This is a general frame for a theory which connects the areas of loops, involution sets and graphs with parallelism. Our main results are stated in Sections 4, 5 and 6. In Section 4 we derive a partial binary operation from a bipartite involution set and we discuss if such operation is a Bol operation or a K-operation, in Section 5, Section 6 we relate involution sets with loops.

Pianta, S., Karzel, H., Zizioli, E., Involution sets, graphs with parallelism and loops, <<Quaderno del Seminario Matematico di Brescia>>, 2003; (24/03): 1-20 [http://hdl.handle.net/10807/55456]

Involution sets, graphs with parallelism and loops

Pianta, Silvia;Karzel, Helmut;Zizioli, Elena
2003

Abstract

This is a general frame for a theory which connects the areas of loops, involution sets and graphs with parallelism. Our main results are stated in Sections 4, 5 and 6. In Section 4 we derive a partial binary operation from a bipartite involution set and we discuss if such operation is a Bol operation or a K-operation, in Section 5, Section 6 we relate involution sets with loops.
Inglese
Pianta, S., Karzel, H., Zizioli, E., Involution sets, graphs with parallelism and loops, <<Quaderno del Seminario Matematico di Brescia>>, 2003; (24/03): 1-20 [http://hdl.handle.net/10807/55456]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/55456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact