (5.4.5)
ory or_
Similarly, H, and H_ turn out to be
a é
H - = H_ - T, 546
r=z z (5.4.6)

with
2
a = 2mlry (\ [(v? +3)rie— 2m‘+) [v (v*((e —18)e — 7) + 3e(e + 6) + 3)

xy\/ (2 +3)rie —rye (—311/4+61/2+ (1/2+3)26+9)] ,

b=3 (v —1) \/(V2 +3)re (41/\/(1/2 +3)r2e+ (V¥ +3)ro(—e— 1))
X (21/(5 +1)4/ (2 +3)rie — (50° +3) r+5) )
é=2mlry ( (V2 +3)rie — 2ur+> [v (v*(e(Te +18) — 1) — 3((c + 6) + 1))

x\/ (V2 +3)rie+rye ((1/2 + 3)2 + (=31 + 607 +9) 5)] .
(5.4.7)
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To study the sign of the quantities (5.4.2) as functions of (e, v), we define (see
Fig. 5.4)

2
Region A : O<£<V7+23£€c(u),
4v (5.4.8)
Region B: ec(v)<e<l.
10
9 L 4
8 L 4
7 L 4
- 67 |
50 A 1
4 L 4
3 L 4
2 L 4
1 L
0 0 1

Figure 5.4: Regions of parameter space (g, v) with different temperature behavior

of SCy and SC 4.

The angular momentum J (5.1.7) is negative (positive) in region A (B), while it
vanishes along the two curves € = 0 and € = e.(v). Interestingly, the quantities
(Hj, Hy) change sign together with the angular momentum:

e Hj is negative in region A and positive in region B.

e H, is positive in region A and negative in region B.

Consequently, in the region where H; > 0, SCy increases with temperature
at constant J, whereas SC4 decreases. Conversely, in the thermodynamically
unstable region where H; < 0, SCy decreases with temperature, while SC 4
increases.

To determine the sign of H_ we have to distinguish among three regions, which
are shown in Fig. 5.5. In particular, region A, in which H_ is positive, is still
the one defined in eq. (5.4.8), while region B splits into regions By, where H_
is negative, and By, where H_ is again positive. Therefore, SCy 2 ¢ decreases
with temperature at constant J in regions A and Bs, whereas it increases in
region B;.
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R N W & U v 9 0 v O
— —

Figure 5.5: Regions of parameter space (g, v) with different temperature behavior

of SCVQ'O.

Finally, we observe that the three quantities (Hy, Hy, H_) all diverge along
the curves e = 0 and € = .(v). The divergence of H; suggest a second order
phase transition, similar to the one occurring for Kerr and Reissner-Nordstrom
BHs in flat spacetime [183].



Chapter 6

Subregion complexity in a
holographic global quench

This chapter is an adaptation of the published article [156].

So far, we have explored holographic mixed state complexity in static
backgrounds, namely neutral BHs in AdS3; and WAdS3 spacetimes. In these
cases subregion complexity is time-independent, due to the fact that the RT
surface, which delimits the relevant spacetime regions involved in the holographic
conjectures, always lies outside the BH. This does not happen in dynamical
backgrounds, where subregion complexity manifests a non-trivial time evolution.

In this last part of the thesis we focus on quantum quenches, extensively
studied out-of-equilibrium processes modeling the evolution of perturbed systems
towards a new equilibrium condition. Such processes can be divided into two
main classes: global quenches, in which the perturbation interests the whole
system, and local quenches, in which the initial perturbation is localized in a
finite region. In the context of the AdS/CFT correspondence, gravitational
realizations are known for both kinds of quenches. In particular, a CFT global
quench is holographically represented by the Vaidya geometry [75], describing
the formation of an AdS BH due to the gravitational collapse of matter. On the
other hand, a CFT local quench is equivalent to the free fall of a particle-like
object in AdS spacetime [76], a model which we will thoroughly study in Ch. 7.

By exploiting the gravitational description of CFT quenches, holographic
complexity has been investigated for both the global [68-70, 184] and local
case [71, 72]. In this chapter we address the problem of determining the time

151
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evolution of subregion-CV for a boundary segment in (2 + 1)-dimensional
Vaidya spacetime. This analysis was initiated in [155] for generic spacetime
dimensions, and was also performed for solutions of modified gravity [185, 186].
However, in all these works a translation-invariant ansatz for the codimension-
one extremal surface involved in subregion-CV conjecture is advocated. While
this assumption is correct in time-independent geometries, we argue that it is
in general not consistent in Vaidya spacetime. We thus compute the extremal
surface numerically and we investigate how its volume changes as a function of
the boundary time at which the subregion lies.

The chapter is organized as follows: in Sec. 6.1 we describe the Vaidya geometry
and we review the analytic HRT surface in case the shell of collapsing matter
has zero thickness. In Sec. 6.2 we show that the translation-invariant ansatz
for the codimension-one extremal surface is inconsistent and we numerically
compute subregion-CV for a boundary segment. We finally comment the result
in Sec. 6.3. Some technical details are collected in Appendix C.

6.1 Spacelike geodesics in Vaidya spacetime

According to the subregion-CV proposal, mixed state complexity of a time-
dependent boundary state is related to the volume of a codimension-one extremal
bulk surface anchored at the HRT surface [96] of the boundary state itself. In
2 + 1 bulk dimensions, the HRT surface is simply a spacelike geodesic attached
to a boundary line segment. Following [75], in this section we review how to
build this kind of geodesics in (2 + 1)-dimensional Vaidya spacetime.

The spacetime metric is

ds? = _r2f(u7 T) dv? + 2dvdr + r? da?

) (6.1.1)
== [-f (v,2) dv® = 2dvdz + da®]
z
in which we have set the AdS radius L = 1 and
f=1- ":g’) = 1—m(v)22. (6.1.2)

We will interchangeably use r or z = 1/r as a radial coordinate. As usual, the
coordinate v is constant along infalling null rays and its value at the spacetime
boundary r — oo (equivalently, z — 0) coincides with the boundary time.

For m(v) = M, by expressing the metric (6.1.1) in the time coordinate ¢, given
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by dv = dt — dz/f, we get the BTZ BH in Schwarzschild coordinates (4.3.1):

2 _ 1 2, 42 2 2

z

For m(v) = 0, we instead recover vacuum AdSs (4.2.1). For the Vaidya metric
to describe the formation of a BTZ BH triggered by the collapse of null matter,
we are thus interested in functions m(v) interpolating between m = 0 and

m = M. Such a geometry models a CFT5 global quench.

Concretely, in the numerical calculations we will take

M

m(v) = — (1 + tanh 2) : (6.1.4)
2 0

where ¥ parametrizes the thickness of the shell. In the zero thickness limit

© — 0, m(v) can be written in terms of the Heaviside step function J(v) as

m(v) = M 9(v). (6.1.5)

With this choice, the spacetime metric (6.1.1) interpolates between vacuum
AdSs3 for v < 0 and the BTZ BH for v > 0. The infinitesimally thick shell of
collapsing null dust falls from the spacetime boundary at time ¢ = 0 and follows
the null trajectory v = 0 into the bulk. In the situation described by eq. (6.1.5),
analytical solutions for the spacelike geodesics are available.

We are interested in spacelike geodesics anchored at the boundary subregion,
which we consider as a segment of length [ lying at constant time ¢ on
the boundary. In particular, we adopt the symmetric configuration = €
[—%,1]. Therefore, parametrizing the HRT geodesic as v(z), 7(x), the boundary
conditions at r = +oo are

x(r=o00) ==+—, v(r=o00)=t. (6.1.6)
By symmetry, the geodesic turning point r = r, is at x =0, i.e.
z(r=r.) =0, v(r =ry) = vx. (6.1.7)

Note that both 7, and v, are functions of the boundary time t.

Since the spacetime (6.1.5) is characterized by a junction between AdS3 and
BTZ at v = 0, the general HRT geodesic can be obtained by gluing at v =0
the HRT geodesic for the BTZ BH and the one for AdSs. We denote by r = 7y
the position of such gluing points.
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6.1.1 AdS; geodesics

For v < 0, the Vaidya spacetime is the vacuum AdSs
ds® = —r?dv? + 2dvdr + r* da? . (6.1.8)

The corresponding portion of the HRT surface is given by the spacelike geodesic
at constant bulk time

r2 —r2 1 1
l‘i(?") = iT, ’Ui(’f') = 7 — ;, (619)

where (7., 7s) are functions of the boundary time ¢ and the subregion length .
We refer to (z4(r),v4(r)) and (x_(r),v_(r)) as branches 1 and 2, respectively.
At initial time ¢ = 0, the geodesic is entirely in AdS3, so a comparison with eq.
(4.2.4) gives

r(t=0)=2>. (6.1.10)

6.1.2 BTZ geodesics

For v > 0, the Vaidya spacetime is the BTZ BH

2
ds® = —r? (1 — :g) dv?® + 2dv dr + r? da?
(6.1.11)
2 2 2 dr? 25 2
=—(r*—rp)dt® + + rodz” .
r2—r

The BH event horizon is located at r = r;, = v M and the Hawking temperature
is T = ry/(27). Following [75], the geodesic equations are

—rpll = — (r2 — ri)i, rnd =i,
72 (6.1.12)

_ 2 2\ 42 2.9

1——( —rh)t +T2_T}2L+rx ,

where the dot denotes a derivative with respect to the affine parameter A\. The
constants of motion E and J are associated to the invariance under ¢ and =
translations, and can thus be interpreted as the energy and angular momentum
of the geodesic, respectively. Requiring the solution to be invariant under



SPACELIKE GEODESICS IN VAIDYA SPACETIME 155

x — —x, the spacelike geodesics satisfying egs. (6.1.12) can be expressed as [75]

xi(r):in r2—JriE\rt+ (B2 —J2—1)rir2+ J2r}
2rp P2+ Jri e rr (B2 -T2 = )22+ J2r)
(6.1.13)
1 2 _ 2
LI (J+1)2-F ’
47’h (J—1)2—E2
) 1 r2—(E+1)rit\/ri+(E2-J2-1)r2r2+ J2r}
ve(r) = =—In
- 2 P2+ (E-1) i £\/r + (B2 = J2 = 1)r2r2 + J2r}
1 _
LI W L) B
2ry, r+rh

(6.1.14)
Such geodesics represent the portion of the HRT surface in the Vaidya spacetime
for v > 0.

According to the values of F,J in egs. (6.1.13) and (6.1.14), the geodesics can
be divided into four classes, as shown in Fig. 6.1:

2

Figure 6.1: The four classes of BTZ spacelike geodesics in the parameter space
(J, E). The figure is a reproduction of a picture taken from [75].

Geodesics with E = 0 lies on t-constant slices into the bulk. Without loss of
generality, let us suppose that J > 0. As it is clear from Fig. 6.1, there are only
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two kinds of geodesics, characterized by J > 1 (region I) and J < 1 (region
IIT)." We show plots of such geodesics in Fig. 6.2:

J=2 J=01
x

04

0.2

=0.2]

-04

M (II)

Figure 6.2: Spacelike geodesics (6.1.13) in BTZ spacetime with E = 0 and
different values of the parameter J. The blue curve represents x (), while the
yellow one represents z_(r). The dotted line represents the BH event horizon,
which we set to r;, = 1.

By direct calculation, we find that the turning point r, = rq is

ro=d I (6.1.15)
Th J<1.

The geodesics in region I have minimal length compared to geodesics in region
111, so the former are eligible as RT surfaces in the static BTZ BH. As we have
already argued in Sec. 4.3, the RT surface in this scenario never penetrates
inside the BH, being ry > 7. For J > 1, the angular momentum J is related
to the boundary subregion length [ by

11 J+1\? hl
R Y = coth [ =) . 1.1
5= Iy n<J—1> , or J = cot ( 5 ) (6.1.16)

Therefore, the turning point position can be expressed in terms of [ as
Th l
ro = 11, coth ENE (6.1.17)

For generic F, there are in principle four classes of geodesics, which are shown
in Fig. 6.3. Contrary to the equal-time geodesics with E = 0, these curves
cross the BH event horizon. Moreover, if E # 0 the spacelike geodesics in egs.
(6.1.13) and (6.1.14) connect points on the spacetime boundary at different

'n the special case E = 0 and J = 1, the geodesic is singular. We shall see that this value
will be never attained in our context.
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values of the time coordinate ¢. Even though the subregions we are interested
in lies at t-constant slices on the spacetime boundary, solutions with £ # 0
are allowed in Vaidya spacetime, since they can be part of full geodesics with
equal-time endpoints.

E=-05 J=2 E=-15 J=2

0.2 0.5

~02 ' -0.5|
'

04 ! -1.0)

1 =1.5
-0 |

E=-05 J=0.1 E=-15 J=01
x

(I11) | (IV)

Figure 6.3: Spacelike geodesics (6.1.13) in BTZ spacetime with different values
of the parameters (E,.J). The blue curve represents x4 (r), while the yellow one
represents z_ (r). The BH event horizon rj, = 1 is represented by the dotted
line.

6.1.3 Joining geodesics

The HRT surface in Vaidya spacetime can be obtained by gluing together the
AdS3 geodesic (6.1.9) and the BTZ one (6.1.13,6.1.14) at r = r4. Following [75],
the requirement that the length of the full geodesic is minimal fixes the two
constants of motion of the BTZ portion:

2 _ 2
p=-VL T g (6.1.18)
2r? Th

It is important to note that (F,J) depend on the boundary time ¢ and on
the subregion length [. For fixed length [, their time dependence can thus be
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determined by two constraints on the parameters (rs,r.). The first constraint
fixes the subregion length I to be the sum of the AdS (6.1.9) and BTZ (6.1.13)
contributions. Expressing the condition as f;(rs,r.) = 0, we have

1 | 27, (r? + 7y rh) + (27“3 — r%) \/W
—1In

Ts,Tx) =
) o)+ (r )
(6.1.19)
N
+2X 5 * ],

Ts s

The second constraint is determined from eq. (6.1.14) by imposing v(rs) = 0,
and reads

2,/1- 7
1 -
Ts 2 coth(rpt) + | coth?(rut) — i

Tho 2 14,/1-5%

Unfortunately, the system of egs. (6.1.19) and (6.1.20) cannot be solved in
closed-form. In Appendix C.1 we provide analytic approximations for (rs,7.)
at small and large times ¢t. Numerical results for given values of the boundary
subregion size [ are shown in Fig. 6.4:

(6.1.20)

0.5 1.0 15 20 25 1 2 3 4 5 6

Figure 6.4: Junction point position rs (solid line) and turning point 7, (dashed
line) of the HRT geodesic in Vaidya spacetime as functions of the boundary
time t. The subregion length is [ = 5 on the left and [ = 12 on the right, and
we have set r, = 1.

At initial boundary time ¢ = 0, the HRT geodesic entirely lies in the AdS part
of the full spacetime, so rs — oo and r.(0) = 2/l. We define as thermalization
time t, the value of the boundary time at which the whole HRT geodesic enters
the BTZ part of spacetime, namely rs = r,. For ¢t > t,, the HRT geodesic
entirely lies in BTZ, so subregion volume complexity drops to the constant
thermal value (4.3.35). Egs. (6.1.19) and (6.1.20) give

t.=1/2, re(te) = 1rs(ts) =10, (6.1.21)
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see eq. (6.1.17). For I > 1/rp, we have ro — 4.

At intermediate times 0 < t < t,, the HRT geodesic crosses the shell of null

dust. It is useful to define:

L
2 )

Xi(r)ziln T2*J’I’}21:|:\/T4+(*1+E27J2)T%T2+J2T%
2rn |24 Jri £\ rr 4+ (=1 + B2 — J2)rir2 4 J2r)
1

r—7Th
4T

+ ! 1
— In
27y,

+t,

N 2= (B+ )£ /ri+ (B2 J2=1)r2r2+ J2r}
P2+ (E-1)r+\/rt+ (2= J2-1)rir2+ J%r}

(6.1.22)

in which the values of E and J are given by eq. (6.1.18). The sign of (E,J)
implies that if ry > 14/ V2 we have to consider only branch 1, whereas if
rs < 74/4/2 also branch 2 comes into play [75]. In the latter case, a part of
branch 2 connects the AdS3 geodesic to the full branch 1, which is anchored at

the spacetime boundary.

To be more precise, let us denote by r,, the minimal value of the r-coordinate

on the BTZ part of the HRT geodesic, namely

2 7”}2L 2 2 2
rm2<1E +J +\/(1—E2+J2) —4J2>,

where E,.J are again given by eq. (6.1.18).
In the case r, > rj,/v/2, the full Vaidya geodesic is

Ii’i(?”){ o lf ’I“S?“S,’Ugo,

*

+xt(r) if r>rs, v>0,

. L1 it r<rs, v<0,
’Ui(’l’): Ts r .
v (r) if r>rs, v>0.

Instead, in the case rs < 1/ ﬁ, the full geodesic is

2 __p2
Y i <, v<0,

Ey(r) = +x1(r) it r>ry, v>0,
+x(r) if rp,<r<rg, v>0,
L1 if r<ry, v<0,

4
H_
—~
E
S—
Il
R T =3

q‘(r) if r>ry, v>0,
—(r) if rp <r<rs, v>0.

(6.1.23)

(6.1.24)

(6.1.25)
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An example of time evolution of the HRT geodesic in Vaidya spacetime is shown
in Fig. 6.5, where the radial coordinate z = 1/r is adopted:

4

Figure 6.5: Time evolution of the HRT geodesic in Vaidya spacetime for
l =38,r, = 1. The black and red curves represent branch 1 and 2 in the BTZ
portion of spacetime, respectively. The blue curve denotes the AdS part of the
full geodesic.

6.1.4 Numerical geodesics

In order to render the problem of solving the partial differential equations for
the codimension-one extremal surface more tractable, it is useful to consider
a non-zero shell thickness ¢ in eq. (6.1.4). Such a choice spoils the analytic
solution for the HRT geodesic expressed in egs. (6.1.24) and (6.1.25), so we
have to numerically solve the geodesic equations:

2 1 2Am/ 2., 2 1
E (zm(v)—Jrzm(v)> - =8 - a4 (z—zm(v)) #2=0,

2z
.9 .9 s
R S S L (6.1.26)
z z z

where the dot denotes a derivative with respect to the affine parameter A and
the prime a derivative with respect to the coordinate v. The geodesics we are
interested in satisfy the boundary conditions in eq. (6.1.6), and are determined
by solving the geodesic equations (6.1.26) by means of a shooting method
implemented in Wolfram Mathematica. We have checked that in the & — 0
limit the analytic geodesics described in Sec. 6.1.3 are recovered.
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6.2 Subregion volume complexity

In this section we investigate the time evolution of the volume of the codimension-
one extremal surface anchored at the boundary segment of length [ and at the
corresponding HRT geodesic. According to subregion-CV, such a volume is
conjectured to be dual to mixed state complexity in the boundary CFT; [39].

