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Synthesis 

 

This thesis focuses on understanding broader or Knightian uncertainty and its relation with financial 

risk, given the overlaps existing between these two important concepts in the economics and finance 

literature. Each chapter tackles a different aspect of uncertainty, from a different angle and using a 

different methodology and data set. For this reason, the chapters are structured as standalone papers to 

assist readers and improve readability. 

The first chapter of the thesis is titled: “Uncertainty spill-overs: when policy and financial realms 

overlap”. It attempts to identify two different uncertainty shocks along with their policy effects and 

consequences, by modelling the complex intertwining between policy and financial realms that appears 

to be particularly relevant in the European context. The methodological differences in the construction 

and statistical properties of the two proxies, used for financial and policy uncertainty, facilitate the 

implementation of a recent structural identification approach based on magnitude restrictions. One of 

the main contributions of the chapter is to apply magnitude restrictions in a multi-country context with 

the aim of identifying two uncertainty shocks. This identification approach offers several advantages 

over other alternative structural identification methods, which the chapter discusses in details. After 

estimating the model, we recover the two structural uncertainty shocks, and find they match the dates 

and timing of some remarkable events that marked the recent history of the European project. Although 

there are significant cross-influences and overlaps between financial and policy uncertainty, the later 

reacts stronger to shocks in the former proxy; in other words, it is more likely that financial frictions 

and stress amplify uncertainty in the policy realm than vice-versa. The empirical results also point to 

ECB adopting a more pro-active stance towards policy uncertainty shocks in order to prevent further 

segmentation of the Euro Area financial market during periods of turmoil, but a more (passive or) 

accommodative stance towards financial uncertainty shocks.  

The second chapter discusses the trade-off between prediction accuracy and reaction speed that 

allows hedge funds, some of the most astute investors today, to better time the market and profit during 

turmoil periods. The chapter is titled: “Trading off accuracy for speed: Hedge Funds’ decision-making 

under uncertainty”, and is co-authored with prof. D. Philippas and prof. M. Tsionas. A mathematical 

formulation of the trade-off casts the decision-making process in a Bayesian framework, while the 

empirical analysis employs different data-filtering techniques to distinguish between different 

prediction accuracy levels. According to the main results, less accurate predictions can speed up hedge 

funds’ reactions to changes in the information set. For many hedge funds that claim to maintain a low 

beta and in the same time generate profits, market timing is essential, and therefore reaction speed 

becomes a means to achieve better timing. We justify our empirical findings in a simulation exercise, 

highlighting the importance of market timing abilities for active players like hedge funds. 
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The third chapter is titled: “On herding behaviour, ‘green’ energy and uncertainty” and is co-

authored with prof. D. Philippas and prof. E. Galariotis. The chapter discusses challenges arising from 

the ongoing transition to a low-carbon economy and the portfolio choices that investors are facing 

during this process. The ‘green’ sector today looks as an exciting opportunity for investors in the energy 

sector, but uncertainty prevails in relation to the long-term economic viability of new ‘green’ 

technologies. In addition, the ‘green’ sector faces constant regulatory and policy challenges. With 

multiple uncertainty sources, investors should worry about price distortions driven by their own 

behavioural biases, which arise particularly in markets characterised by uncertainty and information 

frictions. This chapter aims at contributing to the discussion related to herding behaviour, and therefore 

learning in financial markets. In a context where investors can opt between investing in an old 

technology, like oil, and a new, ‘greener’ technology, we find that herding responds to oil returns and 

‘green’ volatility shocks. Thus, investing into an old technology requires no more than information on 

returns, while opting for a new investment opportunity requires an entirely better information set. 
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Chapter 1  

Uncertainty spill-overs: when policy and financial realms overlap♯ 

 

Abstract 

This chapter aims at contributing to a new and growing empirical literature strand on uncertainty-related 

topics. No matter its source, financial- or policy-related, uncertainty feeds continuously onto itself, 

contaminating the real sector, and leading to identification challenges in empirical applications. We 

propose a new application of a recent identification approach to reveal and separate two different 

uncertainty sources. We model the complex intertwining between policy and financial realms, whose 

interactions create amplification mechanisms for country-specific uncertainty shocks, framing our 

empirical analysis within a multi-country model set in the European context. Stark methodological 

differences between our financial and policy uncertainty proxies allow us to use the structural 

identification approach based on magnitude restrictions proposed in De Santis and Zimic (2018) that 

offers several advantages over other alternative identification methods. Using impulse responses 

derived from a global VAR specification, we find persistent effects for both uncertainty shocks, 

including significant cross-border spill-overs. We reveal significant cross-influences between the two 

uncertainty proxies, with policy uncertainty reacting stronger to financial uncertainty shocks than vice-

versa, in line with the existing evidence on the importance of financial frictions. Our identified structural 

shocks match the dates of some remarkable events that marked the recent history of the European 

project. With respect to ECB policy reactions, there are stronger but less persistent responses to financial 

uncertainty shocks compared to policy uncertainty shocks, pointing to ECB adopting a more pro-active 

stance towards the latter shocks, and a more (passive or) accommodative stance towards the former 

shocks. We suggest that a possible justification for such ECB actions might come from its attempt to 

tame policy uncertainty in order to prevent further segmentation of the Euro Area financial market.  

 

JEL codes: C3, E58, E60, F36, F40 

Keywords: policy uncertainty, financial integration, global VAR   
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encouragement and support while working on this chapter. I would also like to thank professors Elena 

Beccalli, Giulio Palomba and Eduardo Rossi for their many comments and suggestions, and to 

Alessandro Galesi for support on the Matlab codes used to run the empirical analysis in this chapter.       
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1. INTRODUCTION 

For a few days every January in Davos, Switzerland, global financial elite mingles with political elite, 

central bankers and other policymakers. Most likely, policy and financial realms cannot be completely 

separated even if one dares considering centuries of history. From an analytical perspective, this leads 

to unexpected cross-influences that amplify each other, especially during uncertain times. Financial 

stress and market uncertainties can bring changes in policies or political contexts, as much as 

uncertainty stemming from policy changes creates anxieties for financial investors. No matter its source, 

financial or policy-related, uncertainty will feed onto itself, contaminating other areas and leading to 

identification challenges in empirical applications. Unfortunately, markets and investors are better 

equipped to evaluate and price risk rather than uncertainty, which is a broader concept encompassing 

risk and requiring proper analytical methods. We try to add to the existing stock of analytical methods 

able to disentangle among various sources of uncertainty in a multi-country context, where cross-border 

spill-overs and cross-influences are expected to pose additional identification challenges.  

From this perspective, the European Union (EU), and the Euro Area (EA) in particular – with its 

rather incomplete institutional architecture –, make for an interesting case due to its high potential for 

uncertainty spill-overs. On the one hand, domestic policy uncertainty can reverberate at the European 

and global levels with serious financial consequences measured in terms of bond yields, financial stock 

prices or currency moves. In June 2015 the Greek government called a referendum over its bailout 

terms, generating chaos in European policy circles, but also among financial investors who feared a 

Euro Area (EA) breakdown; as market sentiment turned sour, Greek sovereign bond spreads reached 

unprecedented levels and the country was effectively cut off global financial markets, while domestic 

banks suffered and were forced to impose strict capital controls. On the other hand, it is the banking 

sector turmoil that echoes in the policy domain, as risks are transferred from the private to the public 

sector due to bank-rescue packages that increase sovereign and contagion risks (see Acharya et al. 2014; 

Attinasi et al. 2010; Bicu and Candelon, 2013; Stângă, 2014). Ireland perfectly illustrates this latter 

case, when the government introduced guarantees to address the weakness of the domestic banking 

sector in September 2008, right after the Lehman shock; as a result, banks’ credit default swaps (CDS) 

came down but the Irish sovereign CDS spiked abruptly (Stângă, 2014; Leonello, 2018). 

The present paper aims at exploring this complex intertwining, which is particularly prevalent in 

Europe, between policy and financial realms, whose interactions might create amplification 

mechanisms for country-specific uncertainty shocks. Whether such mechanisms work to amplify 

financial uncertainty, policy uncertainty, none or both is the most important research question we 

address in this chapter. We seek therefore to contribute to a new and rapidly expanding literature strand 

that deals with various uncertainty measures, their sources, effects, and cross-border spill-overs (see 

among many others; Bekaert, Hoerova, and Lo Duca, 2013; Caldara, Fuentes-Albero, Gilchrist, and 
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Zakrajšek, 2016; Bacchiocchi, 2017; Shin and Zhong, 2018; Ludvigson, Ma and Ng, 2019; Angelini, 

Bacchiocchi, Caggiano, Fanelli, 2019).  

We also aim at understanding what specific role the European Central Bank (ECB) has played in 

counteracting various uncertainty sources and their spill-overs at the European level. Over the last 

decade, the ECB considerably expanded its policy toolkit, took greater supervisory and regulatory 

duties, and stepped in when there was no credible policy actor for global financial markets1, up to the 

point of being called ‘the only game in town’.2 On the back of a rather complicated EA governance 

structure, the ECB provided an effective backstop to area-wide financial stress, while treating country-

specific shocks with more flexibility. This is in spite of the fact that, in many instances, country-specific 

factors have penetrated the decision-making process in Brussels and Frankfurt.  

Complex identification challenges arise within a multi-country settings, such as the EA, due to its 

significant financial integration, but incomplete political integration, where information frictions are 

important (see Freixas and Holthausen, 2004). During the European sovereign debt crisis, domestic 

banks in some EA periphery were given incentives to draw more central bank liquidity, largely against 

domestic sovereign bonds. Battistini, Pagano, and Simonelli (2014) and Acharya and Steffen (2015) 

provide empirical evidence on these mechanisms, where bailed-out periphery banks hold more 

periphery sovereign debt.3 Recently, the theoretical work of Farhi and Tirole (2017), Leonello (2018), 

and Cooper and Nikolov (2018) sheds light on the feedback-loops between sovereigns and banks, but 

strong feedback-loops can blur the thin separation line between financial and policy realms.  

Understanding the ECB role is an important topic because the EA suffers from a lack of institutional 

leadership to deal with several uncertainty sources. The existing literature on (monetary and fiscal) 

policy interactions within a common currency area does not provide us with sufficient clarifications in 

this regard (for a recent survey, see Foresti 2018). ECB faces numerous and delicate policy trade-offs 

in pursuing its price stability mandate, set according to the EU Treaties. A clearer distinction between 

policy and financial uncertainty shocks could improve ECB policy effectiveness, and even shield it 

from possible legal actions.4 There have been many controversies surrounding ECB monetary policy 

conduct, especially with respect to its unconventional measures, like the various asset purchasing 

                                                           
1 Mario Draghi’s speech on 26th July 2012 has been considered a cornerstone moment for the EA sovereign debt 

crisis. See https://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html. 
2 See Otmar Issing’s comment at: https://www.centralbanking.com/central-banks/economics/2473842/otmar-

issing-on-why-the-euro-house-of-cards-is-set-to-collapse.  
3 There are plenty of other empirically relevant studies on the moral hazard prevalent during the European 

sovereign debt crisis. Acharya, Drechsler, and Schnabl (2014) show that CDS for sovereigns and banks commove 

over the European crisis period, but not much before the crisis. Koijen, Koulischer, Nguyen, and Yogo (2017) 

document the home bias existing in vulnerable countries during the implementation of the ECB asset purchasing 

programmes. 
4 See the recent decision of the Court of Justice of the European Union in favour of the ECB’s Public-Sector 

Purchase Programme (PSPP) at https://www.reuters.com/article/us-ecb-policy-court/ecb-wins-courts-backing-

for-buying-government-debt-idUSKBN1OA0Q0.  

https://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html
https://www.centralbanking.com/central-banks/economics/2473842/otmar-issing-on-why-the-euro-house-of-cards-is-set-to-collapse
https://www.centralbanking.com/central-banks/economics/2473842/otmar-issing-on-why-the-euro-house-of-cards-is-set-to-collapse
https://www.reuters.com/article/us-ecb-policy-court/ecb-wins-courts-backing-for-buying-government-debt-idUSKBN1OA0Q0
https://www.reuters.com/article/us-ecb-policy-court/ecb-wins-courts-backing-for-buying-government-debt-idUSKBN1OA0Q0
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programs implemented over the last decade.5 In August 2011, for example, the Securities Markets 

Programme (SMP) made some sizeable bond purchases from the EA periphery, especially Italian and 

Spanish sovereigns, with some positive effects on spreads in unsettled market conditions. However, the 

program was soon suspended for Italian bonds as it became clear that the Berlusconi government was 

not delivering on its promised economic reforms; fast forward in November 2011, market confidence 

in the Italian government collapsed and a new prime-minister was appointed.  

