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Abstract

The domestic bovine Bos taurus is raised worldwide for meat and milk production, or even
for field work. However the functional anatomy of its central nervous system has received
limited attention and most of the reported data in textbooks and reviews are derived from
single specimens or relatively old literature. Here we report information on the brain of Bos
taurus obtained by sampling 158 individuals, 150 of which at local abattoirs and 8 in the dis-
secting room, these latter subsequently formalin-fixed. Using body weight and fresh brain
weight we calculated the Encephalization Quotient (EQ), and Cerebellar Quotient (CQ).
Formalin-fixed brains sampled in the necropsy room were used to calculate the absolute
and relative weight of the major components of the brain. The data that we obtained indicate
that the domestic bovine Bos taurus possesses a large, convoluted brain, with a slightly
lower weight than expected for an animal of its mass. Comparisons with other terrestrial and
marine members of the order Cetartiodactyla suggested close similarity with other species
with the same feeding adaptations, and with representative baleen whales. On the other
hand differences with fish-hunting toothed whales suggest separate evolutionary pathways
in brain evolution. Comparison with the other large domestic herbivore Equus caballus
(belonging to the order Perissodactyla) indicates that Bos taurus underwent heavier selec-
tion of bodily traits, which is also possibly reflected in a comparatively lower EQ than in the
horse. The data analyzed suggest that the brain of domestic bovine is potentially interesting
for comparative neuroscience studies and may represents an alternative model to investi-
gate neurodegeneration processes.
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Introduction

The domestic bovine Bos taurus (Linnaeus, 1758) is a very common domestic mammal raised
for meat and milk production (and sometimes still for field-work) almost everywhere in the
world, or at least where climate and environmental conditions allow it. So it is safe to state that
bovine farming is an industry with different levels of sophistication and technology, depending
on the local economy and market. Approximately 5,5 million bovines are currently raised in
Italy for commercial reasons, and several millions are slaughtered every year for meat produc-
tion (> 2,500,000 for 2014) [1]. However, in spite of the widespread diffusion of this species,
data on the bovine brain are comparatively scarce. Treatises of veterinary anatomy [2, 3, 4, 5, 6,
7,8, 9] report data on the volume and/or weight of the brain, but details on the source (and
especially on the number of subjects analyzed) are generally missing. Specific investigations on
the morphology of the central nervous system (CNS) of large herbivores mostly date back to
over one hundred years ago, when several researchers analyzed the brains of domestic animals,
alone or in comparison with the human brain [10]. Not much else has been added since then,
and as stated in the modern comprehensive textbook of [7] the identification of lobes in the
brain of the bovine (and other domestic species) is currently impossible, due to the lack of
information on the specific organization of the parts.

Information on the brain mass of the bovine comes from the literature or from museum col-
lections and is generally outdated as well as arguably heterogeneous. Data on brain weight may
result from indirect measurements based on cranial volume, and values reported in textbooks
are apparently based on a small numbers of animals [3, 4, 5, 6, 7]. No mention is made whether
the reported brain weights refer to fresh or formalin-fixed specimens. Therefore, data consis-
tency becomes controversial when comparing different datasets, thus making results and possi-
ble correlations difficult to interpret.

Modern technologies, including magnetic resonance (MR), has allowed in vivo imaging of
the bovine brain [11, 12] and comparison with other domestic species. It is now accepted that
terrestrial Cetartiodactyla exhibit a highly folded cerebral cortex, but relatively low neuronal
density [13]. The topographical identification of sulci and gyri is based on morphological anal-
ogies with the human and other well-known species, but the dearth of published reports on the
cytoarchitecture of terrestrial Cetartiodactyla [14] makes it hard to establish functional correla-
tions in the bovine. Since the cytoarchitectonics, neurochemistry, and connectivity of the corti-
cal column is still poorly understood, identification of functions remains hypothetical and
leaves several questions open [15].

It must be noted that, in the last decade, a number of studies have validated the use of Bos
taurus species as interesting alternative mammalian species in comparative neuroscience stud-
ies, due to its large and highly convoluted encephalon and the length of the gestation period (41
weeks), that is comparable to the human pregnancy (38-40 weeks); for details see [16, 17, 18].