6.2.1 Volume in AdS; and BTZ

As the HRT geodesic, in the initial stage ¢t < 0 the extremal codimension-one
surface is entirely in AdSs3, whereas in the final stage t > /2 the surface is
entirely in the BTZ part of spacetime. In this section, we will regularize the
UV divergent volume by subtracting its initial value V44g. In vacuum AdSs,
the RT surface is given by eq. (4.2.3)

N
2242t = <2> , (6.2.1)
and the codimension-one extremal surface is simply
z=t—v, (6.2.2)
with ¢ the boundary time. So, introducing a UV cutoff at z = 1/A, we get
/2 172)2 — 22
Vaas = 2/ #dz =IA—m. (6.2.3)
1/A z

As we have discussed in Sec. 4.3, after thermalization the volume is exactly the
same, i.e.

Verz = Vaas - (6.2.4)

This outcome is a hallmark of the (2+ 1)-dimensional case, and is a consequence
of the Gauss-Bonnet theorem [147]. As a result, after thermalization subregion
volume complexity returns to its initial value.

6.2.2 Inconsistency of the z-independent ansatz

We now focus on volume subregion complexity at intermediate times 0 < ¢ < [/2.
We start by parametrizing the extremal codimension-one surface as v(x,r) in
the full Vaidya spacetime. Thus, the volume functional can be written as

V= / drdzV, V=122 = r2f0,v)0,v — (0,v)2, (6.2.5)
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where f = f(r,v). Defining
Vp = Oz, v = Opv, (6.2.6)

the Euler-Lagrange equation for the volume functional reads

) v\ av
a””(av)*ar(am)_av‘o‘ (6.2.7)

Since the functional (6.2.5) is invariant under translations in z, it is reasonable
to look for z-independent solutions of eq. (6.2.7), characterized by

vy =0, Oyv, = 0. (6.2.8)

With this ansatz, if we restrict to the BTZ portion of spacetime, where f =
fBrz(r), the equation of motion (6.2.7) reduces to the ordinary differential
equation

(317 — 6r%) o/ (r)2 + (=327 + 1 + 2r) o/ (1)* =1/ (r) + 20'(r) = 0, (6.2.9)
in which the prime denotes a derivative with respect to the coordinate 7.

In the BTZ portion of spacetime, the extremal codimension-one surface we
are looking at must be attached to the spacelike geodesic (6.1.13,6.1.14).
Consequently, in order for the z-independent ansatz to be consistent, eq. (6.2.9)
must be satisfied by the geodesic itself. This is correct just for £ = 0, which
holds in static BTZ. Therefore, in the time-dependent background where E # 0,
the z-independent ansatz considered in [155] is not a solution to the equation of
motion (6.2.9) and cannot be regarded as the extremal codimension-one surface.

By the way, in the full Vaidya spacetime, the z-independent ansatz is exact
both in the initial stage t < 0 and in the final stage ¢ > [/2. Moreover, we
will provide numerical evidence that nearby these two time regimes such an
ansatz is a good approximation to the actual solution of eq. (6.2.7). So, we
refer to the configuration v(r) attached to the HRT geodesic (6.1.24,6.1.25) as
the pseudosolution. Since the actual solution is expected to be a local maximum
of the volume functional, we also expect the volume of the pseudosolution to
constitute a lower bound for the volume of the solution. We will check this
expectation by explicit numerical examples.

6.2.3 Volume of the pseudosolution

To attain an analytic lower bound to the volume subregion complexity, we
consider the z-independent ansatz for the codimension-one extremal surface.
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The total volume of the pseudosolution V is the sum of the AdS and BTZ
contributions:

= Vaas + Varz - (6.2.10)
The AdS3 part gives
7,2
Vias = -7+ 22 "% 4 9arcsin = (6.2.11)
T Ts

In the BTZ part of spacetime, the pseudosolution is given by eq. (6.1.14), in
which the plus sign corresponds to branch 1 and the minus sign to branch 2.
For both branches, the square root of the induced metric determinant reads

(r—r) (rt.)

G
r4—|—[—1+ = = S i e

h

(6.2.12)

(r)y=r

)

where we have plugged in the values for E and J given in eq. (6.1.18). Therefore,
from egs. (6.1.24) and (6.1.25) we get

R B h A x*t(r)
VBTZ—219<7"3—\@> /r drw(r)/o dx
A xT(r) Ts X~ (r)
—1—219(\/5—7“5) {/rdew(r)/o dw—i—/rm drz/J(r)/O dw} ,

(6.2.13)
in which » = A is the UV cutoff.

Summing up the two contributions, we find a closed-form expression for the
volume of the pseudosolution:

R A
V:_W+2m+2arcsinm+l/ dry(r)
Ts T

T

2 2 _n2
1 A r2—r, Ty + \/r4 + [—1 + Th(’;‘grf*) — %] rhr2 -|-r2 rh
+ — dry(r) In
Th Jr, vt 2 4 R(r3=r?) 2], 2,2 2,2
T4 TreTh 4/ —&—[ +T—¥]rhr +rery,
ra(ri=r) o2 .
Th 1 - ara JrTg/* :TL T's
+ 9 \ﬁ—rs ﬁln G — . +21 drap(r).

s

(6.2.14)
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When the subregion length is such that { >> 1/r,, the time evolution of the
volume of the pseudosolution (6.2.14) is characterized by three stages. We
here summarize the main features of each regime, deferring the details of the
computations to Appendix C.

Early times. In this regime we have

- 2 _Th TRt
=7 s = coth( 3 > . (6.2.15)

Plugging eq. (6.2.15) into the volume (6.2.14), we obtain
v t
T = At tanh% +O/1). (6.2.16)
Such an expression suitably describes the pseudosolution volume for both

rs > rn/V/2 and ry < 7,/v/2, provided that eq. (6.2.15) can be trusted. From
numerical evidence, it turns out that this is true up to a time of O(log(ryl)).

As we will see by comparison with the numerical result, at early times the
pseudosolution is a good approximation of the actual solution. In particular,
we can rely on the first order Taylor expansion of eq. (6.2.16), which leads to

1% it

T =A+ Lo/, (6.2.17)
Such an outcome is further supported by the inequality tanh z < z, in agreement
with the fact that the volume of the pseudosolution provides a lower bound to
the extremal volume. Furthermore, eq. (6.2.17) reproduces the same growth
rate of volume complexity obtained in [69] for a one-sided Vaidya BH

dv r?

— =L, 6.2.18
= 0% ( )
In our case, the divergent quantity €2y corresponds to the boundary subregion

length [ in the limit [ — +o00, describing a dual pure state.
Intermediate times, O(logryl) < t < L — 07;?13.
pseudosolution is '

The volume of the

v V;

T A+ 71 + (w = 1)n(rs) —wn(rm), (6.2.19)
where V1, @, and n(r) are defined in Appendix C.2. Unfortunately, at large [
we expect a significant deviation between the pseudosolution volume and the
extremal one. Nonetheless, the estimate (6.2.19) bounds the extremal volume
from below.
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1 053
2 Th

Late times, <t< é The volume of the pseudosolution is estimated

to be

@ TsTh(th —15)(2rs — 1)

1 OETNEEE +0(1%, (6.2.20)

=A+

v
l

see Appendix C.2 for a derivation. The volume V attains its maximum value at
rs = r,/\/2, where it scales as

% 2
max (‘;) =A+ %l . (6.2.21)

By means of eq. (C.1.7), we find the following behavior nearby the thermalization
time ¢t ~ 1/2:

l . o/a /] 1/4
rs AT (1 %h (2t>> ; %%AﬂLl(%h) <2t> - (6.2.22)

We expect the pseudosolution volume to satisfactorily approximate the extremal
volume in this time regime too, as can be directly checked from the numerical
solution which we present in the next subsection.

6.2.4 Numerical solution

Unfortunately, we do not have an analytic expression for the actual solution
which extremizes the volume functional. Therefore, in order to compute the
extremal volume involved in subregion-CV, we have to perform a numerical
analysis. For convenience, we parametrize the extremal surface as z(z,v), which
we expect to be a single-valued function.? The new volume functional is

—(2 v ) B x 2
V:/dvdxv, y_ V=020 ”fz(;’ 2) = (Da2)? (6.2.23)
where
Ze = Oy, Zy = Opz . (6.2.24)
The Euler-Lagrange equation for the volume functional is
oV oV 2%
— - —=0. 2.2
% (3295) 0 (321,) 0z 0 (6:2.25)

2The solution expressed as v(z, ) is not single-valued nearby the regions where branch 1
is attached to branch 2. This is not convenient for numerical calculations.
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More explicitly, the differential equation for the extremal solution z(x,v) reads

(2f - Zazf + 221))

z

— Zyv + sz(2zv + f) - 2Z'uzzw + (Zw)2
(6.2.26)

2
4<ZU) + 3z,

z 2z

+

with boundary condition specified by the HRT geodesic.

We have solved eq. (6.2.26) numerically using both the analytic and numerical
geodesics found in Sec. 6.1, and we have checked that all results match when o
is small enough for the numerical solution of egs. (6.1.26) to represent a good
approximation of the analytic solution in the ¢ — 0 limit.

Specifically, we have used the finite-element method implemented in Wolfram
Mathematica to solve the equations in an adaptive triangulation of the HRT
geodesic, the discretization consisting of cells with maximum size O(10~%) in
units of r, = 1. To check that our results are robust, we reproduced them
independently with a linearized iterative solver working on a regular rectangular
grid meshing the HRT geodesic.

We have numerically solved the volume equations up to r, ! = 6. Higher values
of [ are numerically challenging, because the geodesics develop sharp kinks
requiring very fine-grained discretizations in order to obtain reliable results. An
example of numerical solution is shown in Fig. 6.6:

-0.05

Az
-0.10 }

-0.15

Figure 6.6: On the left: Extremal codimension-one surface computed numerically.
On the right: Difference Az between the actual solution and the pseudosolution.
We have set [ =6, t = 1.75 and r;, = 1.

The extremal surface is not smooth at the shell, as expected from the curves
shown in Fig. 6.5. As it can be seen in the right part of Fig. 6.6, there are
significant differences between the numerical solution and the pseudosolution.

We can now study the time evolution of the on shell volume functional (6.2.23),
which we denote by V. As already discussed, we regularize the UV divergences
by subtracting the vacuum AdS volume of eq. (6.2.3). Since the volume
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divergences are time-independent, the resulting quantity is finite for every
value of the boundary time ¢. Some plots of the regularized extremal volume
are shown in Fig. 6.7, where, by comparison, the regularized volume of the
pseudosolution is also displayed. As expected, the solution has a bigger volume.
Moreover, Fig. 6.7 confirms that the volume of the pseudosolution is a good
approximation both at early ¢ ~ 0 and late ¢ ~ [/2 times. At intermediate times,
the discrepancy with the extremal volume tends to increase with [. Additionally,
as it can be seen from the picture, the extremal volume appears to be smoother
than the volume of the pseudosolution as a function of ¢. In particular, the
slope variation of the former is less pronounced than the slope variation of the
latter.
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Figure 6.7: Time dependence of the extremal volume V (in black), compared
to the volume V of the pseudosolution (in blue) for I = 2,4,5,6. We have set
rp = 1.

6.3 Discussion

In this chapter we have investigated subregion volume complexity for a boundary
line segment of length [ in (2 + 1)-dimensional Vaidya spacetime with an
infinitesimally thick shell of null matter. In order to express the holographic
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result in terms of boundary CFT quantities, we employ the relations

3 Th Th \%4

c 2G o’ BH 4G 14 G’
denoting the central charge, the final temperature and the entropy density of
the system, and subregion volume complexity, respectively. In such expressions,
the AdS radius has been set to L = 1, like throughout all this chapter. The
regularized subregion volume complexity, defined by ASCy = SCy — SCédS , is

thus given by

(6.3.1)

A 4
% - ?WCTW,\(T), (6.3.2)

where

r=2rTt, A=2rTl, Wy(r)= %

The function W, (7) is plotted in Fig. 6.8 for a few values of the parameter \:

(6.3.3)

w
08
0.6, —A=6
A=5
A=4
0.4
—A=3
—A=2

0.2

05 1.0 15 2.0 25 307

Figure 6.8: Numerical result for W as a function of 7 for some values of A.

As we have argued, both at early times 7 & 0 and late times 7 & A/2, subregion
volume complexity is well-approximated by the pseudosolution volume, analytic
expressions of which are given in Subsec. 6.2.3. In the final stage of the evolution,
the maximum value of W), is expected to scale at least as the maximum volume
of the pseudosolution (6.2.21), namely [2.
For small 7, eq. (6.2.17) implies that W) ~ 7/2. In this regime the boundary
effects are negligible, so we expect subregion complexity to coincide with pure
state complexity. Consequently, the Lloyd’s bound [108] on the growth rate
of complexity should apply. In fact, at early times we recover the result of eq.
(6.2.18)

dCV 7"%
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where M is the BH mass per unit volume. This rate matches the asymptotic
growth rate of time-independent BHs, thus it saturates the conjectured Lloyd’s
bound. Moreover, Fig. 6.8 clearly shows that in the early stage the complexity
growth rate is a decreasing function of time. Therefore, subregion volume
complexity never violates the Lloyd’s bound.

As we will see in the next chapter, entanglement entropy plays a main role
in capturing the thermalization process of a system. According to the Ryu-
Takayanagi prescription, the entanglement entropy of a boundary subregion can
be holographically computed by the area of the corresponding RT surface [9, 81].
In dynamical backgrounds, a covariant version of holographic entanglement
entropy is given by the area of the HRT surface [96]

_ Anrr
§="15 (6.3.5)

It is interesting to compare the time evolutions of this quantity and subregion
volume complexity. Holographic entanglement entropy has been computed in
[74, 75], and a plot is shown in Fig. 6.9 for various segment lengths I:

S-Sags
!

0.10 ﬁ
0.08 / —1=6

0.06
0.04
0.02

t

0.5 1.0 1.5 20 25 3.0 35

Figure 6.9: Holographic entanglement entropy of the line segment as a function
of time for different lengths . The entanglement entropy has been regularized
by subtracting the diverging entropy Saqs of the vacuum AdS. We have set
G =1 and r, = 1 for illustrative purposes.

While entanglement entropy monotonically interpolates between the value in
vacuum AdS and the thermal one, subregion volume complexity grows up to
a maximum scaling at least as [2 before going back to its initial value. This
remarkable feature, which directly follows from the Gauss-Bonnet theorem,
see eq. (6.2.4), looks rather counterintuitive from the boundary field theory
perspective and is a peculiarity of the (24 1)-dimensional case. Indeed, for black
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branes in asymptotically AdSy with d > 3 this property does not hold [146]. A
thermalization value different from the initial one has also been found in Vaidya
spacetime for d > 3 in [155], where the pseudosolution has been employed. We
expect that in the small [ T regime these calculations are correct. Therefore, we
guess that in general spacetime dimensions subregion volume complexity grows
at initial times, prior to decreasing down to a thermal value which is much closer
to the initial one than to the maximum. A possibility to heuristically justify this
behavior in the dual field theory is to interpret subregion volume complexity
as purification complexity, introduced at the beginning of Ch. 4. Statistically,
the mixed macrostate at the thermal equilibrium has a maximal amount of
associated pure microstates. Thus, having at our disposal a big community of
target states, it is reasonable that the minimal complexity is small, due to the
large number of samples. By contrast, far away from the thermal equilibrium
the number of microstates describing the target density matrix is much smaller,
so it is not surprising that the minimal complexity is larger.

We conclude by remarking that we were able to numerically compute subregion
volume complexity just for 7,1 < 6. However, Fig. 6.7 shows that the discrepancy
with the pseudosolution volume becomes increasingly important as [ grows.
Therefore, we were not able to check a property conjectured in [155, 187],
according to which at intermediate times and large [ subregion volume complexity
linearly grows with a lower slope compared to the early times one. Since such
a behavior is displayed by the volume of the pseudosolution, which provides
an unreliable approximation at intermediate times and large [, this proposal
should be revisited.



Chapter 7

A falling magnetic monopole
as a holographic local quench

This chapter is mainly an adaptation of the published article [188]. Some details
are taken from [189], such as Fig. 7.14.

Quantum quenches are well-known examples of out-of-equilibrium processes,
allowing us to investigate the thermalization of quantum systems following an
injection of energy or a change of coupling constants. In the previous chapter
we have focused on global quenches, characterized by a spatially homogeneous
perturbation. By considering their gravitational realization, corresponding to
the formation of a BH in AdS, we have studied the time evolution of holographic
quantities such as the entanglement entropy and subregion volume complexity.

Due to the homogeneity of the perturbation, it is unclear how entanglement
spreads during a global quench. A more transparent model in which to address
the problem is a local quench, triggered by a perturbation localized in a finite
region. In CFTs, a local perturbation can be concretely introduced by joining
two initially decoupled field theories and evolving with a translation-invariant
Hamiltonian [58, 190] or by splitting the initial system into two disconnected
pieces [191]. Alternatively, one can act with local operators on the vacuum
state and study the evolution of the excited state [60, 192-194].

In this chapter we focus on the last sort of quench, which is known to be
holographically equivalent to the free fall of a massive particle-like object in
higher dimensional AdS [76]. In particular, we look at the fall of 't Hooft-
Polyakov monopole [195] in AdS4 as a model of CFT3 local quench induced by

171
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the insertion of a condensate, which breaks the SU(2) global symmetry of the
theory. In order to build the falling solution, in Sec. 7.1 we start from a static
monopole in global AdS,. Then, in Sec. 7.2 we map the static configuration in
global AdS, to a dynamic one in Poincaré AdS,. To unveil the dynamics of the
process, in Sec. 7.3 we compute the expectation value of some local operators,
including the holographic energy-momentum tensor, and in Sec. 7.4 we evaluate
the holographic entanglement entropy. Drawing a comparison with the same
quantities characterizing the quench dual to a falling BH [76, 196, 197], we
discuss to which extent the quench physics is affected by the choice of the falling
particle. Some technical details are addressed in Appendix D.

7.1 A static monopole in global AdS,

Prior to describing a falling monopole in AdS spacetime, we build a static
solution in asymptotically global AdS. As in [198], we consider a (3 + 1)-
dimensional theory of gravity coupled to an SU(2) gauge field and a massive
adjoint scalar, with action

1

S:/d4x\/jg {wna (R—2A)+ L (7.1.1)

in which £j; is the matter Lagrangian
1 1 m?
Ly = _ZF’(‘I"FGW — §DH¢GD“¢“ — 7q{>“¢“. (7.1.2)

The cosmological constant and the scalar mass are given by

3 2

where the mass is chosen ad-hoc for reasons that will be clear later. In eq.
(7.1.2), F,, = F{, 04/2" represents the non-abelian field strength of the SU(2)
gauge field A, = A, 0,/2, i.e.