Given the large consequences stemming from the interaction of financial and policy realms within 

the EA, as discussed above, it is important to evaluate whether there are sizable spill-overs of country-

specific uncertainty shocks, and whether ECB can play any specific role. Our main contribution is to 

approach these important research questions from an empirical perspective that is able to deal with the 

inherent identification challenges that arise in a multi-country setting. We use a global vector 

autoregressive (or GVAR) model specification (as in Dees et al., 2007; Georgiadis, 2015; Burriel and 

Galesi, 2018), and a new identification approach based on magnitude restrictions, recently proposed by 

De Santis and Zimic (2018). There are other few distinct but comparable approaches in a rapidly 

expanding empirical literature aiming at identifying (different types of) uncertainty shocks (e.g. 

Bacchiocchi, 2017; Shin and Zhong, 2018; Ludvigson, Ma and Ng, 2019; Angelini et al., 2019); as each 

methodological approach has its own merits, we regard them as largely complementary to ours. Inspired 

by event studies, the identification based on magnitude restrictions was proposed by De Santis and 

Zimic (2018) to expose spill-overs between U.S. and European sovereign bond yields. However, it is 

quite general and allows for the identification of shocks from within any strongly correlated variables, 

especially in cases of conceptual overlaps, like in the case of the two uncertainty proxies used in this 

study. An important aspect in our application is that the two proxies should focus on distinct data 

sources, and rely on different measurement approaches. 

To capture financial uncertainty, we use the Composite Indicator for Systemic Stress (CISS), a 

highly relevant policy indicator for ECB, which also makes this indicator available on a weekly 

frequency, and for most EU Member States (see Hollo et al., 2010). Compared to other financial 

uncertainty measures that are probably more readily available (e.g. CDS, volatility, cross-sectional 

variation), composite indicators summarize a higher dimensional space and are more efficient in 

reflecting financial stress across several market segments.6 Broader (or Knightian) uncertainty, instead, 

stemming from changes in the political landscape, rhetoric, opinions and policies is harder to measure 

(see Bekaert et al., 2013; Jurado, Ludvigson, and Ng, 2015; Baker, Bloom and Davis, 2016; Ferrara et 

                                                           
5 In addition to PSPP, ECB conducted the Securities Markets Programme (SMP, May 2010-2012), and Outright 

Monetary Transactions (OMT, announced in September 2012) were targeted mostly at countries with severely 

impaired financial markets. 
6 Various studies, such as Fratzscher et al. (2016), Moder (2017), Burriel and Galesi (2018), Boeckx et al (2017) 

use the CISS index proposed in Hollo et al. (2010) to uncover transmission channels and consequences of financial 

stress across European markets. 
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al., 2018; Ludvigson et al., 2019). The recent literature is booming with different measures of this type 

of uncertainty, spanning different methodologies and data sources. However, some of the best known 

indicators rely heavily on media sources. In a highly influential paper, Baker et al. (2016) propose an 

economic policy uncertainty (EPU) measure based on the frequency of some relevant keywords in 

various newspapers (and other commonly available media sources); they further show their indicator is 

orthogonal to other common measures of risk and uncertainty, such as forecasts dispersion or financial 

volatility etc. We rely on EPU to measure policy uncertainty, mostly because of its wide availability for 

different EU and EA countries. Our selected CISS and EPU indexes, therefore, rely on different data 

sources and measurement methodologies. A closely related literature strand employs sovereign and 

banking risk measures derived from market instruments, like CDSs (see Bicu and Candelon, 2013; 

Stângă, 2014; Acharya, et al, 2014; Greenwood-Nimmo, Huang and Nguyen, 2019; Bettendorf, 2019). 

Our approach is broader, because in our case CISS reflects systemic rather than just bank-specific risks, 

while EPU reflects broader policy uncertainty rather than just sovereign risk.  

Given the growing interest in uncertainty-related topics, we hope to contribute to this literature by 

investigating the dynamics of uncertainty arising from the interaction of financial and policy realms, 

where EA stands, unfortunately, as a fertile ground for research. The remaining of this chapter is 

organised as follows. Section 2 discusses the theoretical background relevant for our empirical analysis. 

Section 3 presents the data, along with its sources and limitations. Section 4 provides a detailed 

overview of the empirical approach, along with its main results and policy implications. Finally, section 

5 concludes.  

 

2. THEORETICAL BACKGROUND AND LITERATURE REVIEW 

This section discusses the two main literature strands that directly relate to our empirical model. Firstly, 

we discuss the sovereign-bank nexus, and secondly, financial integration and the role of information 

frictions as uncertainty sources. The sovereign-bank nexus is important because it explains the 

interaction between financial and policy realms in a single-country setting. In multi-country settings, 

however, these theories cannot adequately explain the multiplicity of interactions that exist, for 

example, between, as well as among, EA sovereigns and EA banking sectors.  

 

2.1. Sovereign-bank nexus 

The sovereign-bank nexus, which is defined as the interaction between the financial and policy realms, 

is one of the main uncertainty sources in economics. What we are most interested in learning about is 

this very first stage of the uncertainty generating process, where policy and financial uncertainty usually 

combine and amplify each other, leading to identification challenges in empirical work. Then, once 
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uncertainty arises, it propagates rapidly and inflicts the real sector affecting investment dynamics, asset 

prices, firms’ balance sheets, credit spreads etc., amplified mainly by financial frictions (see among 

many others, Arellano, Bai, Kehoe, 2010; Christiano, Motto, Rostagno, 2014; Bloom, 2014; Gilchrist, 

Sim, Zakrajšek, 2014; Bloom et al., 2018).7  

The main theoretical mechanisms underpinning the feedback loops between banks and sovereigns 

are best described in Farhi and Tirole (2017), Faia (2017), Leonello (2018), Allen, Carletti, Goldstein 

and Leonello (2018), Cooper and Nikolov (2018). We briefly summarize the two key mechanisms 

featuring in these models. On the one hand, as banks hold sovereign bonds in their books for liquidity 

and regulatory reasons, sovereign distress can contaminate the banking sector. On the other hand, the 

(implicit or explicit) guarantees provided by the government allow banking sector distress to inflict the 

public sector. Empirical evidence on these theoretical transmission mechanisms is provided, among 

many others, in Bicu and Candelon (2013), Stângă, (2014), Bettendorf (2019). While the evidence is 

clear, in reality there are some nuances one needs to consider. Government commitment to bailing out 

the banking sector depends on its fiscal capacity and debt dynamics, which explains why EA periphery 

banks had higher levels of domestic sovereign bonds in their books (Acharya, et al 2014; Koijen et al., 

2017; Greenwood-Nimmo et al., 2019). Besides the fiscal costs of a bailout, the central bank can be 

involved along with the government, in which case there will be inflation and devaluation costs (Farhi 

and Tirole, 2017). 

These theoretical models describing the sovereign-bank feedback-loops are all set within a single-

country framework, and therefore cannot be easily extended to a multi-country settings, which is the 

main focus in this chapter. Difficulties arise from the lack of full political integration across the EA, 

and in particular the lack of a fully-fledged Banking Union. Recent institutional reforms at the EU level 

are welcome, although a lack political consensus is hindering further progress in this direction.8  

 

2.2. Financial integration and the role of information frictions 

For a multi-country perspective, a slight change in focus is in order. Without a fully operational Banking 

Union or further political integration, the theoretical mechanisms underlying the sovereign-bank nexus 

do not directly apply at the EA level. Therefore, balance sheet linkages that run through bond holdings 

                                                           
7 Empirical evidence on these transmission mechanisms is provided in Stock and Watson (2012); Caldara et al., 

(2016), Alessandri and Mumtaz (2019). Related to this literature strand, Shin (2012), Cerutti, Claessens and Rose 

(2017) highlight the role of European banks in the transmission of cross-border financial risk spill-overs.  
8 A Single Resolution Mechanism working in conjunction with a Single Supervisory Mechanism (SSM) were 

recently established (second half of 2014), under the coordination of the ECB, together with competent 

supervisory authorities from EA Member States. These are two of the three pillars required for the Banking Union 

to function effectively. The third pillar, i.e. a common deposit guarantee across the entire EA, is still missing, 

despite ongoing technical discussions and negotiations. Therefore, there is no central authority at the EA level 

that can automatically provide full guarantees to banks and depositors from different countries. See 

https://ec.europa.eu/info/business-economy-euro/banking-and-finance/banking-union_en.  

https://ec.europa.eu/info/business-economy-euro/banking-and-finance/banking-union_en


15 
 

and government guarantees are no longer sufficient; instead, cross-border holdings that reflect capital 

flows across the EA, become part of the spill-overs transmission mechanism. Most importantly, 

uncertainty stemming from information frictions gathers a more prominent role than in a single-country 

setting.9  

European cross-border banking has dramatically increased financial integration as a direct result of 

the two banking directives adopted in 1977 and 1989 aiming at eliminating restrictions, harmonizing 

regulation, and achieving better coordination in prudential supervision. Besides the benefits measured 

in terms of reduced costs and access to financial services, it was hoped that integration would increase 

the effectiveness of ECB monetary policy and improve its transmission mechanisms.10 However, theory 

suggests that financial integration does not necessarily reduce information frictions and might even 

increase financial fragility.  

Freixas and Holthausen (2004) show that integration of the EA interbank market can magnify the 

asymmetry of information in cross-border banking, creating a contagion channel and financial fragility. 

Depending on the amount of information frictions, their model allows for multiple equilibria. In 

particular, the model differentiates between financial segmentation and integration, where the former 

relates to a case where all interbank transactions occur within the national borders, liquidity distribution 

is inefficient and interest rates are higher, while the latter refers to the opposite case. The main 

theoretical insights from Freixas and Holthausen (2004) are that a segmented market equilibrium is 

always possible, but an integrated market equilibrium is not necessarily feasible at all times; sometimes, 

they find that the integrated market equilibrium is not even welfare improving due to increased financial 

fragility. In fact, more recently, Passari and Rey (2015) conclude that large welfare gains from financial 

integration, in general, are rather hard to find (in contrast to Allen et al., 2011). According to Freixas 

and Holthausen (2004), asymmetries leading to market segmentation arise when information remains 

locally bounded, like in the case of substantial differences in cultures and accounting practices (e.g. 

policy decisions to restrict risk modelling options for banks), or in local policy preferences with respect 

to prudential supervision (e.g. commitment to bail out a bank in financial distress). These few examples 

point to uncertainty sources that originate mainly in the policy rather than the financial realm, although 

anxieties are likely to arise in both policy and financial circles.11 In a similar vein, more recently, 

                                                           
9 Drawing on empirical work, De Grauwe and Ji (2013) advocate for a more active ECB role in counteracting 

self-fulfilling crises driven by investors’ fears, not fundamentals, claiming that EA fragility stems from the lack 

of a “lender of last resort” for both banks and sovereigns. Their analysis underlines the importance of information 
frictions in a multi-country settings such as the EA, characterised by advanced financial and economic integration, 

but not enough political (including fiscal and other policies) integration. 
10 Legislative proposals to advance the integration of European capital markets, along with other segments of the 

financial market, are high on the policy agenda in Brussels and Frankfurt. Overall, financial integration had 

positive welfare effects over the first decade of the common currency, as summarized in Allen, Beck, Carletti, 

Lane, Schoenmaker and Wagner (2011). 
11 Obviously, differences in supervisory treatment should narrow under the newly established SSM framework, 

where the ECB is the direct supervisor for systemically important EA financial institutions. However, more recent 

data is needed to evaluate whether this is indeed the case. 
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Gârleanu, Panageas, and Yu (2015) present a theoretical model where access to financial markets is 

subject to information frictions, which lead to limited market integration in equilibrium. Moreover, 

because portfolio diversification (i.e. participation in distant markets) and leverage (i.e. taking more 

risks) are complements in their model, a symmetric equilibrium might fail to exist, just as in Freixas 

and Holthausen (2004).  

Information frictions, along with asset commonalities, play a key role in other models as well (e.g. 

