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Abstract
Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been
proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium
generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation,
suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while
promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages.
These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging
results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an
immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic
cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have
been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell
proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells,
immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome,
the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both
the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.
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Introduction

Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs), first identified in bone

marrow (BM-MSCs) as adherent cells that form colonies1,

were subsequently isolated from virtually all adult and peri-

natal tissues. MSCs are defined as tissue-culture plastic

adherent cells capable of differentiating into osteoblasts,

adipocytes, and chondroblasts in vitro. MSCs express cluster

of differentiation (CD)73, CD90, and CD105, and lack the

expression of CD11b, CD14, CD34, CD45, CD79a, and

human leukocyte antigen (HLA)-DR surface molecules2.

An intriguing property of MSCs is their broad immuno-

modulatory activity both in vitro and in vivo. These immu-

nomodulatory properties are usually referred as suppressive

properties, and their ability to inhibit proliferation, inflam-

matory cytokine production, and functionality of different

immune cell populations of the innate (monocytes, macro-

phages, dendritic cells, neutrophils, natural killer [NK] cells,

mast cells), and adaptive (T and B cells) immunity, have

been largely described3–5. Therefore, due to their trophic and

immunomodulatory properties, MSCs have been success-

fully exploited in the preclinical (and clinical) treatment of

inflammatory and immune-based disorders6,7. However, dif-

ferent studies indicate that the majority of MSCs do not

persist following infusion, are able to induce in vivo immune

responses, and are immune rejected8–14. Moreover, MSCs

exposed to interferon g (IFN-g) in vitro can express signif-

icantly more major histocompatibility complex (MHC) class

I and MHC class II than untreated MSCs and act as antigen-

presenting cells15–17. In addition, MSCs in specific culture
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conditions can also stimulate an immune response inducing

T cell proliferation18–21 and respond to Toll-like receptor

(TLR) ligands22–24. In sum, together with immunosuppres-

sive properties, increasing evidence suggests that MSCs are

not intrinsically immune privileged and can possess immu-

nostimulatory properties25,26.

Amniotic Membrane-Derived Cells

Among the many cell types useful in developing therapeutic

treatments, human placenta-derived cells have been pro-

posed as valid candidates27,28. Within placenta, human

amniotic membrane (AM) is a fetal tissue that constitutes,

together with the chorionic membrane, the amniotic sac that

encloses the fetus during pregnancy. Human amniotic

epithelial cells (hAECs) and human amniotic mesenchymal

stromal cells (hAMSCs) are the 2 primary cell types that

comprise the AM29. Isolation protocols and phenotype mar-

kers have been extensively described for both hAECs and

hAMSCs. After isolation, hAECs express different markers,

including CD324 (E-cadherin), CD326 (epithelial cell adhe-

sion molecule), CD73, CD166 (activated leukocyte cell

adhesion molecule), and stage-specific embryonic antigen

(SSEA-4). hAECs do not express CD14 and CD45. On the

other hand, hAMSCs express the classical MSCs markers

CD90, CD44, CD73, and CD105 (endoglin)29. After isola-

tion, hAMSCs also include a subpopulation of macrophages

positive for CD14, CD11b, and HLA-DR, which has been

shown to decrease markedly during culture passages30,31. In

vitro, both hAECs and hAMSCs have been shown to differ-

entiate toward mesodermal (osteogenic, chondrogenic, and

adipogenic), ectodermal (neural), and endodermal (pancreatic)

lineages29.

In addition to their differentiation potential, amniotic

cells downregulate inflammation, and both hAECs and

hAMSCs have emerged as valid candidates for the potential

use in inflammatory and immune-based disorders32–35. As

with BM-MSCs, amniotic cells also seem to exert their bio-

logical function through trophic mechanisms, including the

secretion of cytokines and growth factors with antiapoptotic,

proangiogenic, and immune-regulatory properties36. How-

ever, as for BM-MSCs, some immunogenic and stimulatory

activity has also been raised.

In this review, we will focus on the immunomodulatory

properties of amniotic cells, discussing both their main

immunosuppressive potential and their sporadically

described immunostimulatory activity. Moreover, we will

discuss some controversial results that remain to be clarified.