FY, = 0,A% — 0,A% + ee®™ AD AL, (7.1.4)

with e the Yang-Mills coupling.
The covariant derivative acts on the adjoint scalar as

Du¢a = ,u‘d)a + e €abcAZ¢c . (715)

IWe denote by o, the SU(2) Pauli matrices.




A STATIC MONOPOLE IN GLOBAL ADS4 173

The gauge field, scalar field and Einstein’s equations are

DFFS, —ee™¢"D,¢ =0,  g"D,D,¢* —mio" =0,

%
) (7.1.6)
R, — iRgl“, +Agp =81G T,

where D,, is the combination of the gravitational and SU(2) gauge covariant
derivatives, and T}, is the bulk energy-momentum tensor

Ty = Do Dy + Fopa ) + 9 Lns - (7.1.7)

We take as a background global AdS,, whose metric can be read from eq. (2.1.5):

dr?
2

ds® = L* —(1+r2)d72+1+r

+ 1% (d6® + sin® 0dp?) | . (7.1.8)
According to the AdS/CFT correspondence, the gravitational theory in global
AdS, is dual to a CFT3 living at the spacetime boundary r — +o0o. Each bulk
field is associated to a boundary operator, whose VEV and source are dictated
by the boundary expansion of the bulk fields themselves. In this setup, the bulk
scalar field ¢* is dual to a global SU(2) triplet of operators O%, while the bulk
gauge field Af is dual to the global SU(2) currents Jj, see eq. (2.1.29).

First, let us consider the scalar bulk field ¢®. At large r, the field has the
following expansion

a aa 5&
In the holographic framework, the parameters Aj s are interpreted as the
dimensions of the VEVs and sources of the operators O® dual to the scalar
triplet ¢®. For our choice of mass in eq. (7.1.3), we have

Ar=1, A,=2. (7.1.10)

In accordance to Fig. 2.3 for d = 3, for a scalar mass mj = —2/L? both A,
and Ay are above the unitarity bound. For this reason, we have at our disposal
several valid boundary conditions:?

e The Dirichlet quantization, where a® corresponds to the source and 8¢ to
the VEV of the boundary field:

Jo =a®, (0% =pB". (7.1.11)

2The subscript in the operator O% refers to its dimension.
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e The Neumann quantization, where — 3% corresponds to the source and a®
to the VEV:
Jy =—-p8%, (0% = a”. (7.1.12)

o The multitrace deformation [199-203], where (Of) = a® and the boundary
field theory is deformed by the action term

oOF

— oo (T113)

Sr = /d?’x\/—h [JEa® + F(a®)],  JE=-p8°
with F an arbitrary function. Requiring the theory to be isolated, or
equivalently J% = 0, we get

OF

C das

g =

(7.1.14)

We point out that, among the three possibilities, the only way to obtain a non-
trivial monopole solution with no source for the dual operator is the multitrace
deformation satisfying eq. (7.1.14).

Regarding the gauge field Aj, the large-r expansion modes have dimensions
Aﬁz = 0,1. In this case, we can only interpret the source for the dual SU(2)
currents to be the coefficient of the leading-order mode, which we set to zero.
Such a condition, together with eq. (7.1.14), is necessary for the boundary CFT
to manifest a spontaneous, rather than explicit, breaking of the SU(2) global
symmetry.

7.1.1 Monopole solution in the probe limit

Global AdSy solves the Einstein’s equations (7.1.6) in vacuum. However, the
matter fields backreact on the geometry, spoiling the vacuum solution. As a
preliminary step, we can neglect the effects of backreaction working in the G — 0
limit, which decouples the Einstein-Hilbert action from the matter contribution
in eq. (7.1.1). In this approximation, a monopole solution can be built by a
generalization of 't Hooft-Polyakov ansatz in global AdS, [198, 204, 205]:

1 . .
o = ZH(r)n“ , = F(r)r eFpko nt, (7.1.15)

where z! = (r,0, p) and n* is the unit vector in S? spherical coordinates:

n¥ = (sin @ cos ¢, sin @ sin p, cos ) . (7.1.16)
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Plugging the ansatz into the equations of motion (7.1.6), we obtain

s 7F,2(1 + 2r?) a2+ 2r2 + 3erF — e2r?F? el —erF)
r(1+172) r2(1+1r2) r(l+7r2) "’
o _H,2(1 +2r?) (1—erF)>  2H
B r(1+41r2) r2(1+7r2)  147r2°
(7.1.17)

Regularity of the solution requires that both H(r), F(r) ~ r at r = 0. On the
other hand, the boundary conditions at » — 400 can be fixed depending on
the dual CFT we want to describe. Such a choice is encoded in the coefficients
(am,Bu,ar, Br) appearing in the near-boundary expansion of the scalar and
gauge fields:

H(T)ZQTH+72+..., F(r):CMTF+72+.... (7.1.18)

As we have argued above, we set arp = 0 in order to avoid an explicit breaking
of the SU(2) global symmetry in the dual CFT, as in [198]. Instead, to obtain
a non-empty AdS background, we look for solutions with non-vanishing ay
and Bg. Once that ay is fixed, Sy is determined by imposing the solution to
be smooth. We stress that the monopole magnetic flux is independent of the
boundary conditions, see Appendix D.1.

At the leading order in the gauge coupling e, egs. (7.1.17) are solved by

-1
Hr) = ag {1_ tan r} ,
r r
(7.1.19)
ea 2 2 2 1,32 2 1
F(r)= 165 [72r* —4 (r* +1) (tan~ ' 7)? — (7> —4) rtan™" 1] ,
which entails the following coefficients
s 127 — 73
Bu = 5o, Br = eay 33 (7.1.20)

The solution (7.1.19) is also valid for arbitrary e, provided that ay is sufficiently
small.

At higher order in e, we must solve egs. (7.1.17) numerically. To this purpose,
it is convenient to introduce the compact variable i defined by

r=tany. (7.1.21)
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The resulting equations of motion are

. e2F3 + F (e?H? + 2 cot®(¥) — 2) — 3eF? cot(¢) — cot () (eH? + 2F")
cos? 9 ’

H (e?F?tan(v)) — 2eF + 2cot(2¢)) — H'
sin(21)) ’

H" =4
(7.1.22)

In Fig. 7.1 we show an example of numerical solution, while in Fig. 7.2 we plot
the values (ay, Sg) for various numerical solutions:

w L L h w
05 1.0 15

Figure 7.1: Numerical solutions for H () and F(v) are shown in black. As a
comparison, the analytic approximations in eq. (7.1.19) are shown in blue. We
have set e = 1, ag = 1.

— e=05

—e=1

— e=2

Figure 7.2: Allowed values of the coefficients (ay, Sg) for different values of e.
The relation in eq. (7.1.20) is satisfied for small e.
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7.1.2 Monopole backreaction

Considering the monopole backreaction, we can take the spherically symmetric
solution to the Einstein’s equations

ds* = L* |— (1+7%) h(r)g(r)dr® + h(r) _dr® + 7% (d6® + sin® 0dyp?)
g(r) 1+
(7.1.23)
In order to recover asymptotically global AdSy, we require that
rlggo h(r) = rlggo g(r)=1. (7.1.24)
The full set of equations of motion in this background is
o _F,2(1+2r2) g (F L _H2€(1 —erF)h
r(14r2) g \r r(141r2) g
YR S P (=2 + 3erF — e*r’F?)
ROl |
2 / _ 2
oY — gy 20+2r%) g\ A —2H(1 erF) 2H ’
r(l14+r2) g r2(1+72) 1472
,  4nG 2H?[(2—erF)erF +1r? —1] — F2(2 — erF)? 1+ 3r2 (h—g)
= r(1+172) r(r2 4+1) 9
8nG ., (r (F+rF')?
I _(H' 2 .
h 2 h (2( )+ "

The asymptotic form of the equations of motion fixes the large r expansions

ha | hs 4 92 | 93 4
hr)=1+ 5+ 3 +001/rY),  gr)=1+ 75+ 3+0(1/r"), (7.1.25)

with
B 167G

2rGa?
g = —hy = 3 7 hs = 37@},5}1. (7.1.26)

The unfixed parameter g3 can be found by requiring the solution to be smooth.

To analytically solve the equations of motion, it is useful to introduce the
expansion parameter
G a
1.2
At the leading order in e and ¢, the H(r) and F(r) solutions are still given by
eq. (7.1.19). The leading order backreaction on the metric instead gives

h(r)=1+¢€h.+ 0(62) , gry=14¢€g.+ 0(62) , (7.1.28)

(7.1.27)

€ =
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where
, 4 2 2 (r? — 1) rarctanr + (r* 4 1) arctan®r
he =7 — — — — ,
r2  r241 rd
1 2rarctanr + 3 2
2
e = — — 1— 7.1.29
ge=m+ r2 r2 < 1+ 1“2) ( )
2(r* —1)arctanr +r (3r2 +4
— 2arctanr ( ) 7 ( ) .
r
These solutions set 2 02
107 G agy
= — H 7.1.30
g3 372 ( )

The profile functions at higher order in e and € are again accessible by numerically
solving the equations of motion. As in the probe limit, it is convenient to
introduce the variable ¢ = arctan r, getting the following equations of motion

1
F" == [—ecscipsect) (3F% + H?) h+ e*sec® ¢ F°h — F' (2g cscpsectp + g')
g
+F (h (2csc® ¢ + €2 H? sec® 1) — sec ) (2g sec ) + ¢’ esc)))]
1
H" = = [2hH (csc®p — 2eF cscipsecy) +sec® ¢ (—1 4 2 F?))
g

— (29 cscpsecy +¢') H']

2
= z—fh [2(F cscz/;secv,/)+F’)2—|—H’2} sin 29,

g =tan (3 + cot? z/;) (h—g)+ 417;—2Ghtanz/1 [—F2(—2 cot i + eF)?

+2H? — 2(cotyp — eF)*H?] .
(7.1.31)
In Fig. 7.3 we show a comparison between the numerical and the analytic
solutions.
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Figure 7.3: Numerical solutions for the metric functions h(y) and g(¢) are
shown in black. As a comparison, the analytic approximations in eq. (7.1.29)
are shown in blue. We have set e =1, ag =1, L=1and G =0.1.

7.2 A falling monopole in Poincaré AdS,

The gravity dual of a CFT local quench is the free fall of a particle in AdS [76].
To obtain such a solution, we employ the nice trick introduced in [206]. The
idea is to map a spherically symmetric asymptotically global AdS geometry
to a time-dependent asymptotically Poincaré AdS geometry by performing a
change of coordinates.

The empty Poincaré AdS, metric with coordinates (¢, z, x, ) is
LQ
ds® = — (dz® — dt* + da® + 2*de?) . (7.2.1)
z

The metric in eq. (7.2.1) and the global AdS metric in eq. (7.1.8) can be
mapped into each other via the coordinate transformation

A2 2 2_t2 t
V1+7r2cosT = te e , V1+rZsint=—,
z

2Az

(7.2.2)

2 2 _ 42 _ »2
rsin@zf, rc059:Z+x t ,
z

2A z

leaving the angular coordinate ¢ unchanged. The transformation can be inverted,
leading to

VAT 2A2(12 4 2% — 22) + (22 + 2% — 12)2
"= 24z ’

2At
T = arctan , (7.2.3)

22+.§C2*t2+A2

0 = arctan 24z
- 222 A%)
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As a result of the change of variables in eq. (7.2.3), a static particle centered
at r = 0 in global AdS is mapped to a falling configuration in Poincaré AdS,

following the curve
x=0, z=t2+ A2, (7.2.4)

In the point-like approximation, eq. (7.2.4) represents the particle trajectory.
Note that this holographic model is symmetric under time reversal t — —t:
for ¢t < 0 the particle approaches the spacetime boundary z = 0, whereas for
t > 0 it moves towards the bulk interior. From the CFT perspective, the initial
condition at t = 0 corresponds to the initially perturbed state prepared by the
insertion of an appropriate operator. The parameter A, which on the gravity
side specifies the initial position of the falling particle along the z-direction,
fixes the size of the perturbed region in the boundary field theory.

In the remainder of this chapter, we apply this general setup to the monopole
solution discussed in Sec. 7.1.

7.2.1 Bulk energy density of the falling monopole

Based on the above discussion, one may be tempted to treat the magnetic
monopole obtained by the mapping (7.2.3) as a point-like particle falling along
the trajectory of eq. (7.2.4). The bulk energy-momentum tensor (7.1.7) helps
us out in checking this intuition.

For simplicity, we neglect the monopole backreaction and we perform the
coordinate change (7.2.3)

o= (1,r,0,0) =2t =(t,z,x,p). (7.2.5)
After the mapping, the energy-momentum tensor in Poincaré AdS is given by

, ozt Ox¥

To extract physical quantities from the tensor, we express it in the vierbein
basis e# :
T (2) = elel Tl (2') b€t gl = Thun (7.2.7)

mcn * pv

where gl’“, and 7,,, are the Poincaré AdS and the Minkowski metric tensors,
respectively. We specialize to®

egz(%,o,o,o), ef:(o,%,o,o), %:(0,0,%,0).(7.2.8)

3In this section, the Minkowski indices m, n take the values 0, 1,2, 3, while the curved
spacetime indices are t, z, z, ¢.
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The energy density measured in such an orthonormal frame is

/00 Zz /
p=T""= 25T, (7.2.9)
and the components of the Poynting vector 5= (s, 55, s,) are
—T’Ol——Z—QT' —T’OQ——ZiT' =0 (7.2.10)
s, = =13 i Sy = =72l 5, =0. 2.

Figs. 7.4 and 7.5 display numerical results for the energy density and the energy
flux into the bulk spacetime at fixed time.

t=0

Figure 7.4: Contour lines of constant energy density for fixed time. The
monopole center is represented by the black spot. The numerical values A =1
and L = 1 have been chosen.

The pictures clearly show that the monopole behaves as a point-like particle
only at early times. Namely, at ¢ = 0, as all the components of the Poynting
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Figure 7.5: Direction of the bulk Poynting vector for fixed time. The numerical
values A =1 and L = 1 have been chosen.

vector vanish, there is no energy flux. Then the energy density, initially localized
nearby the AdS boundary, propagates along a spherical wavefront. We will
shortly see that this mimics the spread of the perturbation from the excited
region in the boundary CFT.

7.3 A holographic local quench

Having established the gravitational model for a local quench, we now turn
to the boundary CFT interpretation. In particular, we exploit the AdS/CFT
correspondence to investigate the expectation values of local operators such
as the scalar triplet O%, the global SU(2) currents J;, and the holographic
energy-momentum tensor. As we will discuss, the physics of the boundary CFT
is crucially influenced by the choice of boundary conditions on the bulk scalar

field ¢*.

7.3.1 Boundary conditions for the scalar

We start our analysis by exploring the near-boundary behavior of the bulk
scalar field. In global AdS, the direction n® of ¢* in the internal SU(2) space is
given in eq. (7.1.16): n® = (sin f cos ¢, sin § sin @, cos #). Upon performing the
coordinate transformation (7.2.3), the direction of the bulk scalar nearby the
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Poincaré AdS boundary z = 0 becomes

1

a m(

—2Az cos p, —2Azsinp, A* + t* — 2%) + O(2?), (7.3.1)

where we have defined the quantity

Wz, t) = A* 242 (2 + %) + (£ — 2?)°

(7.3.2)
To get an idea of the spread of the perturbation, we can think of the quench as
having an expanding core located at

r=\t2+ A2, (7.3.3)

which, at late times, can be appreciably approximated by the lightcone of the
origin x = ¢. At the core of the quench (7.3.3), the bulk scalar field ¢ = ¢%c®
points in the direction

n=n%"=—(01cosp+ ogsinp). (7.3.4)

So, at late times the n® component vanishes on top of the lightcone. From
Fig. 7.6, bearing in mind that n®n® = 1, we deduce that the scalar field points
along the o3 direction inside the lightcone and along the —o3 one outside the
lightcone. Therefore, at large time we end up with two regions of vacuum (inside
and outside the lightcone) separated by an expanding shell of energy. From
the boundary expansion of ¢%, we will see that the absolute value of the scalar
field is peaked at the core (7.3.3) and is almost zero both inside and outside
the lightcone.

Figure 7.6: Near-boundary value of n? as a function of (t,z) for A = 1. Negative
values of the radial cylindrical coordinate x correspond to ¢ — —.

Let us now investigate the VEV and source of the local operator O%, which can
be extracted from the boundary expansion of the bulk scalar field ¢®. From eq.
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(7.2.3), the global AdS radial coordinate at z = 0 reads

1/2
7"=%+0(Z), a=w2—A. (7.3.5)
Consequently, the boundary expansion of H(r) is

_an | P 3y~ . 5
H=—=+"3+00") =auz+puz"+0(z"), (7.3.6)

where ) ; P

- ap 2 ~ I 4

OéH:TZOéH wl/2’ ﬂH:aﬁ:ﬂHT- (7.3.7)

A plot of @&y and By is shown in Fig. 7.7:

Figure 7.7: The quantities dz (on the left) and 3z (on the right) as functions of
(t, ) in the small backreaction limit (7.1.20). Negative values of  correspond
to p = —p. We have set A =1, ag = 1.

Interestingly, R
br _Pu_ (7.3.8)
O O

where £ is a constant. In the limit of negligible backreaction, the value of such
a constant can be directly read from eq. (7.1.20)
T

A= (7.3.9)

Combining egs. (7.3.1) and (7.3.6), the expansion of ¢* nearby the Poincaré
AdS boundary is
H(z)

a __ a_]' ~a na 2 3
" =——n —f(a 2+ 0022+ 0(2%) (7.3.10)

with &% = n%y and % = n®By. As for the global AdS case, the scalar field
¢® admits several boundary conditions:
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o The Dirichlet quantization, where G* corresponds to the source and 3 to
the VEV of the boundary field:

Js=a%, (0% =pe. (7.3.11)

« The Neumann quantization, where —3% corresponds to the source and &*
to the VEV: ~
Jy =—-8%, (0% =a“. (7.3.12)

o The multitrace deformation, where (O¢) = &* and the boundary field
theory is deformed by the action term

Sy — / FovThJeas + F@a®)], Ji=—-g -2 (7313
Ja!
with F an arbitrary function.

In general, all quantization choices enforce external time-dependent sources.
However, for the multitrace deformation with

Fo(@®) = ,g (@*a*)*? = fga?;, (7.3.14)

the boundary field has no source, since

. OF,
C= - 3.1

gm0 (7.3.15)
as can be checked from eq. (7.3.8).
7.3.2 The boundary global currents
The boundary expansion of the bulk gauge field (7.1.15) contains

o Br —2\ Br 2
F(T)r—ap+7+(’)(7‘ )—ap—l—?z*—l—(’)(z) (7.3.16)

Thus, setting ap = 0 as in Sec. 7.1 causes the gauge field Aj to vanish at
the Poincaré boundary z = 0. In other words, if the sources for the global
symmetries are set to zero in global AdS, they still vanish after the change of
coordinates leading to Poincaré AdS.
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From the order z terms in the boundary expansion of A} we extract the following
expectation values of the three global currents J*:

8A%Bk . 1 . 1
(JH = 7 (tm sinp, =5 (A* 4+ t* + 2%) sin g, —5 (A +t* — 2%) cos <p> ;
8A2B; 1 1
9y _ 8APF [ 1o 2, 2 1 2,2 2\ .
(JB) = TE ( ta:cos<p,2(A + 1% + z%) cos g, 21:(A +t x)smap) ,
8A%fp
<‘]l3> = W3/2 (0’ 07 _AxQ) )

(7.3.17)
where ! = (t,x,¢) are the boundary coordinates, and a = 1,2,3 is the SU(2)
global index. A plot of the charge density component J? is shown in Fig. 7.8:

Figure 7.8: Charge density of the second component in the SU(2) space J2
as a function of (t,z) for ¢ = 0 (positive z) and ¢ = 7 (negative z), in the
small backreaction limit of eq. (7.1.20). The peak and the pit correspond to
positive and negative global charges, which are taken apart from each other by
the quench. We have set A=1, ag =1and e = 1.

Remarkably, in the SU(2) space the expectation value of the global current is
always orthogonal to the direction n® of the scalar field expectation value:

(JHyn®=0. (7.3.18)

So, the quench breaks all the three global symmetry group generators. This
happens just on top of the approximate lightcone of eq. (7.3.3). Inside and
outside the lightcone both the scalar and the current expectation values tend
to zero, thus the SU(2) global symmetry of the boundary theory is unbroken.
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7.3.3 The boundary energy-momentum tensor

One of our purposes is to probe how the features of the falling particle in
the bulk spacetime influence the boundary quench. To get an insight, we will
compare the holographic model of a falling monopole with the model of a falling
BH studied in [76]. From now on, we refer to the former as monopole quench
and to the latter as BH quench. In this subsection, we compute the holographic
energy-momentum tensors in both models, finding out that proper boundary
conditions on bulk fields exist for which they coincide up to a scaling factor.

We first consider the BH quench. A BH in global AdS, can be seen as a static
particle located at r = 0, whose effect on the background geometry is known
exactly. In particular, the spacetime metric with backreaction is

M dr?
ds* = L* l <1 +1r? - T) dr’ + Hrﬁ + 7% (d6? + sin® 0dp?) |
(7.3.19)
in which M is a dimensionless parameter proportional to the BH mass
1ML
=—-—. 3.2
meH =55 (7.3.20)

As usual, by applying the change of variables in eq. (7.2.3) the static BH in
global AdS is mapped to a falling BH in Poincaré AdS. Then, the holographic
energy-momentum tensor [207] can be obtained by putting the resulting metric
in the Fefferman-Graham (FG) form. Details of the calculation are deferred to
Appendix D.2.1, where expressions for all the components of the holographic
energy-momentum tensor are also given, see eq. (D.2.7). The energy density is

T(BH) B A3L2M w + 6t2$2
tt -

— 7 (7.3.21)

a plot of which is represented in Fig. 7.9. The picture reveals that at time ¢ = 0
energy is injected in a spherical region of radius A centered in z = 0. As time
passes, the perturbation propagates into the system while being quenched. The
energy-momentum tensor turns out to be conserved and traceless, and the total
energy of the boundary system is

+o0 L
gBH) _ o / TBH) ¢ gy — Smsi . (7.3.22)
0

The monopole quench requires a more accurate discussion, since the holographic
energy-momentum tensor depends on the boundary conditions on bulk fields.
Let us treat the problem in the Dirichlet quantization, covered in [208]. Starting
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Figure 7.9: Energy density of the CFTj3 interested by the local quench dual to
a falling BH. We have set A=L =M =1 and G =0.1.

from the backreacted metric (7.1.23), we perform the coordinate change of eq.
(7.2.3). The expression of the intermediate metric is a bit cumbersome, so in
Appendix D.2.2 we just specify the coordinates expansion that puts it in the
FG form. All the non-vanishing components of the energy-momentum tensor
T,(n[T)L) extracted from this metric are given in eq. (D.2.10). The energy density is

A3
Tt(tD) = 3rC w2 [487TGOZHﬁH z2t? + (8nGayfu — 3ggL2)(OJ + 6t21'2)]
- 5 3w+ 26222
~ 27TOéHA W 5

(7.3.23)
where in the second line we have inserted the analytic approximations of egs.
(7.1.20) and (7.1.30), which are valid for small backreaction. In this limit, the
total energy is

2

+o0 2 2
Dy _ (D) _may 2t

which decreases in time. The non-conservation of energy motivates us to
investigate a different quantization.

A change of the quantization condition produces a shift of T, 7251) by finite parts
[203]. Here we specialize to a class of multitrace deformations that do not break
the SU(2) global symmetry. Recalling that G* = n®ay and f* = n®By, we can
express the source as

Jo =ntJr. (7.3.25)

As a function F parametrizing the multitrace deformation we choose

F(a%) = F(a°a%) = Flan) . (7.3.26)
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The current can be written in terms of &y and BH as
Jr =By — F'(ay). (7.3.27)
The energy-momentum tensor is (see Appendix D.2.3 for further details)
Ti(j]:) = Ti(jD) +ni;[F(an) — anbu — F'(an)an], (7.3.28)

with 7;; the metric tensor at the spacetime boundary. This result also applies to
the Neumann quantization, which can be realized as a multitrace deformation
with F = 0. If we instead specialize to F = F,, see eq. (7.3.14), the external
source vanishes and the energy-momentum tensor is conserved. Moreover, an
explicit computation reveals that the energy-momentum tensor has the same
functional form as the one for the BH quench:

(k) _ MM T4(-BH) s = 167TGO¢HBH73L293

A — = 3.2
ij mpm ij ) A 6LG ) (73 9)

where mj; is the monopole mass. In the space of parameters we have explored,
mys turns out to be positive. Thus, the spreading of the perturbation in the dual
CFTjs is still described by Fig. 7.9. In the small backreaction limit, inserting
the analytical values of eqs. (7.1.20) and (7.1.30) we find

ma? wlL

The total energy is
o0 L
glw) — Qﬂ/ T\ de = - (7.3.31)
0

As apparent from eq. (7.3.29), the energy-momentum tensor is not a probe
enough precise to distinguish between a falling monopole and a falling BH into
the bulk. In the next section, we will see that the holographic entanglement
entropy does the job.

7.4 Holographic entanglement entropy

In this section we examine the holographic entanglement entropy, which turns
out to be a better non-local probe of the bulk geometry. To study the effect
of the leading order backreaction on this quantity, it is convenient to use the
€ defined in eq. (7.1.27) as an expansion parameter. We will find that the
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corrections to the entanglement entropy due to the classical backreaction are of
order a2, where
L?1
2
Qg =€——. 74.1
H G ( )
In the limit of extremely small €, bulk quantum corrections [209] can be of
the same order of magnitude as the ones due to classical backreaction (see for
example [210]). In this section we will focus on a regime in which quantum
corrections are negligible. For this to be true, we first fix a sufficiently small €
in order to justify the leading order calculation of the backreaction. Then, we
choose )
L 1
— > - 7.4.2
o> (7.4.2)

in such a way that the classical bulk contributions dominate over the quantum
ones, which are of order (L?/G)". This implies a large monopole mass, i.e.
mpr > 1/L, see eq. (7.3.30). Equivalently, the dual local operator triggering
the quench has a large operator dimension, as in [60]. In order to trust our
analytic approximation for a sufficiently large a%;, we need to pick a sufficiently
small gauge coupling e, as discussed below eq. (7.1.20).

The asymptotically global AdS metric at the leading order in € is

d—SQ——(1+ H1+e(he+g)]dr® + 14+ e(he — )]Lﬁ
L ' ST eI (7.4.3)

+72(d6? + sin? 9dp?)

where h. and g. are defined in eq. (7.1.28). To investigate the evolution of
holographic entanglement entropy during a local quench, we apply the change of
variables in eq. (7.2.3), obtaining a time-dependent background. The resulting
metric tensor can be written as

G oy
12

g =92 +egt) +0(&), €= (7.4.4)
The RT prescription teaches us that holographic entanglement entropy for
boundary subregions is related to the area of extremal codimension-two bulk
surfaces, which can be parametrized as z* (y*). The induced metric on such
surfaces is

Oxt Ox”

ay” g

Expanding as a power series in € we get

Gaﬁ = (745)

i
Gop = GO +eG) 1 0(2),  G¥) =270 o

o8 = gyrggrti s k=01 (T46)
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It is important to note that, at first order, it is enough to work with the
unperturbed RT surface z* (y*), which simplifies the computation a lot. The
change of area of the RT surface due to the leading order backreaction can be
calculated by expanding the induced metric determinant in the area functional.
The first order term of this expansion is [76]

AA = g/dzy VGO Tr [G<1>(G<°>)—1] : (7.4.7)

From the boundary theory perspective, the leading order difference in
entanglement entropy between the perturbed state and the vacuum is

proportional to eq. (7.4.7)

AA
AS =25 (7.4.8)

We will explore this quantity for various subregions in the boundary system.

7.4.1 Disk centered at the origin

We start by taking a spherically symmetric boundary subregion, namely a disk
of radius [ centered at x = 0 and lying at constant time ¢. The corresponding
RT surface in unperturbed Poincaré AdSy is the half sphere

z =12 —a?, (7.4.9)

at constant bulk time ¢. From eq. (7.4.7) we obtain

AS(l,t) = mtajy 1 [ (he —go)o* w(b.t) de, (7.4.10)
’ 4 1 Jo (12— 22)%? (A2 — 12 +12)° + 44222 o

where w is defined in eq. (7.3.2). The functions h. and g. depend on the
coordinate r, which on top of the RT surface reads

1 (a2 ey aaze?
24 12 — 22 '

r (7.4.11)

The A dependence of the entropy can be completely reabsorbed by rescaling
the quantities [, x, t as

l T t
= — — — t— —. 7.4.12
A T A A (7.4.12)
For this reason, the numerical analysis has been performed for A = 1 without
loss of generality. Some results are shown in Fig. 7.10. We find that AS is
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as as

0s — 12025 s — t=0
— I=1.2 —_—t=2
—_— =2 — t=5
-1.0 — =5 -1.0 — t=8

Figure 7.10: On the left: Time dependence of AS for a spherical subregion
with fixed radius [ centered at the origin of the quench. On the right: AS as a
function of [ at fixed time ¢. The numerical values oy = 1, A = 1 are used.

always negative, meaning that the perturbed entanglement entropy is always
smaller than its vacuum value. This counter-intuitive property can be explained
by thinking of the quench as a process triggering the condensation of the scalar
operator (thus breaking a global symmetry on the boundary, as in holographic
superconductors [8]) in an expanding spacetime region. A lower entropy fits
with the intuition that, due to condensation, the number of degrees of freedom
decreases compared to the vacuum [211], for which the expectation value of the
scalar operator vanishes.

Analytic expressions for AS can be found in some regimes. Nearby the boundary
r — 400, we can employ the expansions

2 2
== +s  Ge= gt (7.4.13)

Since the minimal value of r on the RT surface is given by eq. (7.4.11) evaluated
at & = 0, the approximation (7.4.13) is valid in the whole integration region
involved in the AS computation if

|A% + % — 12| > 2IA. (7.4.14)

With this assumption, eq. (7.4.10) explicitly gives

Al w(l,?) 2Al 1
( D) + 1Al )arctanh (w(l,t)) — 21 . (7.4.15)

The condition (7.4.14) is satisfied in various situations:

AS = —n?a¥,

e Small radius, | < A:

8 A%?
AS=——7n%a% ——— . 4.1
S 37 o Az )2 (7.4.16)
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o Large time, t > A and t > I

12 A2
AS = —§7r2 ay — (7.4.17)
e t=0and !> A:
8 5 o A?

Remarkably, for given (I,¢), the RT surfaces (7.4.9) in Poincaré AdS are mapped
by the transformation (7.2.3) to 7-constant surfaces in global AdS. Such surfaces
are attached at the boundary » — oo to a circle with constant 8 = 6y, with

2A1
00(171;) = arctan (l2—t2—A2> y (7419)
corresponding to a parallel on the S? boundary. Consequently, the RT surface

is uniquely fixed by the combination of parameters appearing in eq. (7.4.19),
and the same holds for AS(l,t).

Among the RT surfaces obtained by a mapping to global AdS, the ones satisfying

I =1y =/t2+ A2 (7.4.20)

are special, since they lie at constant § = 7/2 and at r — oo are attached at
the equator of S2. Due to symmetry, we conclude that such surfaces has either
the maximal or the minimal area variation AA. In the monopole quench, we
know that AS is negative and close to zero for both small and large . So, we
expect that [ = [y is a minimum of AS, as confirmed by the numeric plots in
Fig. 7.10. For [ = [y, the exact value of AS is

m2a2, [ r w2 a2
ASy = AS(ly) = H/ he — g) ————=dr ~ —T—H (7421

where the last equality is valid for small backreaction and
T=6r—12—8n5(2) +14¢(3) =~ 0.658. (7.4.22)

In this expression, 8(2) ~ 0.916 is the Catalan’s constant and ( is the Riemann
zeta function. At t = 0, the disk with radius [ = [y coincides with the region
perturbed by the operator insertion. Then, the disk expands as the core of
the quench, see eq. (7.3.3). At large t, the causality bound on the speed
of entanglement is met, and both the disk and the perturbation expand at
approximately the speed of light. Such a picture heuristically explains why
this particular subregion has a time-independent and maximal deviation of
entanglement entropy with respect to vacuum: entanglement spreads with
matter.
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7.4.2 Translated disk

We now translate the disk subregion, shifting its center from the initially
perturbed region. For convenience, we introduce Cartesian coordinates

T = (x1,22) = (rcosp,xzsingp) . (7.4.23)

The subregion we look at is a disk of radius [ centered at (x1,z2) = (&,0) and
lying at constant time ¢. The corresponding RT surface in unperturbed Poincaré
AdSy is the translated half sphere

z= \/12 — (1 —€)° —a2. (7.4.24)

In Appendix D.3.1 we write down the integral expressing the first-order
correction to the holographic entanglement entropy. Again, the result is invariant
under the scaling of spatial and time coordinates in eq. (7.4.12), with £ — ¢/A
as well. In Fig. 7.11 numerical plots for arbitrary radius [ are displayed:

15 =0 15F

o .

10 = 10F — &7

05 — =2 osf — &8
— &3

¢ — &10

2, 4 8, 12 14 =4 10 15

05 - 05 =12

= &=5

— £t=05
— t=2

| — =t=3
— &5

Figure 7.11: Top: Time dependence of AS for a disk-shaped subregion of radius
I = 5 centered at (z1,22) = (£,0) for different values of £. For large &, the
maximum is reached for ¢ ~ £. Bottom: AS as a function of [ for a translated
disk-shaped subregion, for various values of ¢ = £. Numerical values ag =1,
A =1 have been fixed.

For small [, the RT surface remains at large . So, the expansion (7.4.13) can
be used, leading to the compact expression

8 A2
AS(1,t,€) = — -2 a?
T 37 A 242 (24 2) 4+ (12— 2)?

(7.4.25)
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Clearly, such a AS is always negative. For large [ > &, the subregion can be
regarded with good approximation as a disk centered at & ~ 0. From the results
of the previous subsection, we thus expect a negative AS. For intermediate [,
the quantity AS can instead become positive, as shown in Fig. 7.11.

The sign of AS for the translated disk can be justified by invoking the simple
model of free quasiparticles propagation [57]. In this picture, the excitation is
assumed to create many copies of Einstein-Podolsky-Rosen (EPR) pairs, which
then propagate without interactions as in Fig. 7.12:

1

=1

Figure 7.12: Sketch of quasiparticle propagating at the speed of light in the
spacetime sectional plane (¢,x1). The entangled quasiparticles in an EPR
pair move without interactions in opposite directions. When just one of
the quasiparticles belonging to an EPR pair is inside the blue region, the
entanglement entropy of the region itself increases.

When just one of the entangled quasiparticles in an EPR pair enters a
given region, the entanglement with the outside increases, giving a positive
contribution to AS. It has been shown that this model reproduces several
aspects of the spread of entanglement in global and local quenches [55, 57, 59, 93].
Models with interacting quasiparticles have also been studied [212]. In all these
examples, the contribution of the excitations to the entanglement entropy is
positive. In the monopole quench, there is also a negative contribution to the
entanglement entropy due to the scalar condensate. In general, we expect a
competition between the quasiparticle and the condensate contribution, which
is responsible for the change of sign of the entanglement entropy variation for
the translated disk. It is reasonable to suppose that the translation of the disk
from the originally perturbed region enhances the quasiparticles contribution at
the expenses of the condensate one. This would explain the absence of positivity
regimes of AS for the centered disk.
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7.4.3 Half-plane

Finally, we take as a boundary subregion the half-plane x; > 0 at constant time
t. The unperturbed RT is the bulk surface at £1 = 0 and constant time ¢. A
convenient choice of parameters is

y* = (z,22) . (7.4.26)

Details of the calculations are given in Appendix D.3.2. From the closed-form
expression, we deduce that the entropy variation AS is a function of t/A.
Therefore, it is not restrictive to set A = 1. The numerical result is shown in
Fig. 7.13:

AS

Figure 7.13: Time dependence of AS for the half-plane. The numerical values
ag =1, A =1 have been chosen.

At t = 0 the entanglement entropy variation is negative, in agreement with
the expectation that the condensate reduces the entanglement entropy with
respect to vacuum. After an initial transient time, AS enters a linear growth
regime and becomes positive around t =~ 2A. From this time on, we expect the
quasiparticles contribution to dominate over the condensate one.

For t = 0, the entropy variation is given by the same value ASy as in eq. (7.4.21).
This can be computed by mapping the ¢ = 0,27 = 0 plane to global AdS by
means of the transformation (7.2.3). The resulting RT surface in global AdS
lies at 7 =0 and ¢ = £7/2, so from the metric (7.4.3) we can easily compute

€L2 +°°

At large t, from the analysis in Appendix D.3.2 we find that AS increases
linearly in time:

AS = K o K ~0.636, (7.4.28)

2
"4



HOLOGRAPHIC ENTANGLEMENT ENTROPY 197

where the constant K is defined in eq. (D.3.13). Such a linear growth agrees
with the numerical plot shown in Fig. 7.13. We emphasize that eq. (7.4.28) is
valid only in the regime where we can trust our perturbative calculation in the
parameter €. At very large ¢, we expect the large backreaction effects to spoil
this result. We point out that a constant growth rate of AS at large ¢ has also
been found in the (3 + 1)-dimensional BH quench [196].