Acharya and Yorulmazer, 2008; Allen, Babus and Carletti, 2012). Allen, Babus and Carletti (2012) 

show that information contagion is more likely in clustered networks, where commonalities in banks’ 

asset portfolios (and structures) are higher.12 Information contagion refers to bad news about one bank 

that reveal (to depositors and investors) information about bad realisations of the common factor driving 

all banks’ loan portfolios (and therefore systemic risk). They also claim that banks are ‘informationally 

linked’ as long as they use short-term financing, which allows their investors (who cannot clearly 

dissociate between banks due to opaqueness) to more easily reject rolling over the debt in case of 

adverse information (i.e. long-term financing would cancel this transmission channel). In Acharya and 

Yorulmazer (2008), banks undertake correlated investments in order to minimize the effect of 

information contagion on the expected cost of borrowing. Deep financial and economic integration 

across the EA make more likely a situation in which banks’ loan portfolios share a common systematic 

factor that explains a higher share of the cross-sectional variation. For example, holding EA periphery 

versus EA core bonds brought substantial profits for European banks, an investment strategy that 

Acharya and Steffen (2015) have labelled as “the ‘greatest’ carry trade ever”. These situations point 

instead to financial information as a potential source of uncertainty, with information frictions playing 

an amplifying role in this case.  

In summary, while each of these theoretical mechanisms has its own merits, there is no clear 

consensus in the literature on the most relevant ones that can explain such complex, dynamic, double 

causality influences arising between financial and policy uncertainty within the EA. Starting from this 

reasoning, our empirical exercise can be seen as an attempt to shed light on these interactions that have 

important policy implications.      

 

3. DATA 

Our dataset focuses on the European region and consists of 24 individual countries and one aggregate, 

to which we add U.S., as summarised in Table 1 below. 

  

                                                           
12 Notice that their clustered versus unclustered network structures resembles the integrated versus segmented 

interbank markets from Freixas and Holthausen (2004). 
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Table 1: Countries included in the empirical analysis 

Euro Area 

Austria, AT 

Belgium, BE 

Finland, FI 

France, FR 

Germany, DE 

Italy, IT 

Ireland, IE 

the Netherlands, NL 

Spain, ES 

Greece, EL 

Portugal, PT 

Luxemburg, LU 

Slovakia, SK 

Slovenia, SI 

Baltics, BA 

Other European Union  

Czech Republic, CZ 

Hungary, HU 

Poland, PL 

Sweden, SE 

Denmark, DK 

United Kingdom, UK 

 

Other Europe 

Norway, NO 

Switzerland, CH 

Turkey, TR 

Russia, RU  

 

Others 

United States, US 

 

Note: Due to data limitations for specific indicators, we aggregate Latvia, Lithuania and Estonia into a single 

group, denoted as “Baltics”. All indicators pertaining to Baltics are simple averages of available indicators. 

 

The EA is represented here by 14 individual Member States and one aggregate, i.e. the Baltics. With 

respect to our country selection, some clarifications are in order at this point. Slovenia and Slovakia 

joined EA in 2007, and 2009 respectively, therefore, very early in the sample and before the European 

sovereign debt crisis. Although the Baltics joined the EA only recently (i.e. between 2011 and 2015), 

for the empirical analysis we consider them part of the EA given their small relative size, highly open 

economies, and the fact that all three have been in the European Exchange Rate Mechanism (ERM II) 

since mid-2000s – underlining the importance of ECB monetary policy for this aggregate. Regarding 

other EU member states that are not part of the EA, we include U.K., Denmark and Sweden, along with 

Czech Republic, Poland and Hungary as three of the most representative countries for Central and 

Eastern EU with the best data availability.13 We also include Russia, Turkey, Norway and Switzerland, 

which are important commercial partners for EU; in addition, each of these countries has some 

particularities that justifies their inclusion in the sample: Russia is a source of policy uncertainty for 

Europe, especially during the 2014 annexation of Crimea; Turkey is an important global player in the 

                                                           
13 Other EU members that are not part of the EA, e.g. Romania, Bulgaria and Croatia, suffer from severe 

limitations on data availability (i.e. shorter sample availability) for the main model’s variables and, therefore, 

were not included in the analysis. Aggregating these countries is not a feasible option due to their larger 

heterogeneity than in the case of Baltics. 
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war against the terrorism that generated the massive immigration influx of 2015; Switzerland is an 

important financial hub; Norway is an important energy supplier for EU. Finally, we include U.S. as 

the main global financial centre, and an important source of policy and macroeconomic dynamics 

relevant for Europe and EA.   

Our dataset consists in monthly time-series running from January 2003 to June 2018 (all data 

description and definitions are provided in Appendix 1 at the end of this chapter). Although CISS is 

available with a weekly frequency from the ECB data warehouse, EPU are available only with a 

monthly frequency. We believe that such a frequency is sufficient to uncover the most relevant spill-

overs and cross-influences between the financial and policy uncertainty, due to the latter rather complex 

concept and measurement methodology. All country-specific EPU indexes have been calculated based 

on the same approach detailed in Baker et al. (2016), who propose searching the databases of major 

news publications in order to gauge the frequency of some relevant keywords pertaining to economic 

policy uncertainty domain. Obviously, speculations about un-announced policy changes, intentions or 

political declarations can be read almost daily in some economic and business publications, but time is 

of essence in order to observe sufficient political tension that eventually features prominently in the 

news (and gets captured in the EPU). Considering our country list, EPU time-series14 are available for 

the following 11 countries: FR, DE, NL, ES, IT, EL, IE, SE, UK, RU and US. Most importantly, EU 

countries such as EL, IT, ES, FR, IE and UK, which have been the source of many peculiar events over 

the last two decades,15 have both EPU and CISS available, allowing us to apply the identification from 

De Santis and Zimic (2018), which we discuss in the next section.  

Besides the uncertainty proxies EPU and CISS, we include for each country the spread in 10-year 

sovereign yields against Germany, which is the analytical benchmark for the EA.16 As a robustness 

check, we rebase all spreads against U.S., which represents instead the global benchmark. Including 

bond yields along with uncertainty proxies captures the inherent trade-off between risk and return.17 

Taking bond yield spreads against Germany should wipe out EA-aggregate uncertainty, which would 

be reflected in the dynamics of the German bond yields, ensuring therefore we indeed capture country-

specific dynamics. To further reduce the risk that our results are influenced by aggregate dynamics, the 

GVAR rich specification allows us to include different measures of area-wide uncertainty computed as 

weighted averages of EPU and CISS indexes (see the definition of foreign variables in the next section). 

Besides weighted averages of country-specific EPU and CISS indexes, we include the volatility index 

                                                           
14 We download all EPU data from www.policyuncertainty.com.     
15 Notice that only Portugal is missing from the list of so-called PIIGS countries. 
16 Data on 10-year sovereign spreads is available for all countries, except Turkey for which we use its 5-year 

sovereign yield.   
17 According to a recent Bloomberg article, financial investors still prefer high yields, despite high uncertainty 

stemming from a continuing political struggle between Italy and European Commission over fiscal plans. See 

https://www.bloomberg.com/opinion/articles/2019-06-12/italy-s-turmoil-means-nothing-to-bond-traders. 

http://www.policyuncertainty.com/
https://www.bloomberg.com/opinion/articles/2019-06-12/italy-s-turmoil-means-nothing-to-bond-traders
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VIX18 – which is a proxy for global risk appetite in the literature on global financial cycles (see Rey, 

2015; Bruno and Shin, 2014; Miranda-Agrippino and Rey, 2015) as well as in the literature on global 

financial spill-overs (Chudik and Fratzscher, 2011; Bettendorf, 2019).  

The original idea of the GVAR model specification is the complex re-weighting of country-specific 

vector autoregressive (VAR) models that reduces the parameters space and makes its estimation feasible 

(see Pesaran et al., 2004; Dees et al., 2007). To this end, we use a weighting scheme derived from data 

on bilateral portfolio exposures taken from the IMF’s Coordinated Portfolio Investment Survey (CPIS), 

which includes cross-border investments in bonds and equities.19 Weights based on portfolio flows, 

which are less volatile than other capital flows driven by changes in cross-border banking exposures, 

are more relevant for the model’s main transmission mechanisms that reflect risk-return trade-offs 

across limited integrated markets (see discussion in Gârleanu et al., 2015).20 Therefore, our specification 

only indirectly touches on the link between international capital flows and moves in sovereign spreads, 

i.e. the international portfolios rebalancing channel. According to this literature strand (see Rey, 2015; 

Bruno and Shin, 2014; Cerutti, Claessens and Ratnovski, 2017), global capital flows co-move with 

global risk factors and monetary policy changes in centre countries like U.S. and EA. In a similar vein, 

our empirical specification includes aggregate uncertainty and risk proxies (e.g. VIX, weighted 

averages of EPU and CISS), bond yield spreads against Germany (or US), and weights based on capital 

flows. In addition, by amplifying the effects of foreign shocks on the domestic economy, capital flows 

limit the policy options available to governments (Dragomirescu-Gaina and Philippas, 2015) and/or 

financial supervisory authorities (Allen et al., 2011), therefore further increasing policy uncertainty.  

Due to data limitations for some countries, we use a fixed rather than a time-varying weighting 

matrix,21 although the latter would probably only amplify the effects we uncover because of the time-

varying profile of contagion among (as well as originating from) vulnerable EA countries. Table 2 

below gives an overview on the stability of such portfolio exposures, displaying the average to standard 

deviation ratios computed over the 2001-2015 time period; lower values of the ratio correspond to more 

volatile flows, in general, while higher ratios stand for more stable flows. As expected, most EA 

countries (except EL, SK), together with UK and US have more stable (incoming and outgoing) 

portfolio flows compared to Eastern EU, Turkey and Russia.  

                                                           
18 VIX is the implied volatility of the S&P500 stock index option prices (the Chicago Board of Options Exchange 

Market Volatility Index). 
19 Data source is http://data.imf.org/cpis. We average annual data over the 2000-2015 period (subject to 

availability; some countries, e.g. Baltics, had shorter time-series). The matrix is illustrated in Appendix 2.  
20 A similar weighting scheme based on CPIS data is employed, for example, in Hebous and Zimmermann (2013) 

and Greenwood-Nimmo et al. (2019), although most GVAR papers use weighting schemes based on bilateral 

trade flows. Eickmeier and Ng (2015) investigate several weighting schemes (e.g. based on bilateral trade, 
portfolio investment, foreign direct investment, banking exposures) and find that a combination between trade 
and financial weights works best to expose credit supply shocks in a GVAR including real and financial variables. 

See also Feldkircher and Huber (2016) for an analysis of different weighting schemes in GVARs. 
21 Large part of the GVAR literature simply employs fixed rather than time-varying weighting matrixes because 

the focus is on the interactions of the GVAR variables rather than the weights.  

http://data.imf.org/cpis
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Table 2: Average-to-standard-deviation ratios for portfolio exposures over 2001-2015  

Country as a 

destination of 

flows 

as a 

source of 

flows  

Country as a 

destination of 

flows 

as a 

source of 

flows  

    EA countries     Other EU countries 

AT 2.4 2.4 PL 1.6 1.1 

BE 2.1 2.2 HU 1.7 1.1 

FI 2.4 2.1 CZ 1.5 1.6 

FR 2.5 2.1 SE 2.0 2.0 

DE 2.8 2.3 DK 1.7 2.0 

EL 1.0 1.2 UK 2.6 2.3 

IE 1.6 1.7     Other Europe 

IT 2.4 2.7 CH 2.2 2.3 

LU 1.8 2.3 TR 1.4 0.6 

NL 2.8 2.1 RU 1.6 0.7 

PT 1.8 1.8 NO 1.6 1.5 

SK 1.1 1.0     Others   

SI 1.0 3.7 US 2.5 1.9 

ES 1.8 1.9    
Note: The table displays the mean value of these (average-to-standard-deviation) ratios computed over all country-

pairs, where the indicated country is a destination or a source of portfolio flows (as mentioned on the first row), 

therefore, summarizing in a more efficient way a full matrix of statistics where each country pairs with all others. 

CPIS data is available for all countries from 2001 to 2015; exceptions are Lithuania (data available only for 2009-

2015), Latvia (2006-2015), and Slovenia (2009 – 2015).  

 

4. EMPIRICAL APPROACH 

4.1. Preliminary data analysis 

As the conceptual overlaps between policy and financial uncertainty were discussed in the previous 

sections, here we provide arguments for their empirical overlaps. As a preliminary analysis, Table 3 

below displays the pair-wise correlations between country-specific EPU and CISS indexes, in logs, 

computed over the entire sample (for countries where EPU is available), at monthly frequencies.  

As Table 3 illustrates, with the noticeable exception of U.K., almost all correlations are positive and 

statistically significant. For France and Ireland, correlations are slightly weaker when CISS lags EPU. 