Many recent works have drawn attention to the relationship between evolutionary changes in
brain size and behavioral complexity (for a recent review see [19]). The relationship of brain size
to body size was the basis of Dubois” “index of cephalization” [20]. Dubois’ proposal for an equa-
tion was further developed by [21], to obtain what was then referred to as the encephalization
quotient (EQ). Encephalization occurs when the actual brain size diverges from the expected
brain size for an animal of a given mass. Thus, EQ represents how many times larger (or smaller)
a species’ brain is in comparison with what would be expected for its body mass [22]. The differ-
ence from the expected value is used as predictor of an animal’s adaptive capabilities.

Great attention has been devoted to inter- and intra-order comparisons among different
mammalian species, almost constantly referring to wild specimens as a paradigm. Although
the rationale of studying only undomesticated animals is quite clear, it is also true that the
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brain weight used to plot the EQ of some species may have been that of specimens who died in
zoos or animal parks, therefore somehow far from the ideal. We emphasize that the application
of EQ to the human brain of course is an exception. The issue of domesticated mammals has
been seldom explored, except in a few articles [23]. In this context here we focused our atten-
tion to the brain of the domestic bovine Bos taurus.

The present paper is aimed at studying very essential but still indefinite issues regarding the
size of bovine brain compared to body weight. The widely accepted EQ [21] and cerebellar
quotient (CQ) allow comparison with other mammalian species to determine evolutionary pat-
terns in brain size across divergent groups of mammals. These quotients have been calculated
and applied to several groups of mammals, and especially to wild species. Although this is
important to understand the evolutionary patterns of diversification and specialization of
mammals, the total lack of information on domestic species is hard to explain, given their eco-
nomic and social importance, and the important ethical issues related to animal welfare. In the
present study, data obtained from a large number of bovine brains collected at the slaughter-
house are compared to data on the brain size of other mammalian species gathered from the
published literature.

Materials and Methods
Brain sampling

For the present study, we sampled a total of 158 bovine brains, 150 of which were collected at
the “F.1li Tosetto”, abattoir of Campo San Martino, Padova, Italy (see Table 1 for body and
brain weight; details of sampled animals are reported in S1 Dataset) and 8 were removed in the
necropsy room of the Department of Comparative Biomedicine and Food Science of the Uni-
versity of Padova at Legnaro.

A The age of the animals was determined based on official documentation available at the
moment of slaughtering (for the animals sampled at the abattoirs) or presented by the owners
(for the animals sampled in the necropsy room). The large majority of slaughtered animals
(n = 139) was represented either by heifers or cows, since male Bos taurus are generally not
raised beyond puberty in the production system.

The cause of death of the bovines sampled in the necropsy room was related to fatal illnesses
of various nature but not involving the CNS. All the animals whose brain was sampled in the
necropsy room were adults (>3 years).

At the slaughterhouse, animals were treated according to the current European Community
Council directive concerning animal welfare during the commercial slaughtering process, and
constantly monitored under mandatory official veterinary medical care. The brains were
weighed using a Bel Engineering S3201 precision scale (range 0.1 to 3,200 g). The dura mater
was removed during extraction of the brain. The arachnoid was frequently broken during

Table 1. Breeds of Bos taurus sampled at the slaughterhouse (n = 150).

Breed Mean animal weight (Kg) and (Standard Mean brain weight (g) and (Standard N
error of mean) error of mean)

Dairy cattle (Holstein-Friesian and other breeds with the 583.92 (10.98) 476.91 (4.45) 105

same attitude)

Beef cattle (Charolaise-Limousine and other breeds with 578.99 (6.81) 479.39 (12.69) 11

the same attitude)

Crossbred with double attitude 643.41 (19.81) 492.11 (9.67) 34

Total 597.05 (9.30) 480.54 (3.93) 150

doi:10.1371/journal.pone.0154580.t001
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removal of the dura. The pia mater was generally left in place, since its careful elimination was
impossible to perform at the slaughterhouse without risking damaging to the brains. Body
weight was determined for each animal by the staff of the slaughterhouse.

Brains removed in the necropsy room (n = 8) were immersed in formalin for two weeks and
stored at 4°C to allow hardening and proper fixation. Such a short-term immersion in formalin
did not substantially modify brain weight [23]. The subdivision of the brain into its component
parts was performed consistently by one of the Authors (BC), to avoid bias in subsequent sam-
pling sessions. The spinal cord was transected from the brain at the level of the occipital fora-
men. The weight of the brain and its components derived from primary vesicles
(telencephalon; diencephalon; mesencephalon; pons, cerebellum; myelencephalon) was calcu-
lated based on formalin-fixed brains after careful dissection.