7.4.4 The first law of entanglement entropy

A formula similar to the first law of thermodynamics is believed to hold for the
entanglement entropy under certain assumptions. This so-called first law of
entanglement entropy (FLEE) can be derived from the relative entropy [81, 213],
a quantity measuring how distinguishable a density matrix p is from a reference
density matrix o:

S(pllo) = Tr(plog p) — Tr(plogo) . (7.4.29)
As a direct consequence of this definition, we always have
S(plle) >0, S(plle)=0 < p=o. (7.4.30)
The relative entropy can be written as
S(plle) = A(K,) — AS, (7.4.31)
where IC, is the modular Hamiltonian of the density matrix o
Ke =—logo, (7.4.32)

and S is the entanglement entropy S(p) = —Tr(plogp). The A denotes the
difference between a quantity computed for p and the same quantity computed
for 0. The positivity of relative entropy directly implies

A(Ky) > AS. (7.4.33)
If we now specialize to two nearby density matrices, i.e.
o=0po, p=po+ep+O(?), (7.4.34)
with € an expansion parameter, the relative entropy scales as
S(pllo) = O(e?). (7.4.35)

Since at O(e) the relative entropy vanishes, there is a general expectation [213]
that for small deformations eq. (7.4.33) is saturated, leading to the FLEE:

A(K,) = AS. (7.4.36)
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The question if FLEE is satisfied in QFTs is subtle. Indeed, in that case the
density matrix p is infinite dimensional and, in principle, it is not clear when a
perturbation might be considered small.

We now specialize to ball-shaped subsystems, as in Subsecs. 7.4.1 and 7.4.2.
The modular Hamiltonian C, for the density matrix of a (2 + 1)-dimensional
CFT on a spherical region can be expressed in terms of the energy density
operator as [167]
I el i
K, =2m d°d ———Tu(2). (7.4.37)
sphere 21

Taking as p the density matrix of the state prepared by the operator insertion
and as ¢ the vacuum state, in the limit of small [ we get

I
A(K,) = %AE, (7.4.38)

with AFE the energy variation between the two states. From the holographic
perspective, the RT surface for small radius [ is located nearby the AdS boundary,
so that the area variation due to backreaction is tiny. It is thus reasonable to
suppose the FLEE to be valid in this regime. Plugging eq. (7.4.38) into eq.
(7.4.36), the FLEE for small spherical subregions can be written as [214]

AFE 2
AS = —, T = —, (7.4.39)
TE 7l
where T is named entanglement temperature by virtue of the analogy with the

first law of thermodynamics.

Let us come back to the physical system we are examining. In the BH quench,
for | << v/t2 + A2 the energy variation between the perturbed and the vacuum
state is . 400

AE = 27r/0 T, "V xdr = 7G(t2 AT (7.4.40)
where eq. (7.3.21) has been used. In this regime, the FLEE (7.4.39) has
been found to be satisfied [76]. As we have discussed, for the multitrace
deformation in eq. (7.3.14) the holographic energy density for the monopole
and the BH quenches are the same up to a scale, see eq. (7.3.29). Therefore,

for I << V2 + A2 we get

AE®) =

M AE(BH) | (7.4.41)
mpBH

Comparing with eq. (7.4.25), the FLEE is evidently violated in the monopole
quench. In particular:
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o AS is negative, whereas AE(") is positive.
e AS scales as [?, and not as I3 as predicted by the FLEE.

« There is no choice of boundary conditions for which the energy AE(%) is
proportional to AS.

In agreement with our result, the FLEE is generally invalidated in holographic
models with scalar fields, in which the FG expansion of the bulk metric does not
start at order z% [213, 215], with d the dimension of the spacetime boundary.
The violation of the FLEE in the monopole quench can be understood from
the fact that the monopole and vacuum belong to different topological sectors.
Consequently, for a fixed value of the multitrace coupling x the dual states
cannot be continuously deformed into each other as required by eq. (7.4.34).

7.5 Discussion

In this chapter we have explored the model of a falling magnetic monopole in
Poincaré AdSy, which is dual to a local quench triggered by the insertion of a
local operator in the boundary CFTj3. Starting from the static configuration
in the global AdS,; setup introduced in [198], we have provided an analytic
monopole solution including the leading-order backreaction in the regime of
small gauge coupling. Then, we have obtained the holographic model of local
quench by mapping the static monopole in global AdS, to a falling monopole
in Poincaré AdSy, following the trick presented in [206].

By exploiting the AdS/CFT dictionary, we have collected the expectation values
of local operators in the dual CFTj3 interested by the local quench. With
Dirichlet and Neumann quantizations, the scalar operator has a time-dependent
source, which leads to the non-conservation of the energy-momentum tensor.
Instead, for the multitrace deformation of eq. (7.3.14), the source for the scalar
operator vanishes and the energy of the system is conserved. Remarkably, the
energy-momentum tensor for this choice has the same functional form as the
energy-momentum tensor for the BH quench studied in [76].

Looking for a better probe of the bulk geometry, we have investigated the
variation of holographic entanglement entropy due to the leading-order classical
backreaction. Contrary to the energy-momentum tensor, the entropy variation
in the monopole quench is in fact different compared to the BH quench one.
The latter can be computed as in Sec. 7.4, by setting in eq. (7.4.3)

1
r4+r3’

he =0, ge = e=M, (7.5.1)
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which come from the first-order exact BH metric of eq. (7.3.19) with M regarded
as a backreaction parameter. In Fig. 7.14 we show the holographic entanglement
entropy variation for the BH and the monopole quenches in the case of translated
disk-subregions with fixed radius:

ASgy
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Figure 7.14: Time dependence of the entanglement entropy variation due to
backreaction for disk-shaped subregions centered at (z1,x2) = (,0) in the BH
(left) and monopole (right) quenches. Plots for fixed subregion radius [ = 5 and
different values of £ are displayed. We have set A=L =G =M = ap = 1.

For both quenches the positive contribution to AS can be ascribed to the free
propagation of EPR pairs of entangled quasiparticles [57]. For the monopole
quench, an additional negative contribution due to the presence of a condensate
at the core of the local quench [211] can cause AS to become negative. When
the subregion is highly translated with respect to the core of the local quench,
such a contribution is dominated by the quasiparticles one.

For a half-plane subregion in the monopole quench, the condensate contribution
to AS dominates at early times, whereas the quasiparticles contribution
dominates at late times, when the entanglement entropy variation manifests a
constant growth rate, see Fig. 7.13. The same late time behavior has also been
found for the BH quench [196].

The FLEE, relating the variation of entanglement entropy to the variation
of energy under small perturbations [214], has been found to hold for small
subregions in the BH quench. The similarities between the energy-momentum
tensors for the BH and monopole quenches, accompanied by the radically
different behaviors of entanglement entropy in the two processes, are responsible
for the violation of the FLEE in the latter model. The same outcome is shared
with other AdS backgrounds involving the backreaction of scalar bulk fields,
see [213, 215]. Whether a given deformation in a QFT obeys the FLEE is still
an open question [215]. It would be interesting to further test its validity in
different non-equilibrium systems.



Chapter 8

Conclusions and outlook

In this thesis we have investigated different facets of the interconnection
between quantum information and gravity. The two key players have been
entanglement entropy and (subregion) complexity. While the former is a well-
established quantum information quantity holographically interpreted as the
area of extremal surfaces into AdS spacetime, the latter is still object of research
both in the quantum information and in the gravitational realms.

In the context of computer science, complexity is defined as the minimum
number of elementary gates needed to build up a circuit which accomplishes a
given computational task. For random circuits, it is now proven that complexity
grows linearly for a time exponential in the number of qubits involved by the
circuit, prior to saturating to an exponential value [12]. Moreover, when subject
to a perturbation triggered by a gate acting on a single qubit, complexity
presents a delay in the linear growth known as switchback effect.

A demanding challenge is to extend complexity to quantum mechanical systems,
where a continuous definition is prompted. A promising option is represented by
the Nielsen’s geometrical approach, which replaces the counting of discrete gates
forming a circuit with the length of a continuous path representing a unitary
operator. Obviously, one would expect complexity geometry to reproduce
the same features as circuit complexity. In Ch. 3 we have addressed this
question for a system of n qubits, finding some particular regimes in which
complexity geometry is compatible with an exponential lower bound and the
switchback effect. For the holographic purposes, rather than complexity of
unitary operators, we should look at complexity of quantum states. To tackle
the issue, we have observed that unitary and state complexity are related by a
particular map which goes under the name of Riemannian submersion.

201
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We have then shifted the focus to the holographic interpretation of state
complexity as the (spacetime) volume or gravitational action of proper bulk
regions. The conjectured gravitational counterparts of complexity can be
suitably adapted to deal with mixed states of subsystems, and then turned
into holographic proposals for subregion complexity. With the motivation of
analyzing the properties of these gravitational quantities, we have explored
subregion complexity = volume (subregion-CV), subregion complexity = action
(subregion-CA), and subregion complexity = spacetime volume (subregion-CV
2.0) conjectures in diverse spacetimes.

In Ch. 4 we have computed subregion-CA and subregion-CV 2.0 in AdS3 and
the Banados-Teitelboim-Zanelli (BTZ) spacetimes for a boundary line segment.
The logarithmically divergent contribution appearing in the results reconstructs
the holographic entanglement entropy of the boundary subregion, suggesting
a connection with subregion complexity. However, an analogous computation
for two disjoint segments in AdS3 has revealed that subregion complexity and
entanglement entropy carry different information.

Another intriguing playground in which to study the gravitational proposals
for subregion complexity is the WAdS/WCFT correspondence, which may
play a role in the program of generalizing the gauge/gravity duality to non-
asymptotically AdS spacetimes. The bulk side is represented by a gravitational
theory in asymptotically warped AdS (WAJdS), attained as a continuous
deformation of AdS3 spacetime. The boundary side is given by a class of
two-dimensional non-relativistic field theories referred to as warped conformal
field theories (WCFTs). In Ch. 5 we have studied all the three proposals for
a subregion extending to the whole (left) right boundary of WAdS containing
a (non-)rotating black hole (BH) in WAdS. With respect to the AdS case,
some differences arise in the divergences structure, additivity properties and
temperature dependence, which we thoroughly describe below.

The interrelation between gravity and quantum information plays a pivotal role
in the analysis of out-of-equilibrium physics in strongly coupled CFTs. On the
one hand, quantum information concepts are valuable probes of thermalization.
On the other hand, by virtue of the AdS/CFT correspondence, phenomena far
from equilibrium at strong coupling admit a gravitational description in terms of
time-dependent processes taking place in higher-dimensional AdS spacetime. In
this thesis we have considered quantum quenches, which describe thermalization
of systems following a global or a local perturbation. A CFT global quench
corresponds to the formation of an AdS BH by the gravitational collapse of
matter, depicted by Vaidya spacetime, whereas a CFT local quench is dual to
the free fall of a massive particle-like object in AdS.

Exploiting holography, we have inspected some aspects of the quench physics by
means of quantum information tools. In Ch. 6 we have applied subregion-CV
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conjecture for a boundary line segment in three-dimensional Vaidya spacetime,
addressing the time evolution of mixed state complexity during a global quench.
Instead, in Ch. 7 we have employed holographic entanglement entropy as a
probe to distinguish between local quenches realized by the falling of different
bulk objects.

In the following, we go into details of the main results of the thesis and we draw
the general conclusions of our analysis. We also propose some future directions
of related research.

Complexity geometry. For a system of n qubits we can distinguish between
two kinds of complexity: unitary complexity, quantifying the difficulty of
implementing a unitary operator, and state complexity, measuring how hard it
is to prepare a state from a reference one. By employing the geometrical toolkit
proposed by Nielsen, we have studied both notions.

Regarding unitary complexity, we have discussed two penalization schemes for
the generators of the su(2") algebra: the draconian model, equally penalizing
generators acting on more than two qubits, and the progressive model, in
which penalty factors scale as a power of the number of qubits simultaneously
entangled by the corresponding generator. We have argued that progressive
penalties smoothly reproduce two fundamentals properties in the limit of large
n and penalties. Firstly, the unitary manifold has a negative curvature, a
condition compatible with ergodicity of geodesics and the switchback effect.
Secondly, an etude of conjugate points strongly indicates that maximal unitary
complexity scales exponentially with n. Both features are necessary for the
quantum system to manifest a chaotic behavior, which in turn is required for
complexity to mimic the physics of BH interiors.

Our argument for bounding complexity geometry offers a strong evidence,
but not a rigorous proof. Recently, exponential lower bounds on maximal
unitary complexity has been shown to hold with two distinct methods: a
geometric approach based on the Bishop-Gromov bound on the volume of
geodesic balls [140], and a quantum circuit approach based on the counting of
gates approximating a unitary operator path [142]. The result extends to a large
family of penalization schemes, including the draconian and the progressive
models we have investigated. In light of this, one may be worried about the huge
arbitrariness in the choice of penalties. In [24], the authors have conjectured
that a broad class of high-dimensional geometries exists whose members share
the same effective description at long-distances. In other words, while these
geometries are highly sensitive to the change of penalties at small scales, they
are appreciably the same at large scale (read, from one member to another, large
complexities of unitary operators differ at-worst polynomially in the number of
qubits n and in the length of the corresponding paths [142]). The exponential
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lower bound on maximal complexity common to many penalized geometries
can be deemed as a consistency check of this equivalence.

State complexity is defined as the lowest complexity of any operator building
the target state from the reference one. The minimization is made trivial by
the formalism of Riemannian submersions, which are particular maps from the
manifold of unitary operators to the Hilbert space of states. The submersion
approach has two main advantages. First, by O’Neill’s formula we can compute
the sectional curvatures on the state manifold starting from the sectional
curvatures on the unitary manifold and the algebra of the su(2™) generators.
Second, the geodesics on the state manifold can be built as projections through
the Riemannian submersion of horizontal geodesics on the unitary manifold. In
principle, both these properties allows us to reveal the geometric structure of
the state manifold regardless of its metric. By the way, we have also provided a
general closed-form expression for the penalized metric on the state manifold,
which we have explicitly used to examine the instructive one-qubit and one-qutrit
systems.

The geometric approach to complexity opens to many future directions. We list
some of them:

o Penalty factors dramatically affects the properties of complexity geometry,
at least at small distances. It would be valuable to figure out how this
reflects on complexity in QFT. Studies along these lines have been initiated
in [27, 216], where uniform penalties for the entangling gates (resembling
the draconian model) have been employed.

e Our results applies to pure states. It would be interesting to
extend the geometric approach to putative definitions of mixed state
complexity, such as purification and basis complexity [34]. Properties
like sub/superadditivity could guide us towards a matching with the
holographic results.

Holographic subregion complexity. We now sketch a comparison of
subregion-CV (SCy ), subregion-CA (SC4), and subregion-CV 2.0 (SCy2.0)
for a BH in AdS3 and in WAdS3 spacetimes, concentrating on the divergence
structure, additivity properties, and temperature dependence. Once we have a
comprehensive view, we look for a match of the holographic results with the
putative definitions of mixed state complexity. Before starting, we point out
that at the state of the art a firm conclusion is lacking.

In BTZ, subregion complexity has been computed for a mixed state localized
on a boundary line segment of length [, while in asymptotically WAdSs3 it
has been calculated for the left (right) factor of the thermofield double (TFD)
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state, which is located on the whole left (right) boundary time-slice. So, for a
consistent comparison, in BTZ we take the limit of infinitely long boundary
segment. In this limit, our results match SC4 and SCy2 for the left (right)
factor of the TFD state dual to a two-sided BTZ BH, which was previously
computed in [34, 149]. In particular, the logarithmic divergence appearing in
SC 4 (4.3.32) and SCyo.0 (4.3.33) for finite [ gets suppressed, and only the linear
divergence is left.

The divergence structure of SC 4 and SCy 2 o for the left (right) factor of the TFD
state dual to a two-sided WAdS3 BH is richer, presenting also a logarithmically
divergent term. Similar observations hold for SCy .

In Table 8.1 we summarize these findings for non-rotating BTZ and WAdS3 BHs,
recalling that the divergence structure for rotating WAdS; BHs is analogous to
the non-rotating case. Contrary to egs. (4.0.1) and (4.0.2), not knowing the
details of the WAdS/WCFT dictionary we do not normalize the bulk quantities:

BTZ Non-rotating WAdS; BH
\% Ll Lﬁ\/ff('ﬂ*l) __2ml?0%ry, loge
€ € v2+3 V32 —1)(v2+3)
l 1 Z\/3(V2_1)(10g‘772(1’2+3)|_1) Lry, (Tv2=3) log e
I m (% - T'h log (277)) 8Ge + lgG 3(V2_1g)
27 (1 2n6® VB3P =1) 748y log
Vouk L2L(Z —7n) e 243 \/3Z;2ig1§

Table 8.1: Divergence structure of holographic subregion complexity for the
left (right) factor of the TFD states dual to the non-rotating BTZ BH with
flat horizon and the non-rotating WAdS3 BH. In the above expressions, ry, is
the dimensionless radius of the BH event horizon, & denotes the dimensionless
UV cutoff, 2 > 1 represents the warping parameter, L and ¢ are the curvature
radii of AdS3 and WAdS3, respectively. In the BTZ case, we have taken the
limit [ 7, >> L of the results of Sec. 4.3, reproducing the findings in [34].

For convenience, we have introduced

)= {E/L for AdSs,

L/ for WAdSs. (80.1)

The length scale L arises from the counterterm of eq. (4.1.10), which ensures
reparametrization invariance of the total gravitational action. At first sight,
the dependence of the action on an arbitrary scale may undermine its physical
interpretation. By the way, we should keep in mind that (subregion) complexity
itself is affected by a huge degree of arbitrariness, due to the choice of reference
state and elementary gates. One possibility is that the ambiguities on both
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sides of the correspondence are related to each other. Nevertheless, we can
attempt to restrict the allowed values of 7. To this purpose, we appeal to the
positivity of subregion complexity, which requires the leading divergence in
SC 4 to be positive-definite. This is accomplished for > 1 in BTZ, and for

n > e/ (v? +3) in WAdSs.

Let us now look at the additivity of holographic subregion complexity. Given
any two subsystems A and B, we recall that subregion complexity is said to be
superadditive whether

SC(A) + 8C(B) < SC(AUB), (8.0.2)

otherwise it is said to be subadditive.