The magnitude of the correlations is higher when EPU lags CISS in case of France, Germany, 

Netherlands, Spain and Ireland, but lower in case of Italy and Greece. We caution the readers not to 

make any causality inference from these correlations, which lack sufficient robustness and sometimes 

change with the sample size and period. This lack of robustness, instead, should be interpreted as an 

illustration of the dynamic nature of the interactions between policy (EPU) and financial (CISS) 

uncertainty, which might amplify or cancel each other, depending on the period, or the nature of the 
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event that triggered the shock in a particular country. Once we identify the structural shocks from the 

reduced form residuals, we can investigate the overlapping of the structural shocks’ time-series with 

some well-known episodes that marked the recent history of countries under consideration.   

 

Table 3: Pair-wise correlations between country-specific EPU and CISS indexes  

Country EPU(t) x 

CISS(t-2) 

  EPU(t) x 

CISS(t-1) 

EPU(t) x 

CISS(t) 

EPU(t-1) x 

CISS(t) 

EPU(t-2) x 

CISS(t) 

France 0.104 

(0.15) 

0.1485** 

(0.043) 

0.194*** 

(0.007) 

0.189*** 

(0.009) 

0.147** 

(0.045) 

Germany 0.1208 

(0.102) 

0.179** 

(0.014) 

0.2478*** 

(0.000) 

0.218*** 

(0.003) 

0.1637** 

(0.026) 

Italy 0.4638*** 

(0.000) 

0.4279*** 

(0.000) 

0.4577*** 

(0.000) 

0.4009*** 

(0.000) 

0.3622*** 

(0.000) 

Netherlands 0.2355*** 

(0.001) 

0.2392*** 

(0.001) 

0.287*** 

(0.000) 

0.2601*** 

(0.000) 

0.2637*** 

(0.000) 

Spain 0.2685*** 

(0.000) 

0.3177*** 

(0.000) 

0.4008*** 

(0.000) 

0.3735*** 

(0.000) 

0.328*** 

(0.000) 

UK 0.0309 

(0.677) 

0.0314 

(0.67) 

0.011 

(0.881) 

-0.0319 

(0.666) 

-0.0586 

(0.428) 

Greece 0.3345*** 

(0.000) 

0.3177*** 

(0.000) 

0.3108*** 

(0.000) 

0.3078*** 

(0.000) 

0.2835*** 

(0.000) 

Ireland 0.125* 

(0.091) 

0.1118 

(0.129) 

0.1307* 

(0.075) 

0.1551** 

(0.035) 

0.1457** 

(0.048) 

Note: The effective sample is: 2003:M01 – 2018:M06. The first rows display the lag/lead structure of the two 

time-series for which we compute the correlations, with t-1, t-2 and t+1, t+2 denoting 1 and 2 period lags, and 

leads respectively. Both EPU and CISS time series are in log terms. The p-values are provided in parentheses. 

The *, ** and *** denote statistical significance at 10%, 5% and 1% respectively.   

 

4.2. The baseline GVAR specification with identification based on magnitude restrictions 

The global VAR, or GVAR, was designed to simultaneously model cross-sectional dependence and 

time-series behaviour in macroeconomic data. This very flexible empirical framework was originally 

proposed by Pesaran et al., (2004), and extended by Dees et al., (2007). In essence, the GVAR is a 

collection of country-specific VARs, conveniently linked via a weighting matrix that makes the 

estimation feasible by reducing the parameter space. As discussed in section 3, we use financial weights 
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derived based on IMF CPIS data, which reflect the importance of financial flows in explaining the 

dynamics of sovereign bond yield spreads, and the transmission of uncertainty spill-overs. 

In principle, the GVAR model embeds three channels of cross-country interactions through: (i) 

foreign-specific variables, (ii) common factors and (iii) contemporaneous dependence of shocks. In this 

section, we allow for foreign-specific (or so-called star, i.e. *) variables to interact with domestic ones 

via the first channel, while in the next section, we introduce the second channel that works through 

common variables (i.e. the ECB monetary policy proxies). The third channel is implicitly accounted for 

through the estimated variance-covariance matrix in both this section and the next one. As long as the 

pairwise cross-country correlations left in the model residuals are low, most GVARs in the literature 

capture the cross-country interactions only through the first two channels, restricting22 the variance-

covariance matrix to be block-diagonal (e.g. Cesa-Bianchi 2013; Eickmeier and Ng, 2015; Feldkircher 

and Huber, 2016). However, since our focus is specifically on uncertainty spill-overs, we would like to 

capture the second-order moments of the data as well, and therefore leave the variance-covariance 

matrix unrestricted in the following analysis.  

In the baseline specification, each country 𝑖 is represented by a country-specific VAR model denoted 

as VARX (𝑝𝑖, 𝑞𝑖), with 𝑝𝑖 and 𝑞𝑖 lags and 𝑌𝑖,𝑡 a vector of endogenous variables. Each country-specific 

model is specified as: 

𝑌𝑖,𝑡 = 𝑎𝑖 + ∑ 𝐵𝑖,𝑗𝑌𝑖,𝑡−𝑗 + ∑ 𝐶𝑖,𝑗𝑌∗
𝑖,𝑡−𝑗 + 𝑣𝑖,𝑡

𝑞𝑖

𝑗=0

𝑝𝑖

𝑗=1

                                           (1) 

where 𝑎𝑖 is a vector of intercepts; 𝐵𝑖,𝑗 and 𝐶𝑖,𝑗 are coefficient matrixes; and 𝑣𝑖,𝑡 is a vector of 

idiosyncratic shocks, serially uncorrelated and with full variance-covariance matrix. The vector of 

endogenous variables 𝑌𝑖,𝑡 includes domestic variables, while foreign variables are denoted by 𝑌∗
𝑖,𝑡 =

∑ 𝑤𝑖,ℎ𝑌ℎ,𝑡𝑖≠ℎ , which are specific to each country 𝑖 and are constructed as weighted averages of country-

specific endogenous variables using the CPIS weighting matrix, 𝑊, where for each 𝑖 we have  

∑ 𝑤𝑖,ℎ𝑖≠ℎ = 1.  

For all EU countries, the domestic 𝑌𝑖,𝑡 vector includes three variables: EPU, CISS, and 10-year 

sovereign yield spread against Germany, denoted as 𝑠𝑝𝑟𝑒𝑎𝑑. Obviously, three is the maximum size of 

the 𝑌𝑖,𝑡 vector for EU countries; this happens because for some countries there is no EPU available and, 

for Germany the sovereign spread is exactly zero, and so it is excluded as a variable. For non-EU 

countries, the vector 𝑌𝑖,𝑡 includes only EPU (for the sake of notation below, we assume there is an EPU 

available for all non-EU countries) and 𝑠𝑝𝑟𝑒𝑎𝑑, but no CISS because ECB does not compute a CISS 

                                                           
22 In technical terms, this assumption would amount to a lack of contemporaneous volatility spill-overs between 

the countries included in the sample, though it would still allow for indirect volatility spill-overs that work through 

the complex lag structure of the model. 
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index for these countries. For US, instead, we add VIX, which also serves as a global proxy for risk, in 

line with much of the existing literature on the determinants of sovereign spreads (see the discussion in 

section 3). The foreign country-specific vector 𝑌∗
𝑖,𝑡 includes the foreign counterparts of domestic 

variables, so its size is set: to four for EU countries, to two for non-EU non-US countries, and to one 

for US. This symmetric (in terms of treating the two uncertainty proxies) but richer specification for 

EU countries captures the common European policy-making framework (i.e. through 𝐸𝑃𝑈∗), and the 

common financial regulatory framework (i.e. 𝐶𝐼𝑆𝑆∗). Except for US where it is endogenous23, VIX 

features in the 𝑌∗
𝑖,𝑡 vector of all countries, along with the foreign sovereign spreads denoted by 

𝑠𝑝𝑟𝑒𝑎𝑑∗.  In summary, each VARX is specified as: 

                  EU countries24: 𝑌𝑖,𝑡 = [
𝐸𝑃𝑈
𝐶𝐼𝑆𝑆

𝑠𝑝𝑟𝑒𝑎𝑑
]   and  𝑌∗

𝑖,𝑡 = [

𝐸𝑃𝑈∗

𝐶𝐼𝑆𝑆∗

𝑠𝑝𝑟𝑒𝑎𝑑∗

𝑉𝐼𝑋

]               

Non-EU countries, except US: 𝑌𝑖,𝑡 = [
𝐸𝑃𝑈

𝑠𝑝𝑟𝑒𝑎𝑑
]   and  𝑌∗

𝑖,𝑡 = [
𝑠𝑝𝑟𝑒𝑎𝑑∗

𝑉𝐼𝑋
]             (2) 

                           US: 𝑌𝑖,𝑡 = [
𝐸𝑃𝑈

𝑠𝑝𝑟𝑒𝑎𝑑
𝑉𝐼𝑋

]   and  𝑌∗
𝑖,𝑡 = [𝑠𝑝𝑟𝑒𝑎𝑑∗] 

Note that foreign variables are linear combinations of domestic ones, 𝑌∗
𝑖,𝑡 = 𝑊𝑖𝑌𝑡, with 𝑊𝑖 being 

country-specific link matrices based on CPIS portfolio weights. We can therefore rewrite (1) as:  

[𝐼, −𝐶𝑖,0]𝑊𝑖𝑌𝑡 = 𝑎𝑖 + ∑[𝐵𝑖,𝑗, 𝐶𝑖,𝑗]

𝑗=1

𝑊𝑖𝑌𝑡−𝑗 + 𝑣𝑖,𝑡 

for each country, 𝑖. By staking all countries together, we obtain: 

𝐺0𝑌𝑡 = 𝑔0 + ∑ 𝐺𝑗𝑌𝑡−𝑗

𝑗=1

+ 𝑣𝑡                                       (3)   

where 𝐺0 = (
[𝐼, −𝐶1,0]𝑊1

[𝐼, −𝐶2,0]𝑊2

…

) ,  𝐺𝑗 = (
[𝐵1,𝑗 , 𝐶1,𝑗]𝑊1

[𝐵2,𝑗 , 𝐶2,𝑗]𝑊2

…

), 𝑔0 = (
𝑎1
𝑎2

…
) and 𝑣𝑡 = (

𝑣1,𝑡
𝑣2,𝑡

…
). Provided that 𝐺0 

is invertible, we can write the GVAR in its reduced form as: 

𝑌𝑡 = ℎ0 + ∑ 𝐻𝑗𝑌𝑡−𝑗

𝑗=1

+ 𝑢𝑡                                          (4) 

                                                           
23 Notice that there is no 𝑉𝐼𝑋∗ because VIX is available only for US, and therefore the two would be identical. 

Moreover, the simplified specification of the foreign vector for US reflects is in line with much of the GVAR 

literature, reflecting the prominent (financial and economic) role of the US.  
 24 For Germany, 𝑌𝑖,𝑡 = [𝐸𝑃𝑈, 𝐶𝐼𝑆𝑆]′, but the 𝑌∗

𝑖,𝑡 is specified the same as for other EU countries. 
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where ℎ0 = 𝐺0
−1𝑔0, 𝐻𝑗 = 𝐺0

−1𝐺𝑗 are coefficients, and 𝑢𝑡 = 𝐺0
−1𝑣𝑡 are reduced form residuals with 

variance-covariance matrix given by Ω𝑢. 

With all variables expressed in logs (except for spreads), we estimate the model directly in levels, 

allowing an easy interpretation of impulse responses, which provide us with the main insights. Sims, 

Stock and Watson (1990) recommend against differencing even in the presence of unit roots, arguing 

that the goal of the analysis should be to determine the interactions between variables. They show that 

the VAR specified in levels delivers consistent estimates, even in the presence of stochastic trends and 

cointegration. Elliot (1998) further shows theoretically that imposing cointegration for near unit root 

variables can lead to large distortions. We do not estimate cointegrating relations, nor include time 

trends and error correction terms, also because our short sample and small set of variables would 

preclude a robust identification of these long-term relationships.25   

Our sample includes more than 15 years of monthly observations. The main trade-off we are facing 

in the estimation is between model parsimony and its statistical properties (e.g. stability, residual tests). 