Encephalization Quotient and Cerebellar Quotient

The weight of the brain was related to body weight to obtain the EQ, calculated with the for-

mula EQ = %, where Ei and P are the mean weights of the brain and body, respectively
0.12P3

[21]. We maintained the value of the exponent (% = (.67) originally indicated by [21], although

we are aware of alternative values for the slope (for review see [24]). The EQ in this study was
calculated using only data from fresh brains (n = 150). The EQ was calculated for each adult
bovine, using their specific brain and body weights. The data thus obtained were then com-
pared to reports in the literature for other species (see below). When choosing the species for
comparison, we deliberately included representative terrestrial and marine Cetartiodactyla.
To calculate the Cerebellar Quotient (CQ), we applied the formula CQ = W pro-

posed by [25], in which Cb,,, is the volume of the cerebellum (Cb,,; X 1.04 = Cb,,, s X 0.96)
[26], and M,, is the brain weight (= Ei).

Statistical analysis

To investigate the relation between brain weight (BrW), as the response of our model, and a set
of possible independent categorical and numerical predictors, such as sex (S), bovine breed
(BB), age (A) and body weight (BoW), we performed an in-depth statistical analysis using the
general linear model. Actually, we fitted the following ANCOVA-type (ANalysis of COvari-
ance and VAriance) [27] linear model:

In(BrtWy,) = u+ By;S; + ByuBB, + B3A; + B,In (BoW ) + £,

where In(.) means the natural logarithm, i is the animal individual index, j is the two-level sex
index, k is the bovine breed category index and €, are random terms assumed as independent
and identically homoscedastic (with fixed variance) normal distributed random errors.

After removing/selecting the non-significant/significant predictors, by using a step-wise
approach, we applied to our data a suitable empirical model, i.e., a response surface (or curve)
model [27], where the terms surface or curve response models refer to the number of numerical
predictors, i.e. only one (curve) or more than one (surface).

The statistical software Minitab (release Minitab 17.2.1) was employed for all analyses.

Results
Gross anatomy of the bovine brain

The brains of the bovines of our experimental series exhibited gross morphological features
typical of terrestrial Cetartiodactyla, with large telencephalic hemispheres, partially hidden
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Fig 1. Dorsal view of the brain of a young Bos taurus. Scale bar =3 cm.

doi:10.1371/journal.pone.0154580.g001

cerebellum with prominent vermis, and an evident development of olfactory and limbic struc-
tures (Fig 1).

The small number of male specimens reflects the current production trend, in which only
very few selected males are allowed to survive beyond puberty. Comparison between sexes was
performed only for animals of comparable age (Table 2).

However, we emphasize that among the animals belonging to the same age class (1-2
years), females were generally a few months older than males and thus had heavier bodies and
heavier brains. For substantiation of data see also the statistical analysis below.

Weight of the brain and EQ

The mean brain weight of the bovines in our experimental series, based on a total of 150 ani-
mals and reported in Table 2, was 480.5 g (Standard error of mean—SEM = 3.9), with a mean
body weight of 597.1 kg (SEM = 9.3). The mean weight of the brains fixed in formalin (n = 8)
was 483.3 g (SEM = 21.33).
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Table 2. Comparisons of young (1-2 years) male (n = 10) and female (n = 17) brains sampled at the
slaughterhouse.

SEX Mean animal weight (Kg) and (Standard error Brain weight (g) and (Standard error N

of mean) of mean)
male 558.00 (33.68) 462.77 (11.14) 10
female 591.87 (24.84) 492.25 (9.85) 17

doi:10.1371/journal.pone.0154580.t002

Table 3. Age groups of the animals sampled at the slaughterhouse (n = 150).

Age N  Mean animal weight (Kg) and (Standard Brain weight (g) and (Standard EQ
group error of mean) error of mean)

1-3 40 580.95 (15.73) 476.19 (6.97) 0.58
years

4-8 94 603.66 (12.23) 480.41 (5.11) 0.57
years

>9 16 598.44 (34.69) 492.14 (9.74) 0.59
years

doi:10.1371/journal.pone.0154580.t003

Table 3 reports body weight, brain weight and relative EQ values grouped according to the
age class of the sampled animals.

The sample size is larger for animals in the 2-8 year range, as expected considering that the
animals are raised for meat or milk production. The oldest cows were aged 16 (n = 1), and 15
(n=4).