Considering two identical line segments of length [ and distance d on the
boundary of AdSs3, we have found that if d > dy = (\/57 1) l, the three
holographic quantities saturates superadditivity, see Fig. 4.7. Below the
critical distance dy, while SCy and SCy9 are trivially superadditive, the
superadditivity of SC4 can be influenced by the value of 7. In particular, as
shown in Fig. 4.10, SC 4 is always superadditive for n > 1y ~ 2.465, whereas it is
superadditive only at small distances between the two segments for 1 < n < 1.

To compare the BTZ and WAdS3 BH cases, we specialize to boundary time
t, = 0, when the spacetime respects the time-reflection symmetry. In [34, 149],
SCy for the left (right) factor of the TFD state dual to the non-rotating BTZ
BH has been found to saturate superadditivity, contrary to SCys.g, which is
strictly superadditive. Similarly to the two-segments subregion, SC 4 has been
observed to be superadditive for n > np ~ 0.1 and subadditive for n < np.
Remarkably, we have seen that SC 4 for the left (right) factor of the TFD state
dual to the WAdS3 BH is always superadditive, regardless of the value of n. We
summarize such properties in Table 8.2:

BTZ WAdS; BH

v saturates superadditivity saturates superadditivity
I superadditive for n > np ~ 0.1 superadditive
Voulk superadditive superadditive

Table 8.2: Additivity properties of holographic subregion complexity at time
ty = 0 for the left (right) factor of the TFD states dual to the BTZ and the
WAdS;3; BH. The value of np has been computed from [34].
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In BTZ, the temperature behavior of the three holographic quantities can be
read off from the dependence of the expressions in Table 8.1 on the radius of
the BH event horizon 7. In fact, the temperature of the BTZ BH is given by
T =1,/ (2nL). We readily note that SCy is temperature-independent, SCy2 .o
decreases with temperature, and SC 4 decreases with temperature too, but only
if n > 1/2. Remarkably, the positivity constraint 7 > 1 forces SC4 for the left
(right) factor of the TFD state dual to the BTZ BH to be superadditivite and
to decrease with temperature.

For a rotating BH in WAdS3, we have instead found that the temperature
behavior is non-trivially correlated with the sign of specific heat at constant
angular momentum H ;. In details, in the thermodinamically stable region
Hj; > 0, SCy increases with temperature, SC 4 decreases with temperature,
while the behavior of SCy2,¢ depends on the value of the warping parameter v,
and on the radii of the outer and inner event horizons, see Figs. 5.4 and 5.5.

Similarly to other quantum information quantities such as the entanglement
entropy, it would be interesting to understand whether subregion complexity
could also serve as a probe of out-of-equilibrium physics. With this in mind,
we have examined the time evolution of SCy for a boundary line segment in
three-dimensional Vaidya spacetime, which can be viewed as a holographic
model of CFT5 global quench triggered by an injection of energy in the whole
system. Our analysis reveals that soon after the global perturbation, SCy grows
at a constant rate proportional to the segment length [. Then, SCy reaches a
maximum value scaling at least as {2, prior to returning to the initial vacuum
value at the thermalization time, after which it remains constant.

The collected information on holographic subregion complexity can serve as
a guide to determine the dual CFT quantity. So far, the main proposals
quantifying the difficulty of building mixed states are purification complexity
Cp and basis complexity Cp, which we have introduced at the beginning of Ch.
4. The former is defined as the lowest complexity of all purifications of the
target state, while the latter is identified with the complexity of preparing the
target state p from the less complex pure state with the same spectrum as p.

A preliminary analysis on the temperature behavior of purification and basis
complexity is drawn in [34] on the basis of the limits of vanishing and infinite
temperature. To gain some intuition, let us consider the problem of building
the thermal state of an n-qubits system. When T = 0 the state of our system is
pure, so its spectrum is trivial. Supposing that a quantum circuit exists which
prepares the state, we have Cp = Cp ~ n. Instead, when T — oo the state
is maximally mixed, in which case building the spectrum is enough to fully
determine the state, leading to Cg = 0. Also, a purification of the maximally
mixed state can be constructed by a circuit of O(n) gates, giving Cp ~ n.
Putting all together and assuming that subregion complexity is a monotonic
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function of T'; we deduce that Cp decreases with temperature, while Cp should
weakly depend on temperature.

Following [34], let us now investigate the additivity of purification and basis
complexity taking as a bipartition the left p;, and right pr factors of the TFD
state |TFD). Tt is here useful to recall that the TFD state is a purification of
both the thermal states pr, and pgr (though, in general, not the optimal one [35]),
see Subsec. 2.3.1. Now, building the spectra of two copies of the thermal state
clearly costs more than preparing the spectrum of the TFD state. Therefore,
roughly estimating purification complexity as the sum of the complexities in
constructing the spectrum and the basis of the target state, we conclude that Cp
is subadditive: Cp(pr) + Cp(pr) = 2Cp(pr) > C(|TFD)). On the other hand,
the effort in constructing the basis of the TFD state is twice that of preparing
the basis of each factor. Since complexity of the TFD state is approximately
the sum of the costs of constructing the spectrum and the basis, we deduce that
Cp is superadditive: Cp(pr) + Cr(pr) = 2Cp(pr) < C(|TFD)).

Complexity of mixed states have been later deepened, see e.g. [35, 37, 66,
150]. The conjecture about subadditivity of purification complexity have been
explicitly checked and slightly modified. In principle, it is possible to work
with two distinct bases for the fundamental gates: a physical basis, which
distinguishes the physical degrees of freedom of the original mixed state from
the artificial degrees of freedom introduced for the purification procedure, and a
diagonal basis, which shuffles the two sets. An analysis performed in free QFTs
have emphasized that the choice of basis affects the properties of purification
complexity [35, 217]. In particular, Cp for the left and right bipartition of the
TFD state is subadditive in the diagonal basis, whereas it is superadditive in
the physical basis only for particular choices of reference state [35]. We try to
sketch the current situation in Table 8.3:

Additivity Temperature dependence
depends on the basis
and reference state
Cp superadditive decreases with T'

Cp weakly depends on T

Table 8.3: Properties of purification complexity Cp and basis complexity Cp.
Additivity refers to the bipartition of the TFD state in left and right factors.
For Cp, additivity has been explicitly evaluated in free QFTs [35].
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Let us finally draw a tentative parallel between the holographic proposals and
mixed state complexity of the thermal state.

In BT7Z spacetime, SC 4 and SCy2.¢ seem to qualitatively match the additivity
properties of Cp in the physical basis, even if only for specific choices of the
reference state [35]. An additional clue of the matching comes from the UV
divergence, which for the holographic conjectures and Cp in free QFTs is
linear in the cutoff € and proportional to the subregion length [35], see Table
8.1. Watching at the holographic global quench that we have investigated,
interpretation of Cp as the field theory counterpart of SCy could provide us
with an heuristic explanation to the presence of a maximum prior to saturation.
Indeed, the decreasing of SCy shortly before the thermalization can be attributed
to the increasing of the number of pure microstates corresponding to the mixed
target state. In such a big family of microstates, it should not be hard to find
a purification of the target state which is close (in the complexity sense) to
the reference state. A local maximum preceding a saturation regime has also
been found in the time evolution of mixed state circuit complexity for a line
segment in a harmonic chain after a global quench of the mass parameter [218].
Anyway, we stress that for a conclusive comparison we should look at mixed
state complexity in strongly coupled CFTs. We mention that some work in this
direction has been done. For instance, in two-dimensional CFTs, Cp has been
shown to reproduce subregion-CV, subregion-CA, and subregion-CV 2.0 mutual
complexity for adjacent segment-subregions of the vacuum state [36].

In asymptotically WAdS3, Tables 8.2 and 8.3 seem to teach us that Cp matches
SC4 in the thermodynamically stable region with H; > 0. On the contrary,
Cp seems to match SCy in the unstable region with H; < 0. However, we
emphasize that the properties of Cp and Cp may drastically change in WCFTs.
We leave this issue as an interesting future development. We list some other
open questions calling for further investigation:

o One of the obscure aspects of (subregion-)CA conjecture is the appearance
of the arbitrary scale L, arising from the gravitational action counterterm
for null boundaries. As we have seen, the value of L considerably affects the
physical properties of holographic complexity, thus it requires a physical
interpretation from the field theory side of the AdS/CFT correspondence.
By comparing the UV divergences of holographic complexity with the
QFT results, this bulk length scale has been suggested to be related
to the arbitrariness in defining the reference state and the elementary
gates in the boundary field theory [27, 28]. The authors of [219, 220]
have instead proposed to give up the reparametrization invariance of the
gravitational action in favor of a special parametrization which sets to zero
the action complexity in vacuum AdS. Consequently, the dual vacuum
state is regarded as the reference one. It would be worth clarifying which
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picture leads to a better matching between holographic and field theory
results.

The WAdS3 BHs we have considered can also be built as solutions of
Topological Massive Gravity and New Massive Gravity. In the presence of
additional terms in the gravitational action of the model, the holographic
proposals must be modified [221, 222]. The CA conjecture in theories
of modified gravity has been studied for several backgrounds [222-224],
also including WAdS3 BHs [169]. A possible direction would be to study
how holographic subregion complexity for WAdS; BHs changes with the
introduction of new terms in the gravitational action.

In this thesis we have examined the time evolution of SCy during a
holographic global quench. It would be interesting to conduct an analogous
analysis for SC4 and SCys9. In several cases the three holographic
quantities are qualitatively similar, so it is hard to discriminate between
them. It would be valuable to test if dynamical processes as the global
quench allow for a distinction, also comparing the holographic and QFT
outcomes [66, 67, 218].

In [17] an infinite class of observables localized on codimension-one bulk
surfaces has been found to provide viable substitutes for the maximal
volume as the holographic dual of complexity. Later, in [18] the result
has been generalized to observables living on bulk spacetime regions,
also including the gravitational action and the spacetime volume of the
WDW patch. All these quantities share two universal features: a linear
growth at late time and the switchback effect. A way to prefer an
observable of the infinite class would be to look for further features that
(subregion) complexity is expected to display. For instance, from the
outcomes presented in Chs. 4 and 5 we deduce that additivity properties
and temperature dependence discriminate between volume, action, and
spacetime volume subregion complexity. In this perspective, it would
be helpful to investigate such properties from the field theory side of
the AdS/CFT correspondence and to exploit them to skim the putative
gravitational duals.

Holographic local quench. Likewise global quenches, local quenches in CFTs
can be realized by holographic models. As a starting point, we have found
an explicit magnetic monopole solution in global AdS, which includes the
backreaction of matter fields at the leading order. The analytic solution is
valid in the regime of small gauge coupling, while out of this domain we have
provided numerical results. By mapping the static configuration in global AdSy
to a dynamical one in Poincaré AdS,, we have obtained a free falling magnetic
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monopole, which shares the same dynamics as a local quench triggered by the
insertion of a condensate in the boundary CFTs.

We have then drawn a comparison between our setup and a falling BH, wondering
how the dual quenches differ. With boundary conditions on bulk fields for which
the energy of the dual system is conserved, we have shown that the holographic
energy-momentum tensors of the two models have the same functional form,
whereas the holographic entanglement entropy evolution is drastically different,
to the extent that the first law of entanglement entropy (FLEE) is violated
in the monopole case. Basically, the FLEE relates the variation of energy
resulting from a continuous deformation of a quantum state to the variation of
entanglement entropy. To put it differently, an increasing of the energy should be
accompanied by an increasing of the entanglement entropy. This has been shown
to be true for the BH quench [76], contrary to the monopole quench, in which
case the excitation of the vacuum state due to the condensate insertion causes
a decreasing of the entanglement entropy: the degrees of freedom diminish with
respect to vacuum because of condensation [211]. The invalidation of the FLEE
in the monopole quench can be grasped from topological arguments. Namely,
since the monopole and vacuum belong to distinct topological sectors, the dual
states are not continuously deformable into each others, which is necessary
for the FLEE to hold. The takeaway message is that entanglement entropy, a
quantum information concept, can act as a probe for gravitational systems.
We point out some possible future developments:

e The monopole solution with backreaction that we have discussed can be
the starting point to study other solitonic objects in AdS. For instance, a
falling vortex in AdSs could be regarded as a holographic model of CFT,
local quench. Since AdSs is locally equivalent to the BTZ spacetime, a
coordinate transformation exists that maps the former into the latter
[72, 225]. Upon the application of this map to the static vortex, the
resulting configuration is a vortex falling into the BTZ BH, which is the
gravitational equivalent to a local quench at finite temperature. We can
exploit this setup to check whether the conclusions we have drawn for
the monopole quench are solid enough to survive to different spacetime
dimensions and non-zero temperature.

o Holographic complexity for local quenches dual to falling particles has
been studied in [71, 72]. Along these lines, to gain an insight into the
impact of condensates on the evolution of quantum complexity, it could
be worth investigating holographic (subregion) complexity for the local
quench dual to the falling magnetic monopole. This would also tell us
whether this quantity, similarly to holographic entanglement entropy,
makes a distinction between different falling objects. To this regard, it
would be interesting to look at the first law of complexity [226, 227], which
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argues that under a perturbation of the target state, the variation of
circuit complexity only depends on the endpoint of the optimal circuit.
In holographic settings where the target state is well-represented by a
dual bulk geometry, the first law of complexity can represent an efficient
diagnostic tool. Analysis of the first law of complexity for perturbations
triggered by the introduction of bulk scalar fields, in the same spirit as
our asymptotically AdS geometry with monopole backreaction, has been
performed in [226, 227].

In [228] (subsystem) circuit complexity for a local quench obtained by
suddenly joining two harmonic chains has been studied. The temporal
evolution of subsystem complexity for the mixed state localized on a
segment has been found to depend on the position of the joining point with
respect to the segment itself. However, the quantity generally manifests a
local maximum. It would be interesting to compare these findings with
holographic results. It is important to stress that the gravitational model
described in Ch. 7 is the holographic dual of a local quench triggered by
an operator insertion. The joining of two subsystems is instead a different
quench protocol, whose gravitational counterpart has been discussed in
[191, 229].



Appendix A

Counting out sectional
curvatures

A.1 Derivation of the general counting formula

A generalized Pauli matrix p of weight w, = M is a tensor product of M SU(2)
Pauli matrices o; (i = x,y,2) and n — M identity operators 1. We are here
interested in counting the number of generalized Pauli matrices o of weight
wy = N which anti-commute with p and whose commutator has a given weight
Wi,s). According to eq. (3.1.26), the sectional curvatures K(p,o) have the
same value for all these generators.

Let us define d as the number of qubits to which p and o assign a different
SU(2) Pauli matrix. From eq. (3.1.17), we recall that d must necessarily be odd
for p and o to anti-commute. Similarly, we define s as the number of qubits to
which p and o assign the same SU(2) Pauli matrix. We provide an example:

12®az12®®aw
U: Oy ® 1, ®® 1, ®® 1,

Figure A.1: Example of anti-commuting generalized Pauli matrices p and o of
weight M =5 and N = 4 for a system of n = 7 qubits. In this case we have
d =1 (red entries) and s = 2 (blue entries).

p
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By definition, the constraint d + s < min(M, N) must be satisfied.
As a consequence of the SU(2) Pauli matrices algebra, we easily deduce that
the commutator [p, o] has weight

Wip,0] =M+N-—-d-2s. (A.1.1)

Note that the weight of the commutator is completely determined by the odd
integer csqg = d + 2s. For illustrative purposes, we show the allowed values of
(s,d) for an odd and even value of min(M, N):

d d

. (0, min(M, N))

1
min
Csd

Figure A.2: Black dots represent allowed values of (s,d) for odd (on the left)
and even (on the right) value of min(M, N). The pairs (s, d) for which we get
the minimum and the maximum values of ¢4 are represented by red dots.

All the pairs providing the same wj, 5 are joined by red lines. Clearly, for
fixed M and N the value of wy, , decreases as we move from left to right in
the picture. Therefore, the maximum weight is realized for d = 1 and s = 0,
whereas the minimum weight is realized for d = 1 and s = min(M — 1, N — 1).
It is thus convenient to introduce an integer label r, such that the possible
values of the weight wy, 5 are

wr=|M — N|+1+2r, (A.1.2)
where
for M > N : r:N—%, r=0,....,.N—1,
(A.1.3)
for M < N : r:M—%, r=0,....M—1.

So far, we have not taken into account that the weight of a generator cannot
exceed the number of qubits, i.e. w, < n. This upper bound can be specified
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by restricting the integer r to the range

n—(M-N)—1
2

Ogrgmin(M—l,[n(NQM)l}) for M < N,

0§r§min<N—1,[ }) for M > N,

(A.1.4)

where [...] denotes the integer part.

We now focus on a generator p of weight M. Such a generator acts on M qubits
with an SU(2) Pauli matrix and leaves the remaining n — M qubits invariant.
For computational purposes, we address the issue of determining the number
R(M, N,r) of generators o with weight N whose commutator [p, o] has weight
wy, as in eq. (A.1.2). In order to derive an explicit expression for R(M, N, ),
we first count the generators o for a given value of (s,d). Then, we sum over
all the allowed values of (s, d).

Let us discuss how to build a generator o with fixed value of (s,d). We start
by considering d out of the M qubits on which p acts, and require o to assign
to each of them an SU(2) Pauli matrix different than the one assigned by p.
This can be achieved in 2d(1\dJ ) ways. Next, we choose s out of the remaining
M — d qubits involved by p, and demand o to assign to each of them the same
SU(2) Pauli matrix assigned by p. This choice can be performed in (Ms_d) ways.
Then, since o has weight N, we are left with N — d — s arbitrary one-qubit
Pauli matrices to be distributed among the n — M qubits untouched by p. This
can be accomplished in 3V —4—¢ ( N dj‘f S) ways. Finally, we fill out the remaining
entries in the ¢ tensor product with identity operators. Putting all together,
the number of generators o satisfying the required properties is thus

Rea(M, N,r) = 2 (24) (MS_ d) (Nn_dM S) gN—d—s (A.1.5)

The number R(M, N, r) we are interested in is obtained by summing over all
the allowed values of (s,d) providing the same weight w,.:

R(M,N,v)= > Ru(M,N,r), (A.1.6)
(s,d)ye L)

where

d+1
L&MaN)z{(s,dﬂs:N—r—;,dodd,dg2r+1} for M >N,

d+1
LngN>:{(s,d)|s:M—r—;,dodd,d<2r+1} for M <N,

(A.1.7)
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see eq. (A.1.3) and Fig. A.2. Defining d = 2k + 1 with k a positive integer, we
get for M > N:

s M M-2k—-1 n—M
M, N,r)=) 2%k+1 Tk (AL
ROMN.1) =) (2k+1)<N—r—k—1>(r—k>3 , (ALE)

k=0
and for M < N:

M M—2k—-1 n—M
R(M,N,r) = 92k+1 gN—M+4r—k
(M, N, ) kZ:O M+ 1)\ M —r—k—1)\ N M+r—k

(A.1.9)
Note that in these expressions we should not worry about negative values of
N—r—k—1and M —r —k — 1, respectively, which indeed may occur.! In fact,
the corresponding terms into the sum vanish, as can be seen by analytically
continuing the binomial coefficient with the I" function.