Kapetanios et al. (2007) notice that the quality of a VAR approximation to the true model depends on 

both the number of variables and the lag order; as the GVAR includes more variables than a normal 

VAR (i.e. both domestic and foreign variables in each country-specific model), small lag orders are 

regularly employed. We notice that setting a maximum lag length for domestic variables 𝑝𝑖 = 3 

eliminates most residual autocorrelation (or serial dependence) and preserves a parsimonious 

specification (i.e. setting a higher lag order would further reduce autocorrelation). As for the maximum 

lag employed for foreign variables, 𝑞𝑖, a smaller lag order is to be preferred because financial markets 

can react rapidly to foreign influences (e.g. media news, uncertainty boosts); in fact, accounting for the 

contemporaneous effects of foreign uncertainty proxies is key for estimating the cross-border spill-

overs. Setting the maximum lag length 𝑞𝑖 = 0 for all country-specific models as in Burriel and Galesi 

(2018) does not guarantee model stability (i.e. all eigenvalues below unity) in all different 

specifications; therefore, allowing for 𝑞𝑖 = 1 in few specific VARX models, particularly for small 

countries (that are more likely to receive heavier influences from abroad, like for example AT, BE, IE, 

DK), appears the easiest fix to this stability problem and, in addition, maintains model parsimony and 

lowers autocorrelation further. Figure 1 depicts the estimated residual autocorrelation and the 

eigenvalues of the GVAR in the baseline specification. The large majority of residual autocorrelations 

lie within or close to the confidence bands (±2 standard deviations), and all eigenvalues are less than 

one, despite some inherent persistency.  

 

                                                           
25 Both theory and empirical studies provide evidence that European sovereign spreads are cointegrated with 

fundamentals (e.g. fiscal proxies, economic and financial proxies), which are omitted from our estimated GVAR 

(see De Santis, 2019). 
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Figure 1: Specification checks for baseline GVAR  

Panel A: Residual autocorrelation 

 

Panel B: Eigenvalues of GVAR 

 

Note: Panel A plots the values of residual autocorrelation for all GVAR variables and all country-specific 

models, depending on the serial lag; the vast majority of them (96.5%) are lying within the indicated 

confidence bands (±2 standard deviations). Panel B plots the GVAR eigenvalues, all lying below unity. 

 

As noted in Dees et al (2014), and also Dungey and Osborn (2014), dealing with multi-country 

models in general requires a different framework for conceptualizing the nature of shocks that one 

wishes to identify, particularly because of the strong cross-sectional dimension implied in such models. 

This is one of the contributions we bring to the uncertainty-related empirical literature, which deals 

largely with shock identification in single country models (noteworthy exceptions are Bicu and 

Candelon, 2013; Stângă, 2014; Acharya, Drechsler, and Schnabl, 2014; Bacchiocchi, 2017; 

Greenwood-Nimmo, Huang and Nguyen, 2019; Bettendorf, 2019). A GVAR specification can elegantly 

solve such challenges through the inclusion of country-specific foreign variables (and common 

variables) that can effectively reduce, and even eliminate, cross-sectional correlations in residuals. In 

our baseline specification, the average cross-sectional correlation is below 0.04 in absolute terms for 

CISS and EPU, and below 0.05 in absolute terms for spreads, with a maximum of 0.13 for some 

countries (e.g. FI, PL, ES, CZ). To better illustrate this point, not including the country-specific foreign 

vector 𝑌∗
𝑖,𝑡 would rise all these cross-sectional correlations to within the 0.2 – 0.4 range. 

In terms of identification, we follow De Santis and Zimic (2018) and implement structural 

identification through absolute magnitude restrictions. Any structural identification requires a mapping 

from reduced-form shocks, 𝑢, into structural ones, 𝜀, say in the form: 𝑢 = 𝑆𝜀, where 𝑆 is a matrix that 

is the focus of any identification strategy. In practice, we are only interested in the identification of the 

two uncertainty shocks associated with the two uncertainty proxies and therefore with a partition of 𝑆 

that we denote as 𝑆2x2. The GVAR estimated variance-covariance matrix associated with the first two 

equations in this case becomes Ω𝑢,2x2 = 𝑆2x2𝑆2x2′, since the structural shocks 𝜀 are normalised and 

assumed to have unit variance. The main identification challenge is the lack of uniqueness for the matrix 
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𝑆2x2. In particular, for any orthonormal matrix, 𝐾, satisfying 𝐾𝐾′ = 𝐼, we can also write Ω𝑢,2x2 =

𝑆2x2𝐾(𝑆2x2𝐾)′ = 𝑆2x2𝐾𝐾′𝑆2x2
′ = 𝑆2x2𝑆2x2′ meaning that 𝑆2x2 is not uniquely identified from the data 

without some additional assumptions. 

Magnitude restrictions work by conveniently restricting the space where the coefficients of the 𝑆2x2 

matrix are required to lie, based on the simple assumption that the relative size of the contemporaneous 

response of uncertainty variable 𝑖 to an uncertainty shock 𝑗, with 𝑖 ≠ 𝑗, must be smaller (in absolute 

terms)26 than the contemporaneous response of uncertainty variable 𝑗 to the same uncertainty shock 𝑗. 

In other words, when both variables 𝑖, 𝑗 are scaled by their standard deviations, the indirect effect of a 

structural uncertainty shock 𝜀𝑗 on variable 𝑖, 𝑖 ≠ 𝑗, is lower than its direct effect on variable 𝑗. To some 

extent, these restrictions imply that any of our two uncertainty measures is better than the other one in 

capturing a structural shock that stems from its own domain – an implication that is not hard to accept 

given the obvious methodological differences between the two indicators. Indeed, despite the inherent 

statistical overlaps, CISS is a composite indicator designed and empirically tested (see Hollo et al., 

2012) to reflect stress in different financial market segments rather than Knightian uncertainty, while 

EPU is designed to capture policy uncertainty as reflected in the media and related to government’s 

initiatives, public proposals, or changes in rhetoric and opinions rather than financial stress.    

De Santis and Zimic (2018) show that these simple inequality restrictions allow the unique 

identification of structural shocks in sovereign yields within a simple VAR focusing on EA. We rely 

on their proposed algorithm for small systems (see the Appendix from De Santis and Zimic, 2018), as 

we only require the identification of two structural shocks where convergence problems are not an issue. 

There is no particular difference between the working of the algorithm in a VAR settings compared to 

a GVAR one, apart from its different Matlab implementation and additional coding required into the 

GVAR toolbox, which is made available in Burriel and Galesi (2018). Appendix 3 at the end of this 

chapter details the main steps of the algorithm as implemented in our GVAR specification. 

The advantages of using magnitude restrictions in our empirical setting are important to discuss in 

relation to other structural identification methods available in the VAR literature.27 Firstly, the 

identification through magnitude restrictions does not impose any time precedence on the two 

uncertainty variables, like would be the case when applying a standard Choleski identification (which 

is just a special case of the identification based on magnitude restrictions as it imposes a zero 

contemporaneous response of some variables to some shocks).28 In our case, imposing a time 

                                                           
26 This means that the two uncertainty variables are allowed to move contemporaneously in any direction in 

response to a structural shock, as along as the relative (measured in terms of standard deviations) impact fulfils 

the respective inequality. 
27 It is important to mention that most of the GVAR literature uses generalised IRFs (or GIRFs) due to 

identification challenges in multi-country settings, as discussed in Dees et al. (2014). The GIRFs, however, have 

the main disadvantage that shocks cannot be given a structural interpretation. 
28 Bekaert et al. (2013) estimate a VAR specified in business cycle, monetary policy, risk aversion and expected 

market volatility, using a Choleski decomposition (with variables ordered as listed), and a combination of 
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precedence between two uncertainty proxies would be too strong of an assumption, given the complex, 

dynamic, double causality influences between policy and financial uncertainty (e.g. in the cases of 

Greece and Ireland the precedence of the shocks is reversed; see Farhi and Tirole, 2017). Secondly, an 

alternative identification method such as one based on sign restrictions would require not only more 

complex transmission mechanisms than the one implied here, but also strong theoretical predictions 

about these mechanisms. As long as the literature on measuring uncertainty and estimating its effects is 

still in its infancy, a perfect matching between theoretical concepts and empirical counterparts is 

challenging (see discussion in Jurado et al., 2015). Moreover, as noted in Caldara et al., (2016), different 

uncertainty shocks, despite differences in measurement, can have similar effects on other 

macroeconomic variables, complicating identification.29 Thirdly, Bacchiocchi (2017) and Angelini et 

al., (2019) build on the original “identification through heteroskedasticity” idea proposed in Rigobon 

(2003) in order to identify uncertainty shocks in a VAR model. While their method is successful in 

dealing with endogeneity challenges that arise between uncertainty and real or financial variables, it 

requires that (at least some) structural parameters remain constant over time and across volatility 

regimes. Forth, Caldara et al., (2016) identify the effects of economic uncertainty and financial shocks 

by employing a penalty function approach, which shares some similarities with our identification 

approach. In their case, the structural shock should maximize the impulse response of its respective 

target variable over a pre-defined period. However, although they are able to identify the two structural 

shocks, they still use a sequential identification due to reverse causality fears.  

To derive our main insights, we rely on the models’ impulse response functions (IRFs), which are 

conveniently summarised in Table 4 below. To gauge statistical significance of the IRFs, we use 

bootstrapped 68% confidence intervals30 based on 200 replications, with (a maximum of) 200 draws of 

the orthonormal matrix for each replication. In Appendix 4, Figures 4.1 – 4.6, we display detailed IRFs 

for all country-specific variables to uncertainty shocks originating in Italy, Spain, Greece, Ireland, 

France and UK, for which we have data on both EPU and CISS uncertainty proxies. Due to the large 

number of countries, and to save space, we only display the most representative ones in Appendix 4. 

 

  

                                                           
contemporaneous with long-run restrictions. They find that risk aversion decreases more strongly than volatility 

to a lax monetary shock, with both expected volatility and risk aversion extracted from VIX. Others like Baker et 

al. (2016) and Jurado et al. (2015) also employ Choleski decompositions, but use a single uncertainty proxy not 

two different ones. 
29 As the required inequality restrictions must be fulfilled only in absolute terms in our case, EPU and CISS are 

free to either co-move or move in opposite directions, and they might have similar effects on bond spreads. 
30 Burriel and Galesi (2018) and Anaya, Hachula and Offermanns (2017) also use 68% confidence intervals in 

GVAR applications, which are known to suffer from wider confidence bands due to over-parameterization. 
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Table 4: Summary findings based on IRFs to shocks in the baseline specification 

Shock 

origin 

Observed 

response 

CISS responses 

to CISS shock 

EPU responses to 

CISS shock 

CISS responses 

to EPU shock 

EPU responses to 

EPU shock 

Italy domestic Significant, up to 

9 months 

Significant and 

quick, up to 6 

months  

Insignificant Significant, up to 

12 months  

cross-

border 

spill-

overs 

Significant, up to 

9-18 months 

Significant and 

quick, up to 3-12 

months 

Insignificant Significant, up to 

9-12 months 

Spain domestic Significant, up to 

9 months 

Insignificant Insignificant Significant, up to 

6 months 

cross-

border 

spill-

overs 

Significant, up to 

9-24 months 

Weakly 

significant in few 

countries 

Mostly 

insignificant 

Significant, up to 

6-9 months 

Greece domestic Significant, up to 

12 months 

Insignificant Insignificant Significant, up to 

12 months 

cross-

border 

spill-

overs 

Significant, up to 

6-18 months 

Short-lived, 

significant up to 9 

months 

Significant, up to 

6-12 months 

Significant, up to 

6-12 months 

Ireland domestic Significant, up to 

18 months 

Significant 

between 3-9 

months 

Insignificant Insignificant 

beyond impact 

period 

cross-

border 

spill-

overs 

Significant, up to 

9-18 months 

Significant and 

quick, between 3-

12 months 

Insignificant Insignificant 

beyond impact 

period 

France domestic Significant, up to 

9 months 

Insignificant Insignificant Significant, up to 

9 months 

cross-

border 

spill-

overs 

Significant, up to 

9-18 months 

Short-lived, 

significant up to 9 

months 

Insignificant Significant, up to 

9-12 months 

UK domestic Significant, up to 

9 months 

Short-lived, 

significant up to 6 

months  

Insignificant Significant, up to 

9 months 

cross-

border 

spill-

overs 

Significant, up to 

9-24 months 

Short-lived, 

significant up to 

6-9 months for 

some countries 

Significant, up to 

3-9 months 

Significant, up to 

6-12 months 

Note: The table displays a summary of the IRFs results derived for structural uncertainty shocks in the baseline 

GVAR specification. Statistical significance is based on bootstrapped 68% confidence intervals based on 200 

replications, with a maximum of 200 draws of the orthonormal matrix for each replication. 
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Some main results from Table 4 stand out. Firstly, there are substantial and persistent cross-border 

spill-overs for both EPU and CISS shocks. Depending on the shock’s country of origin, CISS or EPU 

might display more or less persistency in responding to own shocks. These observations are in line with 

the prevalence of different shocks in different countries and the narrative evidence available. For 

example in Spain and Ireland, CISS displays more persistent responses to its own shocks (i.e. mostly 

financial crises), while in Italy it is the EPU that displays more persistency to its own shocks (i.e. mostly 

political crises).  