Young pre-pubertal animals of less than three years (n = 40) had a brain weight of 476.19 g
(SEM = 6.97), a mean body weight of 580.95 kg (SEM = 15.73), and an EQ of 0.58 (Fig 2 and
Table 3). Bovine aged 4-8 years (n = 94) showed heavier brains (480.41 g, SEM = 5.11), heavier
bodies (603.66 kg, SEM = 12.23) and a slightly lower EQ (0.57). The group of older animals
aged 9-16 (n = 16) showed the highest EQ (0.59), due to heavier brains (492.14 g, SEM = 9.74)
and a body weight intermediate between those of the former two age classes (598.44 kg,

800
O Body weight [kg]
8 Brain weight [g] 14
700 ——MeanEQ 2

21
600

08

EQ

200 04

100 0,2

0,0
4 5 6 7 8 9 0 11 12 13 14 15 16

Age [years]

Fig 2. Body and brain weight of domestic Bos taurus in the different age classes. Light gray bars: body
weight; dark gray bars: brain weight; solid line and white triangles: mean EQ. Numbers on top of the bars
represent the number of specimens for each age considered.

doi:10.1371/journal.pone.0154580.9002
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Table 4. Absolute and relative weights of the constituents of the encephalon of the animals sampled
in the necropsy room (n = 8).

Brain vesicle Mean weight (g) and (Standard error of mean) relative weight
Telencephalon 365.3 (16.21) 75.6%
Diencephalon 28.71 (1.61) 5.93%
Cerebellum 48.06 (2.25) 9.9%
Pons 13.86 (0.93) 2.9%
Medulla oblongata 18.47 (0.90) 3.8%
Whole brain 483.33 (21.33) 100%

doi:10.1371/journal.pone.0154580.t004

SEM = 34.69). Subdivisions of brain and body weight, and EQ, for single years of ages and age
classes are represented in Fig 2.

The mean EQ, calculated using the mean values for brain and body weight of all animals
(n = 150), was 0.565.

Weight of brain vesicles and CQ

The absolute weights and relative percentages of the telencephalon, diencephalon, mesenceph-
alon, cerebellum, pons, and medulla oblongata are summarized in Table 4.

The CQ calculated using mean cerebral and cerebellar masses of brains removed in the nec-
ropsy room (n = 8) was 0.725.

Statistical results

We applied an ANCOVA-type general linear model by setting as response variable the loga-
rithm of brain weight and as the set of possible independent predictors, two categorical vari-
ables such as sex, bovine breed, and two numerical variables such as age and logarithm of body
weight. We also included some possible quadratic and interaction effects in our model, i.e. the
square of age and the interaction between age and gender. Interestingly, the stepwise selection
method suggested that, at the significant level set to 5%, only the body weight had a significant
effect (P-value = 0.001) while all the remaining main and interaction effects were non-signifi-
cant (Age P-value = 0.907, Sex P-value = 0.595, Bovine breed P-value = 0.537, Age” P-

value = 0.418, Age Gender P-value = 0.645). In particular, the insignificance role of the bovine
age may be probably explained by the relative low number of young animals in our dataset. We
remind that the stepwise selection method jointly removes and adds terms to the model for the
purpose of identifying a useful subset of the terms.

After that, we fitted an Ordinary least squares (OLS) linear regression model (Fig 3) suitable
to predict the logarithm of brain weight once setting the logarithm of body weight; the fitted
model was significant at the 5% significant level (P-value = 0.001). Note that the empirical
model was actually a linear curve since only one numerical predictors was found to signifi-
cantly affect the brain weight.

The final residual analysis (Fig 4), suggested that the assumptions underlying the general
linear model, and linear regression as well, i.e., normality, homoscedasticity, and independence,
are all reasonably met. In fact, the plots on the left side shown a pretty straight line (Normal
Probability Plot) and a very well bell-shaped histogram; finally, since no kind of structured pat-
terns were found in the plots on the right side, the residuals versus fits and versus order plots
did suggest that assumptions of homoscedasticity and independence are both met. We remind
that residuals are actually calculated as the difference between the observed and the estimated
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Fitted Line Plot
Brain weight = 413.5 + 0.1123 Body weight

700
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Brain weight [g]
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Body weight [kg]

Fig 3. Linear regression analysis between logarithm of brain weight (g) vs. logarithm of body weight
(kg). The fitted model was significant at the 5% significant level (P-value = 0.001).

doi:10.1371/journal.pone.0154580.g003

response values; residuals can be argued of being informative on the theoretical random terms
we assumed in our linear model (see Statistical analysis section).