We can now determine the number N (M, N,r) of sectional curvatures with
value K(M, N,r) given in eq. (3.3.4). This is simply

N(M,N,r) =Ny R(M,N,7) = Ny R(N,M,r), (A.1.10)

where N and Ny denote the number of generators with weight M and N
respectively, see eq. (3.3.1).

A.2 Counting arguments in the progressive model

We now apply the general counting formula to the progressive schedule (3.3.11):

qw = @Vl Starting from eq. (3.3.4), we compute the values of sectional

curvatures K (M, N,r) associated to two generalized Pauli matrices with weight
M and N. A direct calculation gives, for M > N:

K(M,N,r) = —3a2r+1=N) L 9q1=N L 9q1=M 4 0 =2r(1 o~ (M=N)2 " (A 21)
and, for M < N:

K(M,N,r) = —3a2+1=M) L 901 =N 4 941~ M 4 =21 (1 o~ (N=M)2 (A 99)

Note that, at large «, sectional curvatures scale at most as a® + O(a™1).

1This happens because we have just imposed d + s < min(M, N) as an upper bound to
the value of k into the sum. However, for 2r > min(M, N) — 1 a tighter bound is given by
s=min(M,N) —r —k—12>0, see Fig. A.2.
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Leading order

Let us consider the o contributions to eqs. (A.2.1,A.2.2). For r = 0, the only
non-vanishing sectional curvatures at this order are for M = N =1 and

M,N >1, M # N, (A.2.3)
in which cases K = 1. For r > 1, that is allowed only for M, N > 1, we have

—3a20r+1=N) 4 O (a’l) for M > N,

—3020+1-M) 1 O (oY) for M <N . (A.2.4)

K (M,N,r) = {
In both cases, the o order is non-vanishing only for the maximum value
r=min(M — 1, N — 1), for which K = —3.

We can now compute the Ricci tensor contracted with a unit vector u (o) with
weight w, = M, defined in eq. (3.5.6):

Ry =Y > K(M,N,r)R(M,N,r). (A.2.5)
N r

For M =1, the only leading-order contribution is for M = N = 1:
R =R(1,1,0) =2. (A.2.6)

For 1 < M < n, there are both positive and negative contributions to Ry;. The
positive leading-order contributions are given by the sectional curvatures with
r = 0, whose value is K = 1:

M-—1 n
Rfy=> R(M,N,0)+ Y  R(M,N,0)
N=2 N=M+1 (A.2.7)

= 2M (2M71 - 34 22 )

The negative leading-order contributions to Rj; are given by the sectional
curvatures with r = N —1if M > Nandr =M — 1 if M < N, all equal to
K = —3. The multiplicity of such sectional curvatures turns out to be the same
in both cases:

M
R(M,N,Nl)QM(TZLV 1>3N1 for M >N,

(A.2.8)

-M
R(M,N,M—l):ZM(?V 1>3N—1 for M < N.
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From here we get
Ry, = -3 Z 2M( ) 3Nl = —6M [22<"*M> - 1} . (A.2.9)

The maximum value of N into the sum, Ny, = 1 +n — M, ensures that
r=min(M — 1, N — 1) is allowed, as can be deduced from eq. (A.1.4).
Finally, the leading-order result for Ry, with 1 < M < n is

Ry = Ri, + Ry, = 2M (QM—l - 22<”—M>+1) . (A.2.10)

Using eq. (3.3.1) and this result, the scalar curvature is computed as

R=Y NuyRy=3n(4"-2x7""). (A.2.11)

M=1

Next-to-leading order

We can systematically improve the previous calculation order by order in
the expansion parameter . For example, at order o', the only non-zero
contributions KM (M, N, r) to the sectional curvatures (A.2.1,A.2.2) are

4
M=N=2, r=01, 65k0=2,

(0%

M=N-1, N >4, r=0, SKW —

)

2
o

N>4, r=0, 0K =

)

M=2, N >3, r=1, SK =

)

Sl 2w

and the ones obtained by exchanging M and N.
Due to non-trivial cancellations, the only correction to Ry, is for M = 2:

n

4
SR = ZZ&K(U 2,N,r)R(2,Nr) = —. (A.2.12)

This gives the following correction to the curvature:

SRM = Ny 6R{Y = 2 (n71)4;. (A.2.13)



Appendix B

Alternative computations of
the action

B.1 Another regularization for the action of one
segment in BTZ

In this Appendix we repeat the calculation of subregion-CA for a line segment
in BTZ applying regularization A of Fig. 4.4. In particular, the null boundaries
of the WDW patch are attached to the spacetime boundary z = 0 and a timelike
regularizing surface z = ¢ cuts the bulk region we integrate over. The resulting
geometry is shown in figure B.1.

The geometric data are slightly different from the ones introduced in Sec. 4.3.
The RT surface and the entanglement wedge are the same as egs. (4.3.3) and
(4.3.8), but the WDW patch boundaries are now

2
tWDW = :‘:Zl IOg (Zh + Z) s (B].].)
4 Zn — 2

where the plus and minus sign refers to the future and negative boundaries,
respectively. The null normals to the WDW patch and entanglement wedge
boundaries are unchanged, while the intersection curve between the WDW
patch and entanglement wedge boundaries becomes

l {
Zint = 25, coth (22h> — zp, cosh <th> csch (22}L> . (B.1.2)

219
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0.0

Zrr(X)

z=€ Xint\l L Xmax

Figure B.1: Bulk region involved in the action computation for a segment in
the BTZ case, with [ = 5. Left: Intersection between the WDW patch and
entanglement wedge in the (z, z,t) space. The boundary of the entanglement
wedge is in yellow, while the boundary of the WDW patch is in red. Right:
Intersections in the (z, z) plane, with zrp in black, z;,: in blue and the cutoff
z = ¢ in red.

Contrary to regularization B, such an intersection curve and the RT surface do
not meet at the cutoff z = ¢, but at the boundary z = 0. For this reason, there
are no codimension-three joints. The meeting points between the intersection
curve and the cutoff are located at x = +x;,, with

l l
Tint = 2p arccosh [ cosh [ — | — isinh — . (B.1.3)
QZh Zh 22h

As usual, exploiting the invariance of the bulk region under ¢t — —t and x — —x,
we restrict the action computation to t > 0,z > 0.

B.1.1 Action computation

The contributions to the gravitational action are
I=Iwy+Icuy+In+17+ 1y, (B.1.4)

where the appearance of the GHY term is due to the regularization choice.
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Bulk contribution. Following the right Fig. B.1, we split the bulk term into
three contributions:

Tint th twpw dt
I, =—— d —
w 47TG * / / 23

) Tint tEw dt
I, = ——— d d — .
iy 47TG x/zm z/ 5 (B.1.5)
Tmax tew dt
L,=—-—— d d
w 47TG Tint a:/ Z/

A direct evaluation conveys

: -2z : 2 | 142z
I3 Tint sinh ( - ) sinh [ - }
Ly + 1 :7/ dx < coth (:) log 22 e
R

167G x : 2 [ 1—2x
T Zh smh( +22h )smh [ 422h }
2 sinh (%) 9 2 .
+ 2zn Zh+(zg )log Zh— € ,
cosh (— — cosh ( )) & Zn te
L
3 i
Iy = 6:C - (B.1.6)
The total bulk contribution is thus given by
Iy =4 (L), + I, + Ly) - (B.1.7)

Gibbons-Hawking-York contribution. The GHY surface term in the action
is expressed in eq. (4.1.5). The only contribution of this kind comes from the
timelike regularizing surface at z = ¢, and can be separated into two parts:

L o fwow 2 1 L | L
Il = | — = = = - =
GHY |:87TG/0 da:/o dt (22 Z%)L_E 81G e 4AnG’

(B.1.8)
Fmaz L
Ray = | —= d dt =
GHY [8 Gl / ( )} . &G
The total GHY contribution then reads
L l
IGHY =4 (Icl;HY + IéHy) = R ( — 1) (Blg)

Null boundary terms. The details of the null boundaries contributions are
very similar to regularization B. Namely, Ins and the counterterm on the
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entanglement wedge boundaries vanish. The counterterm on the boundary of
the WDW patch is instead

int Fine dz
YWPW — _27TG/ dm/ —log

[ [max 1+ log | & ae‘ sinh (i)
= —G/ dx + L X
2 € 2 [cosh (i) — cosh (24)}
Zh Zh
l T
Lzha cosh (5) — cosh (Z)
x | 1+ log 72 . l ’
cosh (2—>
Zh
(B.1.10)

Joint terms. Besides the null-null joints at the RT surface and at the
intersection curve between the future boundaries of the WDW patch and
entanglement wedge, that we have already met in regularization B, timelike-null
joints rise at the cutoff surface. To deal with such contributions, described in
eq. (4.1.8), we introduce the outward-directed normal one-form s to the z = ¢

surface
L

eV f(e)

Summarizing, there are four terms:

s=—

dz. (B.1.11)

e The timelike-null joint at the intersection between the future boundary of
the WDW patch and the regulator surface, giving

L Tint dg ae
Icutoffl — _ / o
7 &G Jo = e\ VI

= CORT =T COR

e The timelike-null joint at the intersection between the future boundary of
the entanglement wedge and the regulator surface, reading

(B.1.12)

1912 = O (e loge) . (B.1.13)

e The null-null joint at the RT surface, which is the same as in regularization
B, see eq. (4.3.26).
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e The null-null joint at the intersection curve between the future boundaries
of the WDW patch and entanglement wedge, leading to

) Ting smh( S )
It = L / dx 2en X
0 cosh (

7=
831G l T
Tz H) — cosh (Z)
(B.1.14)
L) x
< los afz2 (cosh (22}1,) cosh (Z ))
2L%  cosh ( ) cosh (%)

The total joint contribution yields

Iy =4I + 19 + 194 + 215" (B.1.15)

B.1.2 Complexity

Summing up all the contributions and performing the integrals, we finally get

c 1 L SBTZ ¢ (1 L
SchTz — i (1 +log <L>>—log ( T ) 3.3 (2 + log <L>)+24.
(B.1.16)
The only differences with eq. (4.3.32), obtained through regularization B, are
in the coefficient of the linear divergence and in a finite piece dependent on the

counterterm scale L.

Recently, in order to obtain a universal divergences structure of the gravitational
action, independently of the adopted regularization scheme, counterterms on
timelike boundaries have been proposed. In regularization A, the counterterm
for the timelike cutoff surface reads [182]

/dD—%chTh (Q(DL_ 2 4 DL3R> . (B.117)

Icutoﬁ
ct 167G

being R the Ricci scalar on the codimension-one surface z = e.! Adding the
extra counterterm with D = 3 to eq. (B.l.l?), we find

BTZ C l f/ SBTZ C f/

As a result, the numerical coefficient of all the divergences is the same as in eq.
(4.3.32), and the two regularizations differ just by a finite piece dependent on
the counterterm length scale L.

1The Ricci scalar on the cutoff surface z = € reads R = (D — 2)(D — 3)e2/LA.
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B.2 Holographic conjectures for warped non-rotating
black holes

In this Appendix we focus on the non-rotating WAdS BH with ry = r;, and
r_ = 0. By adapting the calculations described in Secs. 5.2 and 5.3, we check
that the divergences of holographic (subregion-)complexity reproduce the limit
r_ — 0 of the rotating case.

B.2.1 Total action

We start by computing the CA conjecture, relating complexity to the
gravitational action of the WDW patch. The Penrose diagram and the WDW
patch for the non-rotating WAdS BH are illustrated in Fig. B.2. In the following,
we determine each contribution to the gravitational action.

Figure B.2: Penrose diagram and WDW patch at ¢t = tgp = %’ = 0 for the
non-rotating WAdS BH.

Bulk contributions. As shown in Fig. B.2, the bulk contribution can be
partitioned into three terms:

z [™ 17 3P
I&v:@/ dr <2+TA7‘ (r)) ,

€o

) z (A
I, = — N B.2.1
W= G /rh dr(ry —r*(r)), ( )

I Th tb . .
I%,ZSG/EO dr<—2—|—rA—r (r)) ,
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with Z given in eq. (5.1.15) and €y — 0 an IR cutoff. The sum of egs. (B.2.1)
provides the total bulk action

tot 7 A
R =56 [ i)
(B.2.2)

Y A
V2 +3)ry A+ —(1/2 +3)/ drr*(r).

*E( 4G

Boundary terms. Contrary to the rotating case, we have here to include the
GHY term (4.1.5) for the two spacelike boundaries at r = 9. This evaluates to
[119]
2
IGHY = —Z(%;:?’)(QEO - Th)(T}k\ — T*(EQ))
(B.2.3)
(V2 +3)

= Trh (ra —77(0)) ,

where in the last step we have taken the limit g — 0. Due to the near-boundary
behavior of the tortoise coordinate, the expression is divergent for A — oo.

As in the rotating case, the contributions from null boundaries vanish because
we are using an affine parametrization for the null geodesics congruence, see eq.
(5.1.19).

Joint contributions. We have two classes of joints: null-null joints at the UV
cutoff » = A and spacelike-null joints at the IR cutoff r = £g. The latter vanish
when we perform the limit eg — 0. The former are instead given by eq. (5.2.18)
with r, = A and (, = —1:

ot ¢ [A 2 f(A
7" =2x 3G\ 7 VW) log 0422@((&‘
(B.2.4)
R 2 (V2 4+ 3)(A — 1)
=g VAW les| R |

Counterterm for null boundaries. Similarly to eq. (5.2.24), the counterterm
which renders the action invariant under diffeomorphisms is

¢ 62— 1)r+ (V2 +3)r,
IRt = 4><—/ dr lo
STl NGO ¢

@6(1/2 —Dr+ (2 +3)rp,
202 r(r)

(B.2.5)
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Analytically solving the integral and taking ¢y — 0, we find

2(v2 + 3)ry, arctan 3?2 —1)A
3(12 - 1) V@2 +3)r, + 32 —1)A

1

Total action. Putting all the results together, we obtain the expression for
the total action of the WDW patch

tot __ Z

ct T 4G

AT(A)
a2L2 [(v2 4+ 3)ry +6(v2 — 1)A]

—v/ATU(A)log

(v? +3)

It = 3/ d 3)ri A
24 rr* (V +3)ra A+ 1

24 3)(A—rp) [(2 + 3)r + 6(v2 — 1)A]”
452 AT2(A)

+ LM arctan 32— 1A
V23, + 302 - 1A )

\/A\I! ) log

(B.2.6)
The divergent terms in the total gravitational action are thus
¢ L?
It = — 2— 1 A

T 3(v )<og 7 — +3)‘ )
(B.2.7)

l

V3 rnlog A + O(A%),

BN

which reproduce the result (5.2.26) for the rotating BH in the r_ — 0 limit.

B.2.2 External action

In this section we directly compute the gravitational action of the portion of
WDW patch external to the black and white holes, without passing from the
internal action.

Bulk contribution. The bulk contribution can be easily read from eq. (B.2.1):

Y4 Y4 2 +3

_— 2 _
1 32 —-1)A - SG\/i

=21 = — rnlog A+ O(A%),

(B.2.8)
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which gives twice the spacetime volume complexity:

32 1) 203
Viext = 4ne3 A ry log A + O(A%). B.2.9
bulk 213 302 — 1) h 108 (A7) ( )

This expression coincides with (twice) the spacetime volume complexity for the
rotating case in eq. (5.3.7) for r_ — 0.

Joint terms. As in the rotating case, we need to be careful with the
regularization of the joints at the horizon. To circumvent this issue, we again
follow the procedure described in [34]. From eq. (5.2.18), in the present situation
we get

ext _ _ ¢ 2 f(A)
157 =~ {2 |
2 f(TEU,6v> 5 f(on,Ev) 5 f(rEU,Vo)

(B.2.10)
It is convenient to add and subtract the first term in the second line and to use
the relation (5.2.30) to get

¢z fA) ‘
a2 27 (A)

ex’ /€
154 = 5 T(A)log

(B.2.11)
62 f(TEUyﬁv)

Y4
— 55 X(rn) {IOg(UOVO) + log o 2T(rn)

2G

log EUyEy :|
Finally, the expression simplifies by means of egs. (5.2.29) and (5.2.31):
(1/2 +3)(A—rp)

o = ¢ {Wh (” +37~A+F(rh)) T(A)log|— U(A)

- 2G 2

(B.2.12)
The function F(r), given by eq. (5.2.32), is finite and does not contribute to

the divergences of the external action.

Counterterm for null boundaries. The counterterm contribution can be
obtained similarly to eq. (B.2.5), by performing the integral from r, to A. This
leads to

404 AT(A)
a2L2 [6(v2 — 1)A + (12 + 3)rp)?

15t = — () log

e +0O(A%. (B.2.13)
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External action. Adding all the terms, we finally obtain

EZ
IeXt:% 3(v2 — )<log 7 —(? +3)‘ )A
o (B.2.14)
2 _

rilog A + O(AY),

T

which reproduces the rotating BH result of eq. (5.2.36) in the r_ — 0 limit.

B.2.3 Volume

As in the rotating case, for t, = 0 the extremal codimension-one surface
involved in subregion-CV conjecture is the bulk slice at ¢ = 0 extending from
the bifurcation surface r = r to the left (right) boundary. Its volume is simply
given by the integral of the induced metric:

V(L) —27r/ dr G(r f27r€2/ \/ C = Dr+ 2+ 3, . (B.2.15)

42 4+ 3)(r —rp)

Performing the variable change R = r/r,, we obtain

Alrn V2 — v
V(L) = 2nt?r), /1 dR \/3( 42(v2 2};)&( - 1+) 3 (B.2.16)

The integral can be analytically solved, giving

32 -1) 27r€21/2rh ( A )
V(L) = nf? A+ log ( — | +
(L) v2 43 V32 —1)(¥2 +3) & rh

B.2.17
2 2 3(r?-1) ( )
(3 —r%) +2v%log | =5

2¢/3(2 —1)(¥2 + 3)

+ 7T€2’l”h

As expected, the divergent part of this expression reproduces the rotating BH
result of eq. (5.3.6) in the r_ — 0 limit.



Appendix C

Approximations for the
pseudosolution volume

C.1 Approximations for the constraint equations

The constraints in egs. (6.1.19) and (6.1.20)

0 1 | 2rs(r2+r*rh) ( 2 —rh)\/r2—r2 \/ 22 ;
= — 1n —_— 5
Tho 2rg (r2 —rorp) 4+ (202 —r3) /12 — r2 Ts Tx
7‘2
. 1 2,/1— =%
s _ 2 coth(rpt) + | coth?(rpt) — ———o_
Tho 2 1+4/1-2
T2

s

cannot be solved in closed-form for (rs,7.), and are also rather tricky to be
solved numerically, due to the exponential accuracy which is needed at large [
and t. However, in the early and late time regimes, some useful approximations
are available.