Secondly, there are substantial interactions (or cross-influences) between the two uncertainty 

proxies, revealing the important overlaps existing between policy and financial realms. In particular, 

most EPU responses to CISS shocks are significant and quick, lasting between impact and 12 months 

after the shock. On the contrary, CISS responses to EPU shocks, even when statistically significant, are 

only very weak and slow. In other words, policy uncertainty responds strongly and quickly to shocks in 

financial uncertainty, but financial uncertainty in general does not react to policy uncertainty shocks. 

This asymmetry is surprising given the perfectly symmetric treatment of the two uncertainty proxies in 

the specification of EU countries’ VARX models (see equations 2). This is an important result in line 

with the existing evidence of the importance of financial frictions for (macro)economic policy stability 

(Allen et al., 2011).  

Thirdly, there is more often the case that domestic interactions between EPU and CISS are 

insignificant, while their cross-border spill-overs are significant, like in the cases of Greece, France and 

Spain; this could mean that domestic events in these countries have been more relevant from a European 

rather than a domestic perspective.  

A fourth result, not summarised in Table 4 to save space but easily revealed when inspecting Figures 

4.1 – 4.6 panels C and F, in Appendix 4, refers to sovereign spreads’ reaction to uncertainty shocks; 

these reactions are consistent with international portfolios rebalancing away from (mainly) EU 

periphery (though France, Netherlands, Baltics, and Eastern Europe can be also included here) and into 

US and UK bonds (along with other safe assets like Luxemburg, Norway).31 Moreover, spreads’ 

reactions to CISS shocks point to overshooting followed by undershooting their initial level within a 

two-year period, while reactions to EPU shocks are mostly positive with a slow return to the initial level 

over the same period of time. In other words, higher financial (though not policy) uncertainty is more 

likely to be associated with higher volatility in sovereign yields.  

 

 

                                                           
31 Interestingly, and perhaps counter-intuitively, sovereign spreads of UK and Ireland decrease in reaction to 

domestic CISS shocks (and EPU shocks for UK), highlighting the European rather than local dimension of the 

stress events, and the two countries’ role as financial hubs for European markets. 
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4.3. Extended GVAR specification: including ECB monetary policy  

In this section we include ECB monetary policy, such that ECB can be interpreted as a synthetic country 

of the GVAR32, as in Georgiadis, (2015), Burriel and Galesi (2018). Accordingly, we re-specify the 

reduced-form GVAR given in (1) as:   

𝑌𝑖,𝑡 = 𝑎𝑖 + ∑ 𝐵𝑖,𝑗𝑌𝑖,𝑡−𝑗 + ∑ 𝐶𝑖,𝑗𝑌∗
𝑖,𝑡−𝑗 + ∑ 𝐷𝑖,𝑗𝑋𝑡−𝑗

𝑞𝑖

𝑗=0

+𝑢𝑖,𝑡

𝑞𝑖

𝑗=0

𝑝𝑖

𝑗=1

                            (5) 

where 𝑋𝑡 includes the common variables that represent the ECB monetary policy, while 𝐷𝑖,𝑗 is the 

associated coefficient matrix. We follow Boeckx et al. (2017) and Burriel and Galesi (2018) and define 

𝑋𝑡 such as to capture the main aspects of ECB monetary policy: (i) conventional monetary policy (CMP) 

and (ii) unconventional (UMP) policy tools, as well as (iii) a liquidity proxy; see data description in 

Appendix 1. We proxy CMP using the Main Refinancing Operations interest rate, which is the ECB 

main policy rate. As a liquidity proxy we use the spread between EONIA (i.e. the Euro Overnight Index 

average) and the Main Refinancing Operations rate. As UMP proxy we use the (log of) ECB balance 

sheet, which is the standard indicator in the literature. These same three indicators define ECB monetary 

policy in Boeckx et al., (2017) and Burriel and Galesi (2018), though here our focus is on evaluating 

ECB responses to uncertainty shocks. Accordingly, the extended GVAR specifies 𝑋𝑡 as an 

autoregressive process with lag orders given by (𝑝𝑥, 𝑞𝑥) as: 

𝑋𝑡 = 𝑚𝑥 + ∑ 𝑁𝑗𝑋𝑡−𝑗

𝑝𝑥

𝑗=1

+ ∑ 𝑃𝑗𝑌̃𝑡−𝑗

𝑞𝑥

𝑗=1

+ 𝑢𝑥,𝑡                                                       (6) 

where 𝑁𝑗 and 𝑀𝑗 are (matrix) coefficients, while 𝑌̃𝑡 is a vector of feedbacks from GVAR’s endogenous 

domestic variables – capturing the response of ECB monetary policy to developments in the EA region 

(see Table 1), similar to Georgiadis (2015), Burriel and Galesi, (2018). As lag orders, we chose a 

parsimonious model matching the baseline specification and set 𝑝𝑥 = 3 and 𝑞𝑥 = 1. 

Central banks’ balance sheets have recently attracted much research attention, with Gambacorta, 

Hofmann, and Peersman (2014) being the first to popularise the use of central bank balance sheet size 

as a proxy for unconventional monetary policy.33  Starting with Fratzscher et al. (2016), there is a 

growing list of studies focusing on ECB’s unconventional monetary policy effects and their cross-

country spill-overs; see among many others Moder (2017), Burriel and Galesi (2018), Boeckx, Dossche, 

and Peersman (2017), Kucharčuková et al. (2016), Koijen et al., (2018). Moreover, as noted in Boeckx, 

                                                           
32 In technical terms, equation (6) describes the dynamics of the dominant unit of the GVAR. 
33 ECB unconventional monetary policy tools include non-standard liquidity provision (LTROs) and several asset 

purchase programs. For example ECB conducted two Covered Bond Purchase Programs (CBPPs) between June 

2009 and October 2012; between 2010 and 2012, ECB bought government bonds on the secondary market through 

its Securities Markets Program (SMP). After November 2014, ECB conducted an asset-backed securities purchase 

program (ABSPP) and a third CBPP. 
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et al., (2017), identification of unconventional policy shocks can be challenging if it does not 

sufficiently distinguish between policy- and demand-driven shocks. Given the fixed-rate tender with 

full allotment strategy of the ECB,34 isolating the exogenous from the endogenous shifts in ECB’s 

balance sheet becomes key for proper identification (see also Burriel and Galesi, 2018). We do not 

attempt to identify conventional nor unconventional monetary policy shocks in our simple model, as 

long as some relevant transmission mechanisms and indicators (e.g. real business cycle indicators) are 

missing. Expanding the GVAR specification to include a more detailed set of indicators and 

transmission mechanisms is beyond the scope of this paper and is left for future research. 

The estimation of the extended GVAR proceeds as already described in the previous section. For 

consistency, we impose the same lag structure for the country-specific VARXs as in baseline, and 

observe this specification successfully passes stability and residual autocorrelations tests. In addition, 

Table 5 below presents, by country and equation, the F-statistics of the joint null that 𝐷𝑖,𝑗 = 0 in 

equation (5). Results are rather mixed, illustrating that ECB variables had jointly varying influences on 

each country; for Italy and Greece the impact of ECB proxies falls mostly on policy uncertainty, while 

for Portugal, Baltics and Central Europe it falls on financial uncertainty; sovereign spreads are instead 

affected by ECB in the cases of Greece, Spain, and some Central European countries. 

 

Table 5: F-tests of the joint null that ECB policies had no influence on a EA country/variable 

Country: Variable: Spread Variable: CISS Variable: EPU F crit. (5%) 

Austria 3.6786* 0.4309  2.1539 

Belgium 1.6759 1.1428  2.1539 

Finland 1.6692 0.9005  2.6571 

France 1.7233 1.2541 0.9965 2.1549 

Germany  1.7696 1.8607 2.6571 

Italy 1.0234 0.9305 4.3796* 2.1549 

Netherlands 2.0572 0.7916 2.2181 2.6581 

Spain 8.2791* 2.4232 0.7440 2.6581 

Greece 3.0175* 0.9094 3.9638* 2.6581 

Ireland 0.1110 0.9401 1.5052 2.1549 

Portugal 1.9515 3.4332*  2.1539 

Luxemburg 7.1009* 2.4442  2.6571 

Slovakia 3.8868* 5.2872*  2.6571 

Slovenia 8.8777* 3.8107*  2.6571 

Baltics 0.6399 3.0100*  2.6571 

Note: The F-statistics is computed, by country and by equation, restricting the coefficients of the three ECB proxy 

variables to be exactly zero. The degrees of freedom associated with the F-statistics vary, depending on the lag 

structure of the foreign variables in each country-specific VARX model. The * denotes cases where the F-statistics 

is higher than the critical value, and therefore the null can be rejected at a 5% significance level. 

 

                                                           
34 https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html. 

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html
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Again, our main insights are derived based on the analysis of the IRFs to structural uncertainty 

shocks identified using magnitude restrictions. This time, however, the extended GVAR specification 

allows us to analyse more results with a richer dynamics, including the different ECB monetary policy 

responses to different uncertainty shocks. Detailed IFRs for some of the most representative countries 

can be found in Appendix 4, in Figures 4.1 – 4.6, and in Appendix 5 in Figure 5.1.  

The most striking difference between the baseline and the extended GVAR is the reduction in 

persistency, and in some cases statistical significance, for uncertainty responses to uncertainty shocks. 

Most EPU reactions to either CISS or EPU shocks become less statistically significant compared to the 

baseline, and this happens particularly in EA periphery; meanwhile, CISS reactions remain broadly 

unchanged. In other words, with the inclusion of ECB in the extended GVAR, EPU dynamics become 

more muted – an idea that matches the positive views held on ECB policies (particularly UMP) that 

dominate policy discussions in Italy for example, and corroborates with findings from Table 5 above. 

As more significant differences arise for EPU responses rather than for CISS responses, we can 

conjecture that ECB actions must have had a more important impact on policy uncertainty dynamics 

rather than financial uncertainty. 

The extended specification allow us to infer the responses of ECB monetary policy to structural 

uncertainty shocks as well, providing a complementary perspective to our results discussed above (see 

Appendix 5). Firstly, ECB assets temporarily increase (for about 6 months) in reaction to CISS shocks, 

while reactions to EPU shocks last longer and are not easily reversed. In other words, ECB might be 

just accommodating higher liquidity needs rather than adopting new (un)conventional policy measures 

in reaction to CISS shocks. This conclusion is reinforced by the fact that increases in the spread between 

EONIA and the ECB main policy rate, which are indicative for liquidity shortages, are more intense in 

reaction to CISS shocks than to EPU shocks. Secondly, the response of ECB’s policy rate to CISS 

shocks is almost immediate, always negative and statistically significant for about 12-18 months. In 

contrast, responses to EPU shocks are more sluggish and weaker. Overall, these new insights only serve 

to strengthen our conjecture above: that ECB had adopted a more pro-active stance towards policy 

uncertainty shocks, and a more accommodative (i.e. passive) stance towards financial uncertainty 

shocks. In line with the theoretical literature mentioned in section 2.2 (e.g. Freixas and Holthausen, 

2004), we might posit that ECB has tried to reduce policy uncertainty in order to prevent a 

“segmentation equilibrium”, or at least ensure that an “integration equilibrium” remains feasible. 

Lastly, with respect to sovereign spreads’ reactions to structural uncertainty shocks, our results point 

to some similarities compared to the baseline. The IFRs in panels C and F from Figure 4.1 – 4.6 in 

Appendix 4 illustrate the same idea consistent with portfolio rebalancing away from EA periphery and 

mainly into US and UK, i.e. outside EA. However, this time around the IRFs in the extended GVAR 

specification show a larger undershooting occurring between 9-24 months in response to CISS shocks, 
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highlighting the positive role ECB must have played on EA sovereign yields, and therefore on CISS 

dynamics, over a medium-to-long term.  

 

4.4. Event study back-testing 

According to De Santis and Zimic (2018), their magnitude restrictions are inspired by event study 

techniques. This type of techniques require a good understanding of the historical patterns and causality 

chains that facilitate the identification of the consequences of some unique shocks. As already 

mentioned before, magnitude restrictions are just a mathematical formulation that conveniently 

associates a causality order among some highly correlated variables. This section provides evidence on 

the suitability of our identification approach by associating an event timeline with the time-series of the 

identified structural uncertainty shocks. We draw on various data sources to identify a set of unique 

country-specific events, many of whom have shaped the recent history of Europe. Figure 2 plots the 

identified structural CISS and EPU shocks for Italy, Spain, Greece, Ireland, France and UK, along with 

a timetable that provides details on the most likely event that can be associated with some outliers. 