Immunosuppressive Properties of
Amniotic Cells

In Vitro Immunosuppression

Multiple reports have provided evidence of the immunosup-

pressive properties of amniotic cells that could derive from

their role in maintaining fetomaternal tolerance during preg-

nancy. Different in vitro studies have shown that both

hAECs37–39 and hAMSCs30,40–43, or a mix of the 2 obtained

from the total AM digestion44,45, strongly suppress T lym-

phocyte proliferation in a dose-dependent manner. Inhibition

was observed when T cell proliferation was induced by allo-

geneic stimuli in vitro (in mix lymphocyte cultures

[MLCs])30,37,38,40,41,44–46, T cell receptor cross-linking

(anti-CD3/anti-CD28)30,41, mitogens such as Concanavalin

A37,39,43 and phytohemagglutinin38,40–42, or by recall

antigen37. Interestingly, amniotic cells can also suppress the

proliferation of peripheral blood mononuclear cells

(PBMCs) isolated from patients with rheumatoid arthritis47.

Some groups have reported that hAECs and hAMSCs con-

tact with PBMCs is a prerequisite for immunosuppressive

effects37,38, whereas other groups have shown that inhibition

occurs regardless of cell–cell contact30,40,41. Moreover, the

conditioned medium (CM) generated from the culture of

amniotic cells has been shown to possess antiproliferative

effects on lymphocytes30,43,48,49, thus providing evidence of

a paracrine-mediated immunosuppressive activity. Amniotic

cells and their CM suppress the proliferation of both acti-

vated CD4 and CD8 T cells50,51 and reduce different T cell

subsets and related cytokines, such as T helper (Th)1 (IFN-g,

tumor necrosis factor a (TNF-a), interleukin 1b (IL-1b), IL-

12p70), Th2 (IL-5, IL-6, IL-13), Th9 (IL-9), and Th17

(IL-17A, IL-22)43,47,50–53. Moreover, different inflammatory

cytokines are shown to be suppressed by hAMSCs in

PBMCs activated in MLCs, including IL-21, IL-12/IL-

23p40, regulated on activation, normal T cell expressed and

secreted (RANTES), interferon gamma-induced protein 10

(IP-10), monokine induced by gamma interferon (MIG),

macrophage inflammatory protein (MIP)-1a, MIP-1b,

monocyte chemoattractant protein-1 (MCP-1), and the solu-

ble Fas-ligand (FAS-L) and soluble CD40-ligand (sCD40-

L)41. On the other hand, amniotic cells and their CM possess

the ability to promote the induction of regulatory T cells in

MLCs47,50–52, which could in turn significantly contribute to

the suppressive activities exerted by amniotic-derived cells.

Besides T cells, amniotic cells were found to influence

the activity of several other immune cells. Indeed, CM from

hAECs culture was shown to induce murine B cell apoptosis

and inhibit B cell proliferative responses to lipopolysacchar-

ide (LPS)48.

Moreover, hAECs and hAMSCs have been shown to inhi-

bit the cytotoxicity of NK cells against K562 cells in a dose-

dependent manner54. Inhibition of NK cytotoxic activity was

correlated with downmodulation of NK-activated receptors

(NKp30, NKp44, NKp46, NKG2D, CD69) and was reversi-

ble since the reduced NK cytotoxicity was recovered by

continuous culturing without amniotic cells. Together with

cytotoxic activity, the release of pro-inflammatory IFN-g
by NK cells significantly decreased after amniotic cell

coculture54. Interestingly, amniotic cell immortalization

does not alter the suppressive properties toward NK cells54,

as also observed toward T cells42.
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Neutrophils have also been reported to be a target of

amniotic cells. Indeed, CM from hAECs has been shown

to inhibit the migration of murine neutrophils in vitro48,

while CM from AM accelerated apoptosis of neutrophils55.

Finally, immunomodulation and paracrine effects have

been observed toward antigen-presenting cells (APCs).

Indeed, it was demonstrated that hAMSCs and hAECs act

directly on monocytes decreasing the production of TNF-a
and IL-6 cytokines induced by LPS stimulation54. Moreover,

amniotic cells and their CM have been shown to block dif-

ferentiation and maturation of monocytes into dendritic cells

(DCs)31,50,56–58 or into inflammatory M1 macrophages50,59,

switching monocyte differentiation toward macrophages

with anti-inflammatory M2-like features. Indeed, macro-

phages generated in the presence of amniotic cells and their

CM usually show reduced expression of costimulatory mole-

cules CD40, CD80, CD86, and HLA-DR, and reduced secre-

tion of different pro-inflammatory factors such as IL-12p70,

TNF-a, CCL5/RANTES, CXCL10/IP-10, CXCL9/MIG,

MIP-1a. Moreover, these cells show increased production of

the anti-inflammatory cytokine IL-1058,59, and the increase

expression of the immunosuppressive molecules HLA-G was

also reported in monocytes differentiated toward DCs in the

presence of hAECs56. As a consequence, these cells were

shown to be poor inducers of allogeneic T cell proliferation

and inflammatory Th1 cell generation, favoring the emer-

gence of regulatory T cells31,59. Additionally, phenotype,

migration, and cytokine expression of murine macrophages

have been affected by hAMSCs and CM from hAECs48,60–62.

