The fundamental role of D-serine as co-agonist at the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor subtype involved in synaptic plasticity, is well documented and experimental evidence indicates now that this D-amino acid is an influential player in the context of psychiatric diseases such as schizophrenia and depression. More recently, a direct link between cocaine addiction, another neuropsychiatric disorder, and D-serine signaling has been proposed by findings that D-serine levels are decreased in the nucleus accumbens of cocaine-treated rats. Such deficit in D-serine content leads to impairment of NMDAR-dependent synaptic plasticity and locomotor sensitization to cocaine, a behavioral hallmark of cocaine addiction. The D-serine hypothesis for cocaine addiction, here proposed, provides considerable insight in the understanding of the cocaine-induced neuroadaptations in reward-related neuronal circuits and opens new attractive perspectives for therapeutic approaches to treat this addictive state.

D'ascenzo, M., Mainardi, M., Grassi, C., The Neuroscience Of Cocaine: Mechanisms And Treatment, The Neuroscience Of Cocaine: Mechanisms And Treatment, Elsevier, Amsterdam 2016: 153-158 [http://hdl.handle.net/10807/94581]

The Neuroscience Of Cocaine: Mechanisms And Treatment

D'Ascenzo, Marcello;Mainardi, Marco;Grassi, Claudio
2016

Abstract

The fundamental role of D-serine as co-agonist at the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor subtype involved in synaptic plasticity, is well documented and experimental evidence indicates now that this D-amino acid is an influential player in the context of psychiatric diseases such as schizophrenia and depression. More recently, a direct link between cocaine addiction, another neuropsychiatric disorder, and D-serine signaling has been proposed by findings that D-serine levels are decreased in the nucleus accumbens of cocaine-treated rats. Such deficit in D-serine content leads to impairment of NMDAR-dependent synaptic plasticity and locomotor sensitization to cocaine, a behavioral hallmark of cocaine addiction. The D-serine hypothesis for cocaine addiction, here proposed, provides considerable insight in the understanding of the cocaine-induced neuroadaptations in reward-related neuronal circuits and opens new attractive perspectives for therapeutic approaches to treat this addictive state.
eng
9780128037508
Elsevier
D'ascenzo, M., Mainardi, M., Grassi, C., The Neuroscience Of Cocaine: Mechanisms And Treatment, The Neuroscience Of Cocaine: Mechanisms And Treatment, Elsevier, Amsterdam 2016: 153-158 [http://hdl.handle.net/10807/94581]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/94581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact