Adequate nutritional practices are the basis of profitability and sustainability of animal production and are one of the main factors influencing animal welfare. In addition to the chemical composition, the safety quality, in terms of fermentation quality and microbial contamination, plays an important role in determining the actual palatability and safety of feed. In the current PhD thesis, we addressed, through heuristic method of data and sample collection, the study of interactions between feed quality and impact on animal performance. In particular, the interactions between silage quality and diets were evaluated. Given the complexity of these matrices in terms of microbial populations influencing and driving feed quality, new challenges in nutritional assessment for cattle must move toward multi-parameter assessments that include chemical-biological, microbiological, and safety characterizations. The collection of this information conducted without predetermined aims, has allowed to analyze with multivariate statistics and machine learning techniques the relationships between feed quality and the effects they have on herd performance, proposing new approaches to classify feed quality and nutritional strategies adopted in dairy farms.
Corrette pratiche nutrizionali sono alla base della redditività e della sostenibilità delle produzioni animali e sono uno dei principali fattori che influenzano il benessere animale. Per valutare gli alimenti, oltre alla composizione chimica, la qualità sanitaria, in termini di qualità fermentativa e contaminazione microbiche, gioca un ruolo importante nel determinare l’effettiva appetibilità e sicurezza degli alimenti. Nel corrente lavoro di tesi di dottorato, si è affrontato, attraverso metodo euristico di raccolta dati e campioni, lo studio delle interazioni fra qualità degli alimenti e impatto sulle performance degli animali. In particolare, si sono studiate le interazioni fra qualità del silomais e delle diete. Data la complessità di queste matrici in termini di popolazioni microbiche che influenzano e guidano la qualità dell’alimento, le nuove sfide della valutazione nutrizionale per i bovini devono orientarsi verso valutazioni multi-parametriche che includano caratterizzazioni chimiche-biologiche, microbiologiche e sanitarie. La raccolta di queste informazioni condotta senza obiettivi predeterminati, ha permesso di analizzare con statistica multivariata e tecniche di machine learning le relazioni tra qualità degli alimenti e gli effetti che hanno sulle performance della mandria, proponendo nuovi approcci per classificare la qualità degli alimenti e le strategie nutrizionali adottate in stalle da latte.
GHILARDELLI, FRANCESCA, USE OF MULTIVARIATE AND MACHINE LEARNING STATISTICS TO RELATE FEED QUALITY AND SAFETY CHARACTERISTICS TO NUTRIENT UTILIZATION EFFICIENCY AND MILK TRAITS: A HEURISTIC APPROACH, GALLO, ANTONIO, Università Cattolica del Sacro Cuore Piacenza:Ciclo XXXIV [https://hdl.handle.net/10807/285908]
USE OF MULTIVARIATE AND MACHINE LEARNING STATISTICS TO RELATE FEED QUALITY AND SAFETY CHARACTERISTICS TO NUTRIENT UTILIZATION EFFICIENCY AND MILK TRAITS: A HEURISTIC APPROACH
Ghilardelli, Francesca
2022
Abstract
Adequate nutritional practices are the basis of profitability and sustainability of animal production and are one of the main factors influencing animal welfare. In addition to the chemical composition, the safety quality, in terms of fermentation quality and microbial contamination, plays an important role in determining the actual palatability and safety of feed. In the current PhD thesis, we addressed, through heuristic method of data and sample collection, the study of interactions between feed quality and impact on animal performance. In particular, the interactions between silage quality and diets were evaluated. Given the complexity of these matrices in terms of microbial populations influencing and driving feed quality, new challenges in nutritional assessment for cattle must move toward multi-parameter assessments that include chemical-biological, microbiological, and safety characterizations. The collection of this information conducted without predetermined aims, has allowed to analyze with multivariate statistics and machine learning techniques the relationships between feed quality and the effects they have on herd performance, proposing new approaches to classify feed quality and nutritional strategies adopted in dairy farms.File | Dimensione | Formato | |
---|---|---|---|
tesiphd_completa_Ghilardelli.pdf
non disponibili
Tipologia file ?:
Tesi di dottorato
Note: tesi
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.