Discussion

In our experimental cohort, as expected, the brain weight increases in average as well as the
body weight, with a positive slope equal to 0.5260 (in the logarithmic scale). It is worth noting
that, even if there is some relative scatter around the fitted line, the mean brain weight is esti-
mated with a relative small uncertainty, as demonstrated by the narrow confidence interval
bands (Fig 3, dotted lines). In fact, the estimated error standard deviation was 0.097 In(g).
Therefore our data indicate that the brain of domestic Bos taurus shows a relatively low degree
of variability, with minimal variations among age classes (Table 3 and Fig 2). This is clearly a
consequence of the high degree of standardization of bovine farming, in which individuals are
actively selected for specific genetic characteristics. This statement is confirmed by the outcome
of our statistical analysis, where we showed that neither age nor bovine breed significantly
affected the brain weight. The EQ that we obtained is similar (but not identical) to values
reported by other studies in the same species [6, 28] (see Table 5).

Residual Plots for Brain weight [g]

Normal Probability Plot Versus Fits
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Fig 4. Graphical output from analysis of residuals of the linear regression model. The two left-side plots
refer to the normality assumption while the two right-side plots refer to the homoscedasticity and
independence assumptions.

doi:10.1371/journal.pone.0154580.g004
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Table 5. Brain weight, body weight and EQ in terrestrial Cetartiodactyla and selected marine species belonging to the same order.

Cetartiodactyla
terrestrial Suidae
Bovidae
Camelidae
Giraffidae
amphibious Hippopotamidae
aquatic Delphinidae
Physeteridae

Balaenopteridae

doi:10.1371/journal.pone.0154580.t005

Species Brain weight (g) Body weight (kg) Reference EQ
Sus scrofa 180 192 [28] 0.45
180 125 [29] 0.60
162 157 [30] 0.46
Bos taurus 445 550 [6] 0.55
456 520 [28] 0.59
Ovis aries 130 50 [6] 0.80
125 49 [28] 0.78
135 74 [29] 0.64
137 46 [3] 0.89
130 58 [7] 0.72
Capra hircus 106 30 [28] 0.91
125 38 [3] 0.92
140 48 [7] 0.88
Camelus bactrianus 576 400 [29] 0.88
540 450 [30] 0.77
518 594 [31, 32] 0.61
Giraffa camelopardalis 773 1002 [30] 0.64
700 1209 [33] 0.51
Hippopotamus amphibius 882 2001 [34] 0.41
590 1400 [28] 0.39
720 1351 [33] 0.49
Tursiops truncatus 1587 167 [35] 4.4
1676 215 [36] 3.89
1759 206 [29] 4.20
Orcinus orca 5617 2049 [35] 2.9
Physeter macrocephalus 7818 37094 [35] 0.6
Megaptera novaeangliae 6100 30050 [37] 0.53
6439 39331 [38] 0.46

The bovine EQ is also similar to that of other large terrestrial Cetartiodactyla, such as the
Bactrian camel and the giraffe (Table 5 and Fig 5). The brain of the domestic Bos taurus, Ovis
aries and Capra hircus are morphologically very similar [12], except for their mass. However,
the sheep and goat present a higher EQ, possibly due to some degree of unavoidable bias of the
Jerison’s equation towards species with high body mass (see also the hippopotamus). It is also
remarkable that genetic selection of the domestic Bos taurus is far more advanced than that of
other domestic herbivores, and obviously not comparable to wild species. There are presently
no indications of possible differences in brain anatomy or volume due to a specific breed of
domestic Bos taurus. The general description of the brain of this species given in classic text-
books of comparative neurology still applies [39]. Data on the swine are difficult to discuss and
compare, because the reference studies reported in Table 5 did not detail the breed of the sam-
pled individuals. We are presently investigating the EQ of the domestic Sus scrofa using a wide
sampling cohort.