Early times. At early times t ~ 0, the HRT geodesic mainly lies in the AdS
part of spacetime. Therefore, s — oo and r, & 2/I, so we can use the r, < rg
approximation in egs. (6.1.19) and (6.1.20). This leads to

- 2 Tht
=7 Ty = 2 th< 5 > , (C.1.1)

which provides a good description of the geodesic early evolution.
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Late times. Formally setting ¢ — oo in eq. (6.1.20), we get

rs(2rs —rp)
fy = 2T —Th) C.1.2
T Th (Th — Ts)z ¥ T? ( )

The function 7, (rs) (C.1.2) is shown in Fig. C.1 together with several I-constant
curves solving the constraint in eq. (6.1.19):

r
1.0
0.8
0.6

0.4

0.2

06 0.7 08 09 70"

Figure C.1: Plot of the ¢ — oo limit curve #,(ry) (black line). The blue lines
correspond to l-constant curves in the (rg, 7.) plane satisfying eq. (6.1.19) for
1 =4,5,8,10 from top to bottom. We have set r, = 1.

The physical accessible region in the parameter plane (r4,7.) is below the curve
74(rs). In other words, we necessarily have rg > ry /2.

In the late time regime, we can introduce a small parameter €, > 0, which
parametrizes the deviation from the curve (C.1.2) as

Ty = Ty — Th Ex . (C.1.3)
We can then solve eq. (6.1.19) at the leading order in e,, getting

8(1 — ps)(2ps — 1)p3 1

1 —2ps + 2p2)2 4(1—p,) 803 —20p4+18p3 —Tp.+2
(172042097 exp (vl 20.-1 )~ (1=p) (207 —2p+1)

(C.1.4)
where we have introduced ps = rs/r,. We are here interested in exploring the
behavior of the HRT geodesic shortly before the thermalization, which takes
place at t = /2. Therefore, the t — oo limit is related to the large [ case. At

* =
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the leading order in [, we find the simpler expression

8(1 = ps)(2ps — 1)p3 4(1 = ps)
L~ s —rpl 4 P} 1.
‘ (1—2ps +2p3)? et 2ps —1 (G-L15)

which is a good approximation when p; is not so close to 1/2; a condition that
is true at large times.

Plugging the expansion (C.1.3) into the time constraint of eq. (6.1.20), we find

1 8(1—ps)p3
= 71 S . 1.
nt= 3 (a1 e T (C.1.6)

Inserting the value of €, (C.1.5), we get

1 _ 4(1—ps) _ _1\2
rpt = 3 (rhl 1 In(2ps — 1) ) . (C.1.7)

Note that the condition ps =1/ V2 is equivalent to

ol !
it = %_\/i_m (\6—1) ~ %—0.53. (C.1.8)

Therefore, for ¢ < £ we have p, < 1/v/2, whereas for t > { we get p, > 1//2.

C.2 The pseudosolution volume at late times

In this section we compute the volume of the pseudosolution 1% shortly before
the thermalization. In particular, we work in the limit I,¢ > 1/rj, and in the
regime in which r, = 7., extensively using the results of Appendix C.1. By
notational convenience, we split the volume of the pseudosolution into four
contributions:

V=V1+V2+V3+V4. (C.2.1)

Referring to eq. (6.2.14) we have

N 2 _ 2.2 . A
Vi=—r+2Y T oaresint,  Vh= z/ (r)dr,  (C.2.2)

T Ts

A Ts
‘73 = / Y(r) k(r)dr, v4 =9 <rh — 7"5) lw Y(r)dr, (C.2.3)

Tm
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where
TQ—T*Th+\/T4+|: +7"(T r2) %]r%ﬂ—krfri
k(r)= —In . ,
T r2(r2—p2 .
L \/r4+ [—1—1— 7h(4j,4 D _ :72} r2r24r2rd
’ " (C.2.4)
r? 7’277" r IS
1 1= % o 20
w=2+—1In P .
’I”hl 1— Th i %+2r*

Recalling that at late times rs > rp /2, from eq. (C.1.3) we derive the following
approximation:

3 (2 2 2
v o o+ ey | T2 oy (C.2.5)

3
8r

We now proceed with the calculation of the various terms in V.

V4 contribution. Due to the Heaviside function, this term is non-vanishing

just in the time window

-1 0.53
t<t=—-—— C.2.6
5 (€26

see eq. (C.1.8). By means of the expansion in eq. (C.1.3), we can approximate

1. e(r? —2rH)?
=24+ —1 M
w + - n 8713 + O(es)
(C.2.7)
1 /4(1 — ps —ps)(1 — 2p?
o1 b (A =pe) g (A=) (= 2p5)
Tl 2ps — 1 ps<1 —2ps + 2[)3)
where in the second line we have used eq. (C.1.5). We also have
2 _ 72
P(r)=r U . (C.2.8)

V7~ 1 0(e)

Since this function must be integrated down to r,,, = rpf. + O( /€), for our
purposes we can safely drop the O(e,) term in the denominator. Thus, defining

/drr —rrh)

1 - * T 2 p2
=72+ 5/ — )i In Vi = 7)f =y - 72

\/(rh — )Py + \/7“2 — 72

(C.2.9)
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we finally get

AN Ti_’l" (o) T — T . 2.
~19<ﬁ s)z (n(rs) = n(rm)) (C.2.10)

V» contribution. At late times, this term can be approximated as

Vaml | d il
2”/ "N T = A2 + G A(r)

gy = P artrd ) —aried)

2rprd

(C.2.11)

It is important to note that if rg < ry/ V/2 branch 2 comes into play, so 75 > 7.
Conversely, if 7 > 71,/ /2 we necessarily have r, < ,,,. Moreover, in the special
case rs = T, from eq. (C.1.2) we get #.(rn) = r,. Putting all together, we
deduce that

=/, for rsz% and ry =71y,

re { > /Tyrp  for rg < r—\/%, (C.2.12)

< A/Pyrp  for \7/’5 <rsg <Th.

Therefore, we need to distinguish between two cases:

e For r, < rh/ﬂ we have rg > /7,1, so the €, term at the denominator
is negligible: .
Voam I(A—n(rs)). (C.2.13)

e Forry > Th/\/§ it is convenient to split Vg V2 + V2 , with
V7PuTh /2 _ 52
Vy = l/ drr N
T V(2 = )2+ e A
A /72 _ 72
VY =1 drr Ar i .
N V(2 —irp)? + e A(r)

As we will see below, VQ“ will be canceled by a term in Vg, thus we do not
evaluate it explicitly. Instead, an approximation for V can be found by
noting that the 0(6*) term at the denominator acts as an effective cutoft:

)

(C.2.14)

Vi~ l/ drr 7‘2 — r*rh) 7= \/r*rh + 1/ e A(\/Pery) . (C.2.15)

Using egs. (C.2.9) and (C.1.4), we find the leading ! behavior

~ A+ \/rsrh —2r2 + 3rgry, —

h) 2.2
1@ 23y HO0- (C.2.16)
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‘73 contribution. In the limit r, — 7., we find that:

=1 p* (203 = 2ps +1) = 205 + ps + |9 (203 — 205 + 1) — 297 + ps|
k(r)=—1In
tho P? (202 = 2ps + 1) +2p2 — ps +[p% (2p2 — 2ps + 1) — 2p2 + ps|
(C.2.17)

in which p = r/r,. Again, we need to distinguish between the following two

cases:

)

o Ifry < Th/\/i,
P> (207 —2ps + 1) —2p2 + ps >0 (C.2.18)

for every ry < r < A. The factor x(r) in the integrand is finite and gets

suppressed in the large [ limit.

o Ifry > 1, /V/2, eq. (C.2.18) is valid just for r > /7,77, and again gives a
negligible contribution. Instead, for r < /r.r, we have to consider the
subleading term in k(r), which reads

1 e (p% (495 — 203 + 2ps — 1) + 2 (1 — 2p,) p?)
In | —
4p3 (2ps — 1) (p* (203 — 2ps + 1) — 2pF + ps)

(C.2.19)
Plugging in the expansion for €, given in eq. (C.1.5), we find that

Kk(r) ~ -1+ 0", (C.2.20)

so the integral exactly cancels with VQ‘I.

Total volume. Adding up all the contributions, we obtain

v A+ % + (w — Dn(rs) — won(rm) for ry <1 /V2,
1 A+ rhl V/rern(rn—ra)2re—rn) + 0% for ry > rh/\@.

4 (T's_rh)2+7"§

(C.2.21)

Recalling the comment around eq. (C.1.8), the first solution holds at
intermediate times ¢ < ¢, while the second one at late times ¢ < t < [/2.



Appendix D

Details of the falling
monopole computations

D.1 Abelian field strength and magnetic flux

The abelian field strength and its dual are [195]

a ra 1 abe,a b c 1% 1 eullozﬁ
Fu =nFy, — —en D,n’D,n°, FH = iﬁ]—'aﬂ. (D.1.1)
The latter satisfies
- 4 1
D, F" = gk” , ky, = gewpgeabcﬁ'”naﬁpnbaanc, (D.1.2)
with k, the topological current. The only non-vanishing components of the
dual electromagnetic tensor F*¥ are

~ - 1
Fir=-Ft=—-—. D.1.3
(D.13)
By the Stokes theorem, the magnetic flux on a sphere of radius r is
Q= [ F"™dS.,,  dSu =npr,r’sin6dfdy, (D.1.4)
S2
where n, and r, are the unit vectors pointing in the time and radial direction,
respectively. A direct computation gives

8
Q= - (D.1.5)

235



236 DETAILS OF THE FALLING MONOPOLE COMPUTATIONS

Remarkably, the magnetic flux is topological and independent of the boundary
coefficients of the bulk fields.

D.2 Calculation of the boundary energy-momentum
tensor

D.2.1 Black hole quench

A metric in FG coordinates has the following form

. dz?2 1
= (3,1,2,9), ds® L2< i +A29ab(ﬁi“)di~adib> , (D.2.1)
z

52
where the index a runs over boundary coordinates
2= (£ &,9). (D.2.2)

We take ¢ = ¢. Nearby the boundary, the FG coordinates can be built
perturbatively by means of

oo oo oo
p=243 ap(@D)zF, w=a+4) b(@,0)F, =14+ (@ i)z
k=2 k=1 k=1

(D.2.3)
Plugging into the metric in Poincaré coordinates and comparing with the FG
metric order by order, we get:

by=c1 =0, ay =by=cp =0, a3 =bz=c3=0, by=c4 =0,
4 A3M
3 (A% + 24282 4 24232 + 14 — 28242 + 34)

ayq4 = (D24)

3/2 "

The energy-momentum tensor can be obtained from the results of [207]:

) _ Lo e g 2
T3 =3C 21_1)1%5 K;j —vi; K — i) - (D.2.5)
In this expression +;; is the induced metric on a Z-constant surface nearby the
boundary, K;; denotes the extrinsic curvature tensor calculated with an inward
unit vector normal to the Z-constant surface, and K = " K;; is the trace of
the extrinsic curvature tensor.
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To explicitly write the components of the energy-momentum tensor, it is
convenient to introduce the lightcone coordinates’

Ui:(u7’U7(p), u=t-—ux, v=t+wx. (D26)
In this coordinate system, the non-vanishing elements of Ti(]BH) are

T(BH) _ A3L2M 3

e 8@ (A2 +u2)%/? (A2 4 o2)/2
T(BH) _ A3L2M 3

T 8T G (A2 4 2)%% (A2 4 u2)'?

(D.2.7)

T(BH) _ A3L2M 1

8T (A2 4 u2)P? (A2 +02)P
T(BH) B ABLQM (u _ U)2

e TG (A2 4 u2)? (A2 +02)Y2

D.2.2 Monopole quench with Dirichlet boundary conditions

In order to put the metric with monopole backreaction in the FG form, we
consider the expansion (7.1.25) of h and g nearby the boundary, setting ho = —gs.
Then, performing the change of variables of eq. (D.2.3) and solving order by
order, we obtain

b1:01:0, CLQZbQ:CQ:O, 1)3203207

242 g,

ag = B P 2 ’

5T AT 1 2Af2 {24232 1 4 9232 4 44
o 4A3 (g3 — h3)

3 (A% 424202 4 24232 4 4 — 2232 + 34)°/° (D.2.8)

, 242 go# (A% — £2 + 3?)

4= — - ; > ’

(A% + 2422 4 24232 + {4 — 21242 + 34)°
242 got (A% + 2 — ?)
Cq4 = ’

(A% 424202 + 2423 4 {4 — 2232 + 34)°

L At the leading order in 2 the FG coordinates coincide with the Poincaré ones:  =t,% = x.
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We can now use the generalization of eq. (D.2.5) involving scalar fields with
Dirichlet boundary conditions [208] to extract the energy-momentum tensor

4 81G 20 2

L . 1 2 iJ a ia
7P — = lim = <Kij — i K — i 47TGLL]¢ ¢ > . (D.2.9)

The components of the energy-momentum tensor in lightcone coordinates look
qualitatively similar to the corresponding components computed in the BH
background, see eq. (D.2.7):

1«D>:1%BH>(16”GQH5H“—3L%B)

3L2M
(D) _ 7(BH) (167TG(1H,8H —3L gg)
3L2M ’
(D.2.10)
T(D 16mGay B — 3L293>
3L2M ’

J*D
3L2M

BH) (
BH) (

32nGay By — 3L gg>

The Ward identity for E(jD) reflecting diffeomorphism-invariance gives [203, 208]
T = Bud;an = (02)0;Jp | (D.2.11)

and the trace of the energy-momentum tensor is
nIT) = anpy = (02)Jp . (D.2.12)

So, in the presence of sources for the scalar operators the holographic energy-
momentum tensor is neither conserved nor traceless.

D.2.3 Monopole quench with Neumann and multitrace bound-
ary conditions

We follow the approach in [203] to determine the boundary energy-momentum
tensor for multitrace deformations. This choice of boundary conditions
correspond to adding to the renormalized action S,e, the finite boundary
action

S}‘:/dSIE\/—igO(JFdH-ﬁ-}—(O?H)), JfZ—BH—.F/(dH), (D.2.13)
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where g is the determinant of the boundary metric (at the end of the calculation
we will specialize to the Minkowski metric (go)i; = 7:;). The variations of the
action functionals are

1 .. -
0Sren = /d3$ —90 <2T” (59(0))2J + BH(SdH> ;
(D.2.14)
§5SF = /d% V=90 (—audBu — anF"(an)dan — Pudaw)
so the total variation is
0S8 = 6Sren + 55}'

1 L o= N 5 5
= /dgl" —90 (2T 7(09(0))ij — moBH — OéHf”(CYH)%éH) (D.2.15)

[ ~
= /dng —90 <2T” (59(0))z‘j + OZH(st) .
The shift of the action by S# causes the following shift of the energy-momentum

tensor:

T;(J?__) = Ti(jD) +nij[Flam) + anJr]

(D.2.16)
= Ti(jD) + i F(am) — anBu — F(am)an] .
The divergence of the energy-momentum tensor is
aiTij]:) = ai:’;(jD) + 0| F(an) — anBu — F'(an)an]
(D.2.17)
= —au (0,6 + F'(an) d;an),
while the trace is
WIS = (TP 4 3(F(an) — aubu — F'(@n)an)
(D.2.18)
= —2ayfy + 3F(ay) — 307}1}_/(54]{) ,
where use has been made of egs. (D.2.11) and (D.2.12).
Setting to zero the source Jr corresponds to
Bu = —F'(au). (D.2.19)

Note that in this case T i(f) is conserved, i.e. aiﬂ(f:) = 0, whereas the trace
reads N
nIT) = —apF (an) + 3F(an) (D.2.20)

which vanishes for the triple trace deformation F = F of eq. (7.3.14).
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D.3 Calculation of the holographic entanglement
entropy

D.3.1 Translated disk

Defining the polar-like coordinates
1 =&+ pcost, To = p sindt, (D.3.1)

the entanglement entropy variation for the translated disk is given by

’7TOé2 l p 2
AS="H | dp—F— dv
S 21 /0 p(p ,p2)3/2 /0

(he — ge) [pwg + 2€ cos ¥ (l2 —p2) (l2 — 124 A2+ €2+ 2£pcos19)}2
4 we [we + 442 (p? — 12)]

(he + ge) (p? cos® 9 — 12) £2¢
we

+

n (he — go) 1P€2sin? 9 (12 — p?) (I — 12 + A% + &2 + 2¢pcos 19)2
we [we + 442 (p* — 17)] ’

(D.3.2)
where
we = w(V/12 4+ €2 + 2€pcos (29),1), (D.3.3)
and w is defined in eq. (7.3.2). In the above integral, both h. and g. are
functions of
1 Jwe +4A2 (p? —12)
= — . D.34
" 2A\/ 12 —-p? (D-34)

D.3.2 Half-plane

The closed-form expression for the entropy variation of the half-plane is

B T‘-QH /+oo /+oo h _ge 02+4Z2 2D2)
- 22 (D2 4 4A212)°

T2

(D.3.5)

ﬂ_aH t2 +oo +oo .+ ge x2 + 22) dx2
z2 (D2 + 4A2¢2) ’

with

C=t'—z"—2t% (25 — A*)+ (23 + A2)2 , D= —t* 4224224+ A%, (D.3.6)
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In the above expression, h.(r) and g.(r) are defined in eq. (7.1.28), with

\/A4 +2A42 (12 + 22 — 22) + (22 + 23 — £2)?
B 24z '

r (D.3.7)

We note that the A dependence can be completely reabsorbed by the scaling

z x t

Consequently, from now on we set A = 1 without loss of generality.

In order to explore the large t behavior of AS, we introduce the variables p,~y
defined by
z = pcosy, X9 = psin-y. (D.3.9)

At large t, the two integrands in eq. (D.3.5) are non-vanishing just in the region
p=t=+ u, with u of order 1. For convenience, we define

p=t+6. (D.3.10)

It turns out that, at large ¢, the term proportional to (h. — g) in eq. (D.3.5) is
much smaller than the one proportional to (h. + g.). Moreover, in this regime,
we can use the approximation

\/62 + sin?
+ sin 7—|—O

r= = (1/t). (D.3.11)
At the leading order in ¢, we find
AS = Ko t, (D.3.12)
with -
K:—%A B he(r) + )] dr (D.3.13)

E is the complete elliptic integral of the second kind, defined as

/2
E(m) = /0 dyy/1—msin®+. (D.3.14)

Considering the analytic solutions in eq. (7.1.29), we get the approximate
numerical value K ~ 0.636.
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