In this note we apply the theory of Association Schemes to computing the dimension of the subspace U of the 196,884-dimensional Conway- Norton-Griess algebra generated by a set of vectors (called Majorana axis) associated bijectively to the 2A-involutions of the Monster group contained in Harada-Norton group. It is still a conjecture that U is actually a subalgebra of the Conway-Norton-Griess algebra.
Franchi, C., Ivanov, A., Mainardis, M., Computing the dimension of a Majorana representation of the Harada-Norton group, Quaderni del seminario matematico di Brescia 25/2013, Seminario matematico, Brescia 2013 2013; 2013 (25/2013): 1-7 [http://hdl.handle.net/10807/65283]
Computing the dimension of a Majorana representation of the Harada-Norton group
Franchi, Clara;Ivanov, Alexander;
2013
Abstract
In this note we apply the theory of Association Schemes to computing the dimension of the subspace U of the 196,884-dimensional Conway- Norton-Griess algebra generated by a set of vectors (called Majorana axis) associated bijectively to the 2A-involutions of the Monster group contained in Harada-Norton group. It is still a conjecture that U is actually a subalgebra of the Conway-Norton-Griess algebra.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.