 

Figure 2: Time-series of structural uncertainty shocks and timetable of major events and headlines 

 

Italy timeline: 

Mar. - Apr. 2005: ABN Amro bids for Antonveneta in a 

first cross-border acquisition of an Italian bank. BBVA bids 

for BNL, another Italian bank. Italian authorities oppose, but 

European Commission insists.  

Apr. 2006: Berlusconi squares off against Prodi in general 

elections. The Italian Supreme Court confirms Prodi's election 

win, but Berlusconi doesn't concede  

Jan. 2013: Monti’s gov’t resigns 

Apr-May 2015: EU Migration crisis begins with a tragedy in 

the Mediterranean, with Italy taking centre stage 

May 2018: Anti-system parties M5 and Lega Nord win 

general elections and will form the gov’t 

 

Spain timeline: 

May-Jun. 2006: Campaign and referendum on Catalonia 

autonomy.  

Apr. 2007: Spanish bank Santander bids with a consortium 

to acquire ABN Amro, in the world’s biggest bank takeover to 

date. Markets fear financial troubles due to oversized debt.  

May 2010: Bank of Spain seizes CajaSur, a savings bank run 

by the Roman Catholic Church, making investors worried about 

the ongoing restructuring of the Spanish banking sector 

Mar. 2012: Strikes against austerity and labour market reform 

spread throughout Spain.   

Oct 2017: Madrid imposes direct rule in Catalonia after voters 

in a referendum back separation from Spain. 
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Greece timeline: 

Feb. 2005: EU finance ministers warned Greece to get its 

finances in order and bring its annual budget deficit in line with 

EU spending rules or face hefty fines 

 Jun. 2008. Greece ratifies the Treaty of Lisbon.  

 Oct. 2011: Eurozone leaders agree on an exceptional package 

of measures to address crisis, including a 50% debt write-off for 

Greece in return for further austerity measures.  

Oct. 2014:  concerns over Greek gov’t collapse triggers 

massive sell-off in the stock and bond markets; main stock 

index down 9.8 %. EBA stress test results published, showing 

3 Greek banks failed the test. 

Feb. 2018: gov’t eases capital controls from 2015. Greece 

returns to international markets with a 7-year bonds auction 

 

 

Ireland timeline: 

 Feb. 2005: Northern Bank robbery investigation reveals 

money laundering and leads to political scandal; Gov’t accuses 

top members of Sinn Fein are part of IRA leadership; Bank of 

Scotland chairman, associate with prime-minister, steps down.   

 Dec. 2006: Irelands’ biggest political scandal related to 

former Prime-Minister Haughey 

Sep 2008: Gov’t to guarantee all deposits in Ireland 

 Nov 2010: European ministers agree a bailout for Ireland  

Dec 2010 – Jan 2011: Gov’t nationalizes Allied Irish Banks, 

the 4th bank taken over in the crisis.  

Jul 2011: Jul 21, EU leaders cut interest rates on Irish bailout 

Sep 2014: EU warns Ireland that the country had granted 

Apple tax advantages as illegal state aid. 

 

France timeline: 

Nov 2004: an armed conflict starts between France and Ivory 

Cost. Nearly 5000 foreign nationals evacuated. 

Jun 2010: Gov’t announces huger public spending cuts of 45 

bn. EUR to reduce public debt. 

Sep 2011: Moody's downgrades the two biggest French 

banks, Credit Agricole and Societe Generale, because of their 

exposure to Greek debt. 

Apr. 2017: First round presidential elections between E. 

Macron and M. Le Pen. 
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UK timeline: 

Oct 2008: Gov’t increases to GBP 50,000 its guarantees of 

British bank deposits. British gov’t bails out several banks, 

including the Royal Bank of Scotland, Lloyds TSB, and HBOS. 

 Jul. 2016: dire policy implications emerge regarding the 

surprising results on the UK referendum for EU membership, 

held at the end of June. PM David Cameron resigns. 

Feb 2017: Parliament votes to invoke Article 50. Gov’t 

publishes its first blueprint on Brexit, removing some of the 

existing uncertainty.  

 

  

Note: News and headline sources include the following webpages: www.FT.com, www.bbc.com/news, 

www.cnn.com, www.wikipedia.org, www.imf.org, www.timelines.ws, https://ftalphaville.ft.com, 

https://en.wikipedia.org/wiki/Portal:Current_events.     

 

4.5. Robustness checks 

Three different robustness checks are performed in order to verify the consistency of our main findings. 

We next provide the main technical details behind their implementation and discuss the main results in 

comparison with the results of the baseline and extended specifications.  

As a first robustness check, we add a measure of global liquidity risk, i.e. the TED spread, which is 

the spread between the 3-Month LIBOR based on US dollars and the 3-Month Treasury Bills (see 

Brunnermeier, 2009). Although our extended GVAR already includes a liquidity proxy relevant for EA 

markets (i.e. the spread between EONIA and the main ECB policy rate), the US dollar-denominated 

funding costs of European banks play a key role within the literature on global financial cycles35 (see 

Rey, 2015; Bruno and Shin, 2014). When uncertainty raises, banks charge themselves higher interest 

rates for uncollateralised loans (i.e. LIBOR rate is the reference rate for interbank lending) compared 

to the yield of risk-free US Treasuries, and therefore the TED spread is actually a global liquidity proxy. 

The cost of US dollar funding has been a central element of the policy reactions during the peaks of the 

financial crisis from 2007/2008. All major central banks, including ECB, set up direct currency swap 

lines with the US Federal Reserve System, precisely to alleviate pressures from the US dollar funding.36 

By adding the TED spread as an endogenous variable to the US model in our GVAR, we account for 

changes in global liquidity and US dollar funding, providing a consistency check to our main findings 

from the previous sections. We find that the main results from sections 4.2 and 4.3 remain qualitatively 

unchanged. 

                                                           
35 This is because the US dollar is the world’s main reserve currency. Similar to the global financial cycle 

literature, the international bank lending channel, exposed in Schmidt, Caccavaio, Carpinelli and Marinelli (2018), 

highlights the importance of US dollar funding costs on lending in Europe, particularly in France and Italy. 
36 See https://www.federalreserve.gov/monetarypolicy/bst_liquidityswaps.htm.  

http://www.ft.com/
http://www.bbc.com/news
http://www.cnn.com/
http://www.wikipedia.org/
http://www.imf.org/
http://www.timelines.ws/
https://ftalphaville.ft.com/
https://en.wikipedia.org/wiki/Portal:Current_events
https://www.federalreserve.gov/monetarypolicy/bst_liquidityswaps.htm
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As a second robustness check, we compute the sovereign spreads against the 10 year U.S. sovereign 

yield, which is the global benchmark, rather than against Germany, which is the European benchmark. 

The only technical change required in the model specification given by equation (2) is that the German 

VARX now includes the sovereign spreads against US, while the US VARX includes only EPU and 

VIX as endogenous variables. Main findings are again qualitatively unchanged. 

In a third robustness check, we re-estimate the extended GVAR specification with a different 

weighting matrix based on BIS Locational Banking Statistics (LBS) data. Appendix 2 provides more 

details on the constructions of weights in this case. The GVAR estimated in Eickmeier and Ng (2015) 

fits the data better when using weights based on BIS LBS banking exposures for financial variables 

(along with trade weights for their model’s real variables). Such weights based on BIS LBS data are 

also employed in Bicu and Candelon, (2013), Feldkircher and Huber (2016) among others. Yet, capital 

flows driving bank cross-border exposures are generally more volatile than flows driving portfolio 

exposures according to balance of payments statistics, and our statistical evidence points to the same 

result. Despite some important differences in weighting between IMF CPIS data and BIS LBS data37, 

estimating the extended GVAR specification with weights based on the latter dataset delivers 

qualitatively similar results. 

 

5. CONCLUSIONS 

From a theoretical perspective, the sovereign-bank nexus entails strong feedback loops between 

financial and policy realms within a single-country setting. Instead, in the case of Euro Area, with its 

rather incomplete institutional architecture, more complex interactions between the two realms can be 

expected. This is especially so during uncertain times, since EA lacks institutional leadership to deal 

with several uncertainty sources, either financial or policy-related. Moreover, as the European financial 

markets swing between integration and fragmentation with each passing crisis, it becomes highly 

relevant to investigate the sources of various information frictions, the spill-over potential of country-

specific uncertainty shocks, and the specific role that a key EA institution such as the ECB might play 

in mitigating the effects of such shocks. 

We approach these relevant questions from an empirical perspective, employing a GVAR 

specification that efficiently summarises the time-series dynamics of our multi-country dataset focused 

on the Euro Area. We use the CISS composite indicator, proposed by Hollo et al., (2012), as a proxy 

for financial uncertainty and the EPU index, proposed in Baker et al. (2016), as a proxy for economic 

policy uncertainty. Despite substantial correlations, the methodological and data set differences 

                                                           
37 For example, the IMF CPIS data show that most countries in our sample have out-weighted exposures towards 

US, UK and LU, in this order. Instead, according to BIS LBS data, most countries have out-weighted exposures 

towards UK and LU. 
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between our uncertainty proxies allow us to use a recently proposed structural identification approach 

based on magnitude restrictions as in De Santis and Zimic (2018). One of the main contributions we 

bring to the uncertainty-related literature is therefore to identify both financial uncertainty and policy 

uncertainty shocks in a multi-country setting, allowing for a variety of contemporaneous spill-overs. In 

a similar vein, Caldara et al. (2016) employ a penalty function approach, but are not able to deal with 

reverse causality issues between the two uncertainty shocks they uncover – a weakness that we avoid 

with our approach. We further discuss the main advantages of our identification over other methods 

available in the relevant literature. In a convincing proof, our identified structural shocks match the 

dates of some remarkable events that marked the recent history of some European Union countries. 

The empirical findings confirm there are statistically significant and persistent effects for both 

financial- and policy-driven uncertainty shocks. Besides domestic effects and cross-influences shaped 

according to the prevalence of uncertainty shocks in each country, cross-border uncertainty spill-overs 

are also statistically significant. In terms of cross-influences between the two uncertainty proxies, we 

find that policy uncertainty reacts stronger to financial uncertainty shocks than vice-versa. When we 

include proxies for ECB monetary policy into the model, we find that these reactions persist although 

they are reduced to some extent, thus reinforcing the previous finding that causality influences are 

running stronger in one direction, rather than in both directions. In other words, it is more likely that 

financial frictions and stress amplify policy uncertainty than vice-versa – a result that is in line with 

much of the existing empirical (e.g. Stock and Watson 2012; Caldara et al., 2016; Alessandri and 

Mumtaz 2019) and theoretical literature (e.g. Arellano, et al. 2010; Christiano, et al., 2014; Bloom, 

2014). In addition, ECB policy reactions to uncertainty are stronger, but less persistent, for CISS shocks 

than for EPU shocks. Our findings further suggest that ECB adopted a more pro-active stance towards 

policy uncertainty shocks (and the variety and range of ECB unconventional policy measures stands as 

an additional proof), but a more passive or accommodative stance towards financial uncertainty shocks. 

All these empirical findings withstand multiple robustness checks. 

Our analysis has policy implications as well. The insights we derive on ECB policy preferences are 

only indirect, but robust and revealing. Firstly, we find that in reaction to financial uncertainty shocks 

ECB prefers to accommodate the higher liquidity demand of banks by deploying its conventional 

monetary policy tools (i.e. short term interest rates) with direct effects on yield curve and sovereign 

spreads. Although this type of reaction might appear limited in an environment where the zero lower 

bound is binding, empirical evidence suggests that ECB has in fact been quite effective in lowering the 

short end of the EA yield curve further into negative territory (see Wu and Xia, 2017). Secondly, we 

find that ECB prefers to deploy its unconventional toolkit and, in the same time, be less likely to reverse 

course, when reacting to policy uncertainty shocks, whose prevalence has increased in some EA 

countries (e.g. France and Italy, and mostly due to political turmoil). Yet, prevalence and political 

turmoil cannot be used as a justification, so arguments must be looked for elsewhere. Policy uncertainty 
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shocks also seem not to pose too great of a challenge to area-wide financial stability, which does in fact 

represent one of the ECB core policy objectives. According to our discussion in section 2, policy 

uncertainty shocks are more likely to lead to a ‘segmented equilibrium’ within the EA financial system, 

therefore justifying ECB actions. Given the current incomplete institutional architecture of the Euro 

Area, we can expect ECB to remain the ‘only game in town’ and therefore assume leadership in reacting 

to both policy and financial uncertainty shocks. 
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Appendix 1: Data description, sources and definitions 

CISS – Composite Indicator for Systemic Risk. Frequency: monthly averages. Transformation: natural 

logarithm. Adjustment: seasonally adjusted using X-12 procedure. Source: ECB warehouse 

(https://sdw.ecb.europa.eu/browse.do?node=9689686). See also Hollo et al. (2012) for the 

methodology. For Baltics, we compute the average of CISS indexes for all three countries. 