The EQ values of the bovine brain are similar to those of the large baleen whales, also
belonging to the order Cetartiodactyla, and perhaps also emphasize the similarities in the feed-
ing and digestive mechanisms shared by ruminants and baleen whales [40].
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Fig 5. Encephalization Quotient (EQ) of terrestrial Cetartiodactyla and selected marine species
belonging to the same order, based on brain and body weight expressed in grams.

doi:10.1371/journal.pone.0154580.9005

We emphasize that the situation is very different in the horse Equus caballus, another large
and very common domestic herbivore belonging to the order Perissodactyla: The horse shows
great individual variability n brain size, with approximately 10% of the animals showing an EQ
in the primate range [23]. The difference between the even-toed bovine, and the odd-toed
horse, species belonging to different mammalian orders, may depend on the less intensive
breeding effort in horse farming. As is the case for other species [21], domestication of Bos tau-
rus may have resulted in a loss of brain weight [41]. The evolutionary significance of the phe-
nomenon is debated, and it appears that domestication has not affected the general
dependency of brain on body size or vice versa, but domestication has changed the brain size
[41]. It is also well known that no domesticated form has ever shown an increase in brain size
in comparison to its wild counterpart [41].

The CQ (0.725) calculated for the animals sampled in the dissecting room (n = 8) was lower
than that of the horse (0.841, [23]). When compared with other mammals, the bovine CQ was
lower than that of African (>1.66), and Asian elephants (> 1.84); and primates (0.71-1.28) [25].

Attempts to correlate complex behaviors with brain structure or size are challenging (for a
review see [42]). Differences in EQ and CQ between small toothed cetaceans and Bos taurus
(and similar terrestrial Cetartiodactyla) are possibly related to evolutionary adaptation to dif-
ferent environments, feeding strategies and consequent sensorial specialization. However, the
evolution of brain pathways that promote complex behavioral traits remains enigmatic [43].
Sensory centers in the brain increase in size and complexity in proportion to the importance of
a particular sensory modality, yet often share circuit architecture because of constraints in pro-
cessing sensory inputs [44]. Many different functional areas controlling sensitivity, motility or
cognition are present within the brain and the evolution of these areas may occur according to
two hypotheses. Specific areas may evolve independently [from other parts], according to the
hypothesis of mosaic evolution [45]. Alternatively, a coordinated size change may occur,
whereby functionally unrelated areas change together, as a result of the whole brain develop-
ment [46, 47]. The fact that the bovine brain shows the lateral enlargement of the temporal
lobes that is also typical of baleen whales (and elephants) may be due in part to a common
genetic ancestry and to the need for high level acoustic performance. How the organization of
the cortical column is affected by the process remains to be explained. The distribution of neu-
ral markers in the cortex is relatively well known in several orders of mammals, but not in ter-
restrial Cetartiodactyla [48]. Thus we may consider areas of the bovine brain (frontal, visual,
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cingulate) only as a general topographical reference, but not as a functional unit with definite
homogeneity (for a general discussion on the homology of brain areas see [49]). Cytoarchitec-
tonic maps (starting with [50]) are also essential to define the extension of individual areas,
including the putative associative areas, where higher brain functions take place—at least in
part—also in non-primate mammals. At present, we have no idea on the "quality" of the pre-
cruciate cortex of bovine, and are so at a loss when defining this area, its extension and the
reciprocal relationships with intra-cortical bundles and thalamic afferents. Indirect references
[51] point to a diffuse lack of an evident layer 4 in the cortical columns, and thus suggest the
presence of diffuse agranular microcircuitry, based on the analogue cortex observed in rodents
[52] and man [53].

An alternative approach to comparative neuroscience, based on non-rodent models, may
yield novel insights into the evolution of the brain and intelligence [54, 55]. A study of the neo-
cortex in terrestrial Cetartiodactyla would be highly helpful for this purpose. Standardization
of bodily parameters sets the domestic Bos taurus apart from its wild varieties (Bos primigen-
ius), and may consequently diminish the general scientific interest towards this mammals.
However, standardization is also a key requisite that guarantees reproducible results in scien-
tific experiments, considering also that the use of bovine fetal and adult brain samples may
contribute to reduce the use of laboratory animals, as unanimously proposed by several neuro-
science societies and by the European Community regulations [56]. On the other hand, a better
understanding of the neural abilities and sensory modalities of farm animals is also becoming
crucial in view of the growing public concerns for their health and wellbeing, and the increasing
awareness of their conditions.

Supporting Information

S1 Dataset. Details on the animal sampled at the slaughterhouse and in the necropsy room.
The excel columns contain details on the single individual animals sampled at the slaughter-
house, including ear tag, brain weight, body weight, and breed.
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