Interestingly, activation of human microglia (the resident

macrophages in the brain and spinal cord) has been described

to be modulated by amniotic cells and their CM. In fact, the

proliferation and TNF-a inflammatory cytokine production

was suppressed in microglia cocultured with hAMSCs63. In

addition, hAMSCs or their CM promoted M2 microglial

polarization in organotypic cortical brain slices exposed to

ischemic injury by oxygen–glucose deprivation64.

Overall, the ability of amniotic cells (both hAECs and

hAMSCs), and their CM to dampen in vitro inflammatory

conditions by suppressing the proliferation, inflammatory

cytokine production, stimulatory, and cytotoxic activity of

different immune cell subpopulations, and by inducing

T cells and monocytes to acquire anti-inflammatory and

regulatory functions, has been widely demonstrated.

In Vivo Immunosuppression

The ability of amniotic cells, and their CM, to downregulate

inflammation offers significant therapeutic potential for

treating inflammatory diseases. Indeed, amniotic cells and

their CM have been successfully applied in different precli-

nical disease models where exacerbated inflammation

occurs28, such as lung fibrosis60,65–69, liver fibrosis70–72,

wound healing73–76, collagen-induced arthritis47,77, inflam-

matory bowel disease47, sepsis47, colitis47,61, experimental

autoimmune encephalomyelitis (EAE, an animal model for

multiple sclerosis)47,78, and traumatic brain injury (TBI)64.

In these models, the modulation of inflammation is thought

to be a key element used by amniotic cells and their CM to

trigger the restoration of tissue integrity, by dampening pro-

inflammatory signals (cytokines and cells), and enhancing

anti-inflammatory immune components (Tregs and

M2-macrophages)79. Indeed, beneficial effects were associ-

ated with reduced infiltration of inflammatory cells such as

neutrophils, such as neutrophils, monocytes/macrophages,

and/or T cells in the injured site47,60,61,65,70,77,78. A reduction

of inflammatory in of inflammatory microglia/macrophages

has also been observed after hAECs infusion in fetal sheep

brains after LPS-induced injury80.

In addition to the reduced cell inflammatory infiltration,

amniotic cell treatment was shown to be associated with

decreased levels of different cytokines/factors that are linked

to inflammation, such as MCP-1, TNF-a, IL-1, INF-g, IL-6,

TGF-b, platelet-derived growth factor (PDGF)-a, and

PDGF-b47,61,67,70,81–84. Moreover, splenocytes from

hAECs-treated EAE mice produced less inflammatory

Th1- (IFN-g) and Th17- (IL-17) related cytokines and

increased the number of Th2 (IL-5) cells, naive CD4þ T

cells, and peripheral T regulatory cells78,85. Similarly,

amniotic cells significantly reduced the incidence and severity

of collagen-induced arthritis by decreasing the development

of autoreactive Th17 and Th1 cells in the lymph nodes47.

Moreover, these draining lymph node cells were reported to

produce high levels of IL-10. In addition, treated mice

induced peripheral generation of antigen-specific regulatory

T cells with suppressive functions, able to prevent arthritis

progression when transferred to mice with collagen-induced

arthritis47. Not only regulatory T cells but also anti-inflamma-

tory/wound healing M2 macrophages, able to promote the

switch from the inflammatory phase to the tissue-repair phase,

were the predominant macrophages found in the lungs60, in

the liver70, in the skin59, and in tendon lesions86, of the dif-

ferent animal models treated with amniotic cells or their CM.

In Vivo Cell Survival and Immune Tolerance

Long-term engraftment has been observed after xenogeneic

and allogeneic amniotic cell transplantation into different

immune-competent animals without the use of immune sup-

pressants, including rabbits87, mice71,88, rats89–92, guinea

pigs93, and bonnet monkeys94. Additionally, human DNA

was detected in several organs of newborn swine and rats

after xenogenic amniotic cell transplantation45. Similarly,

human DNA was observed in the mouse liver 6 months after

hAECs transplantation95. Moreover, the human95 or rat96

metabolic activity observed in the recipient liver, and the

correction of the hepatic metabolic defect in a maple syrup

urine disease model97 observed after AEC transplantation,

have suggested a long-term engraftment of viable cells with

functional activity. Further, several clinical studies have pro-

ven that allogeneic transplantation of the AM, or cells

derived thereof, does not induce acute immune rejection in
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the absence of immunosuppressive treatment28,34. hAMSCs

and hAECs are usually described as poorly immunogenic.

This feature is associated with the low or limited expression

on their surface of HLA class II (HLA-DR) and

costimulatory molecules responsible for T cell activation,

such as B7-1 (CD80), B7-2 (CD86), B7-H2 (CD275 or indu-

cible costimulator molecule ligand), and glucocorticoid-

induced tumour necrosis factor receptor ligand32,35. This low

immunogenicity is thought to contribute to the survival of

amniotic cells in the immune-competent animals. However,

different studies have highlighted how amniotic cells may

not actually be considered immune privileged but, on the

contrary, can stimulate both an innate and adaptive immune

response (see following sections). Thus, such immune toler-

ance seems to be mediated more by active amniotic immune-

suppressive properties rather than by their true lack of immu-

nogenicity, but this aspect remains to be clarified. Within

immunosuppressive molecules, nonclassical HLA class Ib

molecule HLA-G, B7-H3, programmed death ligands 1

(PD-L1) and PD-L2 have been largely supposed to be

involved in amniotic cell tolerance. Indeed, hAMSCs and

hAECs express HLA-G, and its expression and secretion

increase after amniotic cell treatment with IFN-

g37,41,52,98,99. Further, immunohistochemical analyses have

shown that hAECs express B7-H3 (CD276)100. In addition,

hAMSCs express PD-L1 and PD-L241,63,101, and IFN-g
treatment has been shown to increase their expression in

hAMSCs41, and to induce them in hAECs, which do not

constitutively express these molecules37,100. These mole-

cules appear to play a role in maintaining immunologic tol-

erance during pregnancy102–104, consistently downregulate

human T cell cytokine production and proliferation105,106,

and direct CD4-T cells toward an immunosuppressive phe-

notype104,107. Moreover, HLA-G inhibits NK cell toxicity108

and can lead to the generation of suppressive phagocytes109.

Several studies have associated the presence of HLA-G with

induction of tolerance after allogeneic organ transplanta-

tion110–112. Therefore, amniotic cell long-term engraftment

observed into immunocompetent animals was often easily

correlated with the expression of these tolerogenic mole-

cules99. However, there is no clear demonstration of the

involvement of these molecules in the in vitro and in vivo

immunosuppressive activities and in vivo survival of amnio-

tic cells. Interestingly, hAMSCs have been found to be tol-

erated long term in the hearts of immunocompetent rats92. In

this study, the authors observed that pretreatment of

hAMSCs with IL-10 or progesterone markedly increased

hAMSCs survival in vivo, and pretreatment with IL-10

increased the level of HLA-G expressed by hAMSCs. How-

ever, after transplantation, no membrane-binding isoform of

HLA-G was detected in the surviving hAMSC-derived car-

diomyocytes, and there was no correlation between contin-

uous secretion of the soluble HLA-G in the sera and survival

of hAMSC-derived cardiomyocytes. Thus, the authors

speculated that HLA-G might play a role in the initial pro-

cess of tolerance, while it might not play a major role in the

maintenance of tolerance92. Not only tolerogenic molecules,

but the induction of regulatory T cells is also thought to be

involved in tolerance. In line with this, forkhead box P3

(FOXP3)-positive regulatory T cells were reported to be

constantly detected adjacent to the surviving hAMSC-

derived cardiomyocytes and they were able to survive more

than 4 wks in the infarcted rat hearts, suggesting that they

could be involved in maintenance of tolerance92. Moreover,

long-term graft tolerance in a mouse skin transplantation

model induced by coinfusion of hAECs with limited numbers

of donor unfractionated bone marrow cells was associated

with deletion of donor-reactive T cells and expansion of reg-

ulatory T cells52.

Immunostimulatory Properties of
Amniotic Cells

Expression of HLA- and Costimulatory Molecules

The immunostimulatory activity of a cell, that is the ability

to induce a humoral and/or cell-mediated immune response,

is usually referred to as its immunogenicity. Expression of

human leukocyte antigen (HLA) and costimulatory mole-

cules on the surface of APCs are the principal elements that

govern T cell proliferation, differentiation, and fate113,114.

hAMSCs and hAECs constitutively express HLA-

ABC31,37,41,89, and the expression of HLA-DQ in hAECs,

shown to increase during cell expansion, has also been

reported115. Culture of hAECs in serum-free media has been

shown to induce the expression of CD58115, the ligand of

CD2, and the primary costimulatory molecules of CD28(-)

CD8(þ) T cells116. Moreover, INF-g stimulation augments

the expression of HLA-ABC and CD40 in both hAECs and

hAMSCs and induces the expression of HLA-DR in

hAMSCs41. In addition, the presence HLA-DR and CD86

was described in freshly isolated hAMSCs preparations30,

and in the stromal layer of cryopreserved AM89. The expres-

sion of these immunogenic markers could confer antigen-

presenting properties to hAMSCs and hAECs, and thus

could be responsible for their stimulatory activities.

Expression of TLR Molecules

TLRs belong to pattern-recognition receptors and are crucial

regulators of the innate immune system. TLR recognize a

wide variety of pathogens (bacterial and viral products), as

well as endogenous danger signals released after cell

damage117. The effects of TLR ligands on MSCs immune-

regulatory functions have been investigated, and different

pro-inflammatory (MSC1) or anti-inflammatory (MSC2)

MSCs phenotypes have been reported, depending on the

TLR-ligand concentration, timing, and kinetics of

activation24,118–121. In the case of amniotic cells, transcripts

for all TLR (TLR1-10) were detected in both hAECs122 and

hAMSCs123. hAECs also expressed functional TLR5, TLR2/

6, and TLR4. Indeed, activation by TLR5 and TLR2/6
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agonists induced the production of inflammatory cytokines

such as IL-6 and IL-8. In contrast, TLR4 activation reduced

hAECs viability and induced cell apoptosis122. Similarly,

protein expression of TLR2, 4, and 6 was detected in cul-

tured hAMSCs, and TLR2/6 ligand led to secretion of IL-4,

granulocyte-macrophage colony-stimulating factor (GM-

CSF), IL-6, and IL-8123. The expression of TLR supports

the idea that amniotic cells are sensitive to foreign pathogens

and could be activated by microbial compounds contributing

to inflammatory responses. However, how TLR ligands

influence immunomodulatory properties of amniotic cells,

generating a pro-inflammatory or anti-inflammatory pheno-

type (as described for MSCs from other sources) needs to be

further investigated.

In Vitro Immunostimulation

Amniotic cells have been shown to be unable to induce lym-

phocyte proliferation when cocultured with unstimulated

allogenic PBMCs at high concentrations (PBMCs: amniotic

cells ratio of 1:1)30,37,38. Instead, low concentrations of

hAECs and hAMSCs have been shown to stimulate PBMCs

proliferation38,53. Maximum lymphocyte response was

observed at amniotic cell concentrations between 3.1% and

12.5%, whereas values at lower and higher cell concentrations

approximated the unstimulated state of naive PBMCs38.

Amniotic cell concentration determined also the fate of T cells

stimulated through anti-CD3/anti-CD28. Indeed, at high

amniotic cell concentrations (T cell: amniotic cell ratios of

1:1 or 1:1.3), T cell proliferation was suppressed, but lower

concentrations not only failed to inhibit T cell proliferation but

strongly induced it30. Moreover, hAMSCs were shown to

induce the proliferation of purified T cells cultured with anti-

CD330. Since stimulation with anti-CD3 is unable to induce

proliferation of T cells unless APCs are also present, this rein-

forces the notion that hAMSCs could provide costimulatory

signals and could act as APCs and activate immune responses.

In Vivo Immunostimulation

Different in vivo studies have pointed out the immunogeni-

city of amniotic cells. For example, in the clinical setting,

repeated transplantation of AMs was shown to result in a

localized immunologic reaction, such as hypopyon (a leuko-

cytic exudate) that developed after the second and the third

AM transplantation onto the ocular surface, suggesting that

immunologic responses of the recipient to donor tissue may

have been involved124. Also, macrophage infiltration into

the grafts have been reported when hAECs have been grafted

into healthy human volunteers and patients with lysosomal

storage diseases125,126. Similar macrophage infiltration was

observed after allogeneic AM transplantation in the cornea

of healthy mice, confirming the induction of an innate

immune reaction127. In addition, in preclinical studies, a mild

T cell infiltration was present in the limbal area 1 wk after

transplantation of cryopreserved AM89. Furthermore, hAECs

transplanted in healthy mice were reported to elicit a B cell

immune response. Indeed, murine anti-hAECs antibodies

were detected in the mice sera collected 2 wks after hAECs

injection70. Thus, these studies highlight how amniotic cells

may not actually be immune privileged but how sometimes

they can stimulate both innate and adaptive immune response.

Lack of In Vivo Cell Survival

Although the aforementioned studies describe long-term

engraftment of amniotic cells in immune-competent hosts,

only small number of cells engraft and are usually detected

after allo- or xeno- transplantation91,127. On one hand amnio-

tic cells might not persist in vivo due to adverse conditions

encountered during transplantation (eg, lack of attachment,

nutrient deprivation, unfavorable level of oxygen, or pH), on

the other hand, an active immunological process could be

responsible for their loss after transplantation. Several

groups reported that they were not able to detect amniotic

cells injected into different immune-competent animals. For

example, Murphy and colleagues82 did not detect hAECs

transplanted in a mouse model of bleomycin-induced lung

fibrosis, in any of the host tissues investigated, including

lungs, brain, heart, spleen, liver, and kidneys, 7 and 14 d

after cell administration. In addition, hAMSCs locally

injected in the brain of a mouse model of TBI were not

detected 5 wks after infusion, neither in the brain nor in the

liver, lungs, or spleen64. Similarly, in a rat model of pene-

trating ballistic-like brain injury, no surviving amniotic cells

were identified anywhere in the brain, at any time point (1, 2,

3, and 4 wks) after injection into the sublingual vein or

directly into the injury site. Of note, cells were detected after

intracerebral ventrically administration128, suggesting that

the injection route, and thus the tissue microenvironments,

provides favorable or inauspicious sites for the survival of

transplanted cells. Among the mechanisms that could under-

line the rejection of transplanted cells, the complement sys-

tem has been recently proposed as central component

implicated in the rapid clearance of systemically circulating

MSCs after infusion129. Indeed, it was shown that MSCs

activated complement in contact with the sera and were

injured by the complement activation product membrane

attack complex, both in vitro and in vivo129. On the other

hand, MSCs express the complement-regulatory proteins

CD46 (membrane cofactor protein), CD55 (decay accelerat-

ing factor), and CD59 (protectin), and that upregulating

CD55 levels in MSCs were demonstrated to help in reducing

their cytotoxicity after infusion129. Similar to BM-MSCs,

hAMSCs and hAECs secrete the complement inhibitor fac-

tor H130 and express the complement inhibitory proteins

CD46, CD55, and CD59115,131–133, and CD59 and CD55

were shown to protect the amniotic cells from lysis by

human complement133. Thus, the balance between these

mechanisms of defense and the complement-activated envi-

ronment could determine the survival or the complement-

mediated lysis of transplanted cells.
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Other Critical Aspects and Open Questions
of Amniotic Cells

Heterogeneity of Amniotic Cell Preparations

The fetal membrane has areas with different structural char-

acteristics, including a “zone of altered morphology”134. Not

only morphology, but also functional activity, such as mito-

chondrial activity, was reported to differ through the anato-

mical region (placental amnion and reflected amnion)135.

Moreover, the anatomical region and the type of delivery

(labor vs. no labor) have a substantial impact on the transcrip-

tional program. For example, HLA-G, TGF-b signaling pro-

teins, and IL-1b mRNA expression in reflected amnion was

different than that in placental amnion136. Thus, the area

sampled to isolate amniotic cells should be relevant to identify

and define for consistency and comparison with other studies

and could explain some controversial results that have been

reported. For example, in hAECs, the expression of HLA-

ABC was described to be low or moderate for some

authors88,137, or at high level for others31,37,39,115,138, indicat-

ing the phenotypic and functional heterogeneity of amniotic

cell preparations101,139. Moreover, the expression of CD40 is

reported to be constitutively for some authors39, or induced

after INF-g stimulation for others37. Also, passage culture

(and the expansion culture media) influence immunologic

phenotype of hAECs and hAMSCs31,115, reinforcing the

notion of heterogeneity of amniotic cell preparations and how

culture conditions (passage number, culture media, INF-g
activation) influence their immunologic phenotype.

The Inflammatory Microenvironment

Several studies indicate that BM-MSCs need to be “licensed”

by inflammatory signaling to become fully immunosuppres-

sive140–144. For example, Ren et al. reported that BM-MSCs

do not suppress IL-2-driven T cell proliferation. Such T cell

blasts do not produce cytokines, thus highlighting the neces-

sary of inflammatory cytokines to suppress T cell prolifera-

tion. IFN-g along with other inflammatory cytokines (TNFa,

IL-1a, or IL-1b) were found to boost BM-MSCs suppressive

functions140. In line with these data, MSCs cultured in trans-

well, or their CM, did not exert suppressive effects if they

were not exposed to IFN-g or to additional immune cells

(monocytes)143,145,146. In the case of amniotic cells, priming

by inflammatory cytokines does not seem to be a prerequisite

for their suppressive effects30,49. However, Banas et al.

observed that hAECs are unable to inhibit IL-2-

preactivated T cell blast proliferation. The authors hypothe-

sized that preactivated T cells, in contrast to naive or memory

T cells, may be less prone to inhibitory effects of amniotic

cells37. In a different setting, preincubation of amniotic cells

with inflammatory INF-g was reported to enhance the anti-

proliferative properties of hAMSCs toward stimulated

PBMCs41 and even amplify inhibitory effects of hAECs

toward maturation of monocyte-derived DCs37. Not only

INF-g, but also IL-1b, another inflammatory cytokine, was

described to induce the production of the immunosuppressive

molecule prostaglandin E2 (PGE2) in amniotic cells147.

Moreover, the degree of inhibition induced by amniotic cells

toward proliferating T cells has been reported to depend on

the type of responder cells; in fact, hAMSCs showed a sig-

nificantly enhanced capacity to suppress stimulated PBMCs

rather than purified T cells41. Further, the type of stimulation

(allogeneic stimulus, mitogens, or recall antigen) can influ-

ence the degree of T cell inhibition induced by hAECs37.

Since each stimulation method induces dissimilar activation

status of T cells, and of the other immune cells present within

PBMCs, it is likely that the diverse inflammatory microen-

vironment uniquely influences the suppressive capabilities of

amniotic cells.

Cryopreservation

Cryopreservation of cells enables their long-term storage

and, in prospect of their availability for a cell-treatment,

MSCs and cell products are usually cryobanked. Preserved

AM has been widely used in various clinical fields, including

ophthalmology and wound care34. In cryopreserved AM,

variable amounts of amniotic cells have been shown to

remain viable, to grow in culture, and to maintain some

immune molecule expression89,148,149. For example, they

retained the expression of HLA-ABC, HLA-DR, CD45,

although the degree of HLA-ABC signal intensity and the

number of HLA-DR-positive cells were significantly

reduced in cryopreserved compared to fresh AM148. Thus,

cryopreserved AM still induces a certain degree of immune

reaction89,127. Compared to nonpreserved AM, cryopre-

served AM was shown to secrete low levels of different

immune inflammatory factors, including IL-6, IL-8, IFN-g,

leptin, MCP-1, tissue inhibitor of metalloproteinase (TIMP)-

1 and TIMP-2, and thrombopoietin150. Thus, immunogeni-

city of cryopreserved AM seems to be inferior than that of

fresh tissues, and this was associated with the low presence

of viable cells in cryopreserved AM127. However, when

looking at the immunosuppressive potential of amniotic

cells, both hAMSCs and hAECs have shown a significant

reduction in the ability to inhibit T cell proliferation after

cryopreservation38. This effect was independent of HLA-

class I/II levels, which were found unaltered by the freezing

process38. In sum, cryopreserved and nonpreserved AM and

derived cells display different immunogenic and immuno-

suppressive properties that should be extensively addressed

and considered for clinical application.

Expression of Hematopoietic Markers

hAECs and hAMSCs are usually described to be negative for

CD45, CD34, or CD14, a trait that distinguishes them from

hematopoietic cells40–43,137,138,151–156. However, in freshly

isolated hAMSCs preparations, there is subpopulation of

cells (5%-15%) which have been shown to express the

monocyte/macrophage markers CD45, CD14, and
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CD11b30,31. Moreover, a CD34-positive subpopulation, able

to ameliorate liver fibrosis in mice with drug-induced liver

injury, was identified, enriched, and characterized in AM72.

In addition, the culture of hAECs in serum-free media induce

the expression of different hematopoietic markers, including

CD34 (the hematopoietic stem cell marker), CD77 (the

germinal centre B cell marker, usually expressed on

Epstein-Barr virus infected B cells), or CD108 (the glyco-

sylphosphatidylinositol [GPI]-linked protein, expressed on

erythrocytes, lymphocytes, lymphoblasts, and lymphoblastic

cell lines)115. Expression of hematopoietic markers CD45,

CD34, CD14 has been described also in amniotic fluid stem

cells157. Of note, amniotic fluid is heterogeneous in compo-

sition and cells contained in it, mostly of epithelial nature,

could derived also from AM158. In addition, Wharton’s jelly

MSCs may express monocyte–macrophage antigens CD68

and CD14159,160. Whether the expression of these hemato-

poietic markers could represent a distinct cell group (of fetal

origin) with hematopoietic potential has yet to be deter-

mined, as well as if this subpopulation is present only in

perinatal cells (amniotic cells, amniotic fluid, and Wharton’s

jelly MSCs) or also in adult MSCs.

Conclusions and Future Perspectives

Amniotic cells and their CM possess broad immunosuppres-

sive properties and have been proposed for the treatment of

chronic inflammation and immune alterations. However,

increasing experimental data indicate that amniotic cells,

as BM-MSCs, also possess stimulatory ability, both in vitro

and in vivo. It has been questioned whether MSCs innately

perform immunoregulatory activities, but this is now

unlikely, since their primary “mission” was very likely to

generate bone, cartilage, and fat161. In the case of amniotic

cells, due to the unique role of placental tissue in inducing

fetal-maternal tolerance avoiding the immunological attack

of the semiallogeneic fetus by the maternal immune system,

immunomodulation is likely an intrinsic property. However,

if on one hand, placental cells play the critical role in fetal-

maternal tolerance, on the other hand they must be ready to

respond and to induce immune activation against foreign

pathogens (such as bacteria or virus). Therefore, a balance

between immunosuppression and immunostimulation could

exist in cells isolated from the AM of placenta (hAECs and

hAMSCs), and this needs to be carefully addressed before

their clinical use. Recognizing the existence of both suppres-

sive and stimulatory properties and understanding the

mechanisms that underline the duality of the immune reac-

tion may help in the design of successful immunotherapeutic

approaches that reach therapeutic benefit through the manip-

ulation of the immune system. In multiple diseases, there is

an exacerbation of inflammatory conditions that need to be

dampened, but in other diseases, such as cancer, the stimula-

tion of immune system has been proposed as an efficient

therapeutic strategy162.

Immunogenicity of amniotic cells, like BM-MSCs,

should not be ignored. In the case of AM transplantation,

abstaining from repeated transplantation of AM from the

same donor has been suggested to limit antidonor

response127. Within host immune reaction after AM or

amniotic cell transplantation, the generation of antidonor

antibodies has also been observed70. Of note, a second infu-

sion of amniotic cells did not lead to further increases in

circulating antihuman donor antibodies70. It still needs to

be reported whether transplantation of amniotic cells induces

the generation of the classical memory B and plasma cells or

rather a different (eg, regulatory) B cell subpopulation163.

Usually, the number of engrafted cells (amniotic cells as

well as MSCs) is low. Increasing amniotic cell and MSCs

survival and persistence could prolong their effect and avoid

repeated administrations. In the case of MSCs, different stra-

tegies have been proposed to prolong their in vivo persis-

tence, such as their encapsulation in alginate matrix164,

or genetic engineering to overexpress IL-138, or other

immunosuppressive factors (eg, PGE2, IDO, HLA-G,

IL-10)165,166. Moreover, increased expression of comple-

ment inhibiting molecules, or of HLA-ABC (after INF-g

treatment), was proposed as mechanism to avoid comple-

ment- or NK-mediated cytotoxicity3,167. However, benefi-

cial effects were observed despite the absence of

transplanted cells in injured tissue, thus the persistence of

cells seems to be not required for a therapeutic effect. In the

field of neurological injuries, a new interesting vision focus-

ing on the response of the host niche to the cell graft was

recently speculated168. In this perspective, stromal cell

grafting induces an inflammatory process that leads to

hypoxia-mediated apoptotic death of grafted cells, neutro-

phil invasion, microglia and macrophage recruitment, astro-

cyte activation, and neo-angiogenesis within the stromal cell

graft site. These immune remodeling processes, and not only

the soluble factors secreted by grafted stromal cells, are of

substantial importance to the regenerative processes168.

In order to improve the successful application of MSCs in

regenerative medicine, the necessity of the development of

potency assays has been underlined169,170. These assays con-

sist of in vitro tests to predict the in vivo immunosuppressive

activity of MSCs, and thus their therapeutic efficacy171,172.

Among these assays, it is fundamental to consider the immu-

nogenicity of the cells to ensure that transplanted cells pos-

sess characteristics which will minimize, if not eliminate,

any possibility of rejection. Moreover, donor variability and

cell heterogeneity due to culture conditions, passage num-

ber, and cell treatment (eg, INF-g activation) represent crit-

ical aspects that could influence immunologic phenotype of

cells101101 and therefore their therapeutic outcome.

A further understanding of amniotic cell and MSCs

mechanisms of action, and specifically how they interact

with the microenvironment, and balance immunosuppres-

sive and immunostimulatory activities, will be crucial in

improving and developing new clinical protocols for MSC-

based cell therapy.
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