EPU – economic policy uncertainty index, computed based on Baker et al. (2016). Transformation: 

natural logarithm. Adjustment: seasonally adjusted using X-12 procedure. Source: data and 

methodology available from www.policyuncertainty.com.  

VIX – the Chicago Board Options Exchange (CBOE) Volatility Index. Frequency: monthly averages.  

Transformation: natural logarithm. Source: Federal Reserve Bank of St. Louis database. 

Spread – the difference between 10-year sovereign bond yields for each country and Germany (or US). 

Transformation: before computing the spreads, we apply the following transformation of yields: 

𝑦𝑖𝑒𝑙𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
1

12
∗ ln (1 +

𝑦𝑖𝑒𝑙𝑑

100
)  to smooth spikes in the time-series. Source: Eurostat.  

Main Refinancing Operations rate – is the short term interest rate at which ECB provides the bulk of 

liquidity to the banking system of the Euro Area.38 Source: ECB warehouse.   

EONIA – is the Euro Overnight Index average or the Euro Interbank Offered Rate defined as the 

weighted rate for the overnight maturity, calculated by collecting data on unsecured overnight lending 

in the EA provided by banks belonging to the EONIA panel.39 Frequency: monthly averages. 

Transformation: 𝑦𝑖𝑒𝑙𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
1

12
∗ ln (1 +

𝑦𝑖𝑒𝑙𝑑

100
). The liquidity proxy used in the extended GVAR 

is the spread (difference) between EONIA and the Main Refinancing Operations rate. 

ECB assets – defined as central bank assets for Euro Area (11-19 Countries). Frequency: monthly, end 

of month. Transformation: natural logarithm. Adjustment: seasonally adjusted using X-12 procedure. 

Source: Federal Reserve Bank of St. Louis database.  

TED spreads – defined as the spread between the 3-Month LIBOR based on US dollars and the 3-

Month US Treasury Bills. Frequency: monthly averages. Transformation: none. Source: Federal 

Reserve Bank of St. Louis database. 

 

 

  

                                                           
38 See https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html  
39 See also the conclusions of the public consultation on euro risk-free rates at 

https://www.ecb.europa.eu/paym/pdf/cons/euro_risk-free_rates/ecb.consultation_details_201905.en.pdf. 

https://sdw.ecb.europa.eu/browse.do?node=9689686
http://www.policyuncertainty.com/
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html
https://www.ecb.europa.eu/paym/pdf/cons/euro_risk-free_rates/ecb.consultation_details_201905.en.pdf
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Appendix 2: GVAR weighting matrixes  

Panel A below displays the weighting matrix, 𝑊, based on IMF CPIS data that is used in the baseline 

and extended GVAR specifications. Weights reflect portfolio allocations from countries mentioned on 

rows towards countries on mentioned on columns (country labels are according to Table 1). The colour 

of each cell indicates the share of country’s portfolio allocation towards other countries, based on the 

scale displayed on the right of the figure. Each row sums to 1, as countries on the column represent the 

entire investable universe for the country specified at the start of each row.   

Panel A: 

IMF CPIS weights 

 

Panel B displays the weighting matrix used as robustness check in section 4.5, based on data from BIS 

Locational Banking Statistics, tables A6.2.40 These tables contain data on cross-border positions in mil. 

USD, by counterparty’s country of residency, and by location of the reporting bank. Since not all 28 

countries (i.e. 25 individual countries and the 3 Baltics) are reporting to BIS, cross-border positions for 

banks located in other countries are only indirectly available as the reverse balance sheet positions of 

banks located in BIS reporting countries; for example, outward claims of banks located in Poland can 

be inferred as inward liabilities of banks located in BIS reporting countries with Polish resident banks 

as their counterparties. Moreover, for banks located in BIS reporting countries, there might be some 

differences between what banks from country X reports as outward claims in country Y, and what banks 

from country Y reports as inward liabilities from country X. To mitigate the impact of such 

inconsistencies, we average between (outward) claims and (inward) liabilities for all country pairs, and 

use bank-to-all sectors rather than just bank-to-bank positions. Further to reduce the impact of time-

variation, we average the end of year (4th quarter) exposures over a 7-year period from 2010 to 2016. 

The colour of each cell indicates the share of country’s outward exposures (i.e. claims) towards other 

                                                           
40 See https://stats.bis.org/statx/toc/LBS.html. 

https://stats.bis.org/statx/toc/LBS.html
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countries, based on the scale displayed on the right of the figure. Each row sums to 1, as countries on 

the column represent the entire investable universe for the country specified at the start of each row.   

Panel B: 

BIS LBS weights 

 

 

Appendix 3: The algorithm used for structural identification 

The estimation algorithm consists in the following steps: 

1. Bootstrap the reduced-form GVAR model given in equation (4) to obtain the variance-covariance 

matrix of reduced-form errors, Ω𝑢
(𝑏). An initial estimate of 𝑆2x2

(𝑏) is obtained as a Choleski 

decomposition of the upper block of  Ω𝑢
(𝑏), meaning 𝑆2x2

(𝑏) = 𝑐ℎ𝑜𝑙( Ω𝑢,2𝑥2
(𝑏)). 

2. Obtain a candidate matrix 𝑈(𝑖) that satisfies 𝑈(𝑖)𝑈(𝑖)′ = Ω𝑢,2𝑥2
(𝑏)

 and the identifying restrictions. 

(2a) We draw a 2x2 matrix 𝑇 from a standard normal distribution and obtain its QR 

decomposition, such that 𝑇 = QR, where Q is orthonormal, i.e. QQ′ = I.  

(2b) We check whether the matrix 𝑈(𝑖) = 𝑆2x2
(𝑏)

Q  satisfies the magnitude restrictions. If it 

does, we keep this draw (𝑖). If not, we go back to step (2a). We repeat this process for a 

maximum of 200 times, such that we obtain a sufficient number of successful draws. 

4. Repeat step 1 and 2 for 200 (bootstraps) times; compute the 68% confidence bands for IFRs 

considering all successful candidate matrices 𝑈 = 𝑆2x2
(𝑏)Q from step 2b). 
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Appendix 4: Figures 

Figure 4.1: IRFs to Italian uncertainty shocks in the baseline and extended specifications 

Panel A 

  
Panel B 

 
Panel C 
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Panel D 

 
Panel E 

 
Panel F 

 
Note: The legend displays the corresponding GVAR specification; ‘baseline’ stands for the baseline GVAR; 

‘extended’ stands for the extended GVAR with both conventional and unconventional monetary policy proxies 

included. The 68% confidence bands are constructed from 200 bootstrapped replications of the GVAR, each with 

200 draws for the orthonormal matrix that insures identification. 
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Figure 4.2: IRFs to Spanish uncertainty shocks in the baseline and extended specifications 
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Panel D 

 
 

Panel E 

 
Panel F 

 
Note: The legend displays the corresponding GVAR specification; ‘baseline’ stands for the baseline GVAR; 

‘extended’ stands for the extended GVAR with both conventional and unconventional monetary policy proxies 

included. The 68% confidence bands are constructed from 200 bootstrapped replications of the GVAR, each with 

200 draws for the orthonormal matrix that insures identification. 
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Figure 4.3: IRFs to Greek uncertainty shocks in the baseline and extended specifications 
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Panel D 

 
 

Panel E 

 
Panel F 

 
Note: The legend displays the corresponding GVAR specification; ‘baseline’ stands for the baseline GVAR; 

‘extended’ stands for the extended GVAR with both conventional and unconventional monetary policy proxies 

included. The 68% confidence bands are constructed from 200 bootstrapped replications of the GVAR, each with 

200 draws for the orthonormal matrix that insures identification. 
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Figure 4.4: IRFs to Irish uncertainty shocks in the baseline and extended specifications 
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Panel D 

  
 

Panel E 

  
Panel F 

  
Note: The legend displays the corresponding GVAR specification; ‘baseline’ stands for the baseline GVAR; 

‘extended’ stands for the extended GVAR with both conventional and unconventional monetary policy proxies 

included. The 68% confidence bands are constructed from 200 bootstrapped replications of the GVAR, each with 

200 draws for the orthonormal matrix that insures identification. 
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Figure 4.5: IRFs to French uncertainty shocks in the baseline and extended specifications 
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Panel F 

 
Note: The legend displays the corresponding GVAR specification; ‘baseline’ stands for the baseline GVAR; 

‘extended’ stands for the extended GVAR with both conventional and unconventional monetary policy proxies 

included. The 68% confidence bands are constructed from 200 bootstrapped replications of the GVAR, each with 

200 draws for the orthonormal matrix that insures identification. 
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Figure 4.6: IRFs to British uncertainty shocks in the baseline and extended specifications 
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Panel D 

 
Panel E 

 
Panel F 

 
Note: The legend displays the corresponding GVAR specification; ‘baseline’ stands for the baseline GVAR; 

‘extended’ stands for the extended GVAR with both conventional and unconventional monetary policy proxies 

included. The 68% confidence bands are constructed from 200 bootstrapped replications of the GVAR, each with 

200 draws for the orthonormal matrix that insures identification. 
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Appendix 5 

Figure 5.1: IFRs for ECB monetary policy proxies to uncertainty shocks 

Panel A 

 

Panel B 

 

Panel C 

 

Note: The legend displays the corresponding uncertainty shock that is being simulated. The title of each plot 

displays the origin country of the shock. The 68% confidence bands are constructed from 200 bootstrapped 

replications of the GVAR, each with 200 draws for the orthonormal matrix (see algorithm in Appendix 3). 
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Chapter 2  

Trading Off Accuracy for Speed: Hedge Funds’ Decision-Making 

under Uncertainty† 

 

Abstract 

Hedge funds that operate quick portfolio adjustments, backed only by some rough estimates and loose 

predictions, can improve their market timing performances and benefit in turbulent markets, but 

oversimplification can lead to an inability to profit from opportunities in calm markets. The paper 

presents this trade-off between prediction accuracy and reaction speed, capturing some key aspects of 

decision-making under uncertainty. We select the accuracy levels upfront, through different data-

filtering techniques, and investigate their empirical consequences on decision-making. Across different 

hedge funds’ investment styles, our analysis shows that less accurate predictions can speed up reactions 

to unexpected changes in a large set of uncertainty and risk measures. We justify these empirical 

findings in a simulation exercise, highlighting the importance of market timing abilities for active 

players like hedge funds.   

 

Keywords: hedge funds; dynamic portfolio exposure; time-varying beta 
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1. INTRODUCTION 

Hedge funds (HFs) can exploit market opportunities that are not available to other market participants, 

being able to adjust their leverage, portfolio exposure and trading strategy, sometimes on a moment’s 

whim. HFs implement their dynamic exposures to various pricing factors following a decision-making 

process based on a series of estimates and predictions that are continuously updated with new 

information. Obviously, in a market environment dominated by multiple sources of risk and uncertainty, 

such predictions cannot avoid rough approximations and simplifications of the available information 

set. Quick portfolio adjustments, backed only by some rough estimates and loose predictions, could 

increase HFs’ reaction speed, which is key for their market timing performances (Cao et al., 2013; Bali 

et al., 2014). However, information losses due to oversimplification can lead to an inability to uncover 

and profit from opportunities, especially in calm markets. We hope to shed light on these key aspects 

of the HFs’ decision-making process by drawing on some recent theoretical work where information 

acquisition behaviour determines both investors’ attention and risky investment choices (see Huang and 

Liu, 2007; Andrei and Hasler, 2015, 2019; Kacperczyk et al., 2016). This growing literature strand on 

rational inattention builds on mostly psychological and experimental work, but also empirical evidence, 

on which we aim to contribute with new insights.  

A representative HF is normally required to provide an investment alternative that offers 

diversification benefits to its clients. In fact, most HFs claim to generate excess returns that are 

uncorrelated, that is, have a low or even zero beta with some widely used benchmarks (Blocher and 

Molyboga, 2017; Agarwal et al., 2018). There is a large body of research examining HFs’ exposure to 

various pricing factors, which essentially act as proxies for different (primitive) investment strategies. 

These studies employ various methods, ranging from the most straightforward (e.g. Fung and Hsieh, 

1997; Agarwal and Naik, 2004) to complex techniques that are able to precisely infer the dynamics of 

the factor loadings or, in other words, the time-varying correlations between the HF portfolio returns 

and the pricing factors (see, among others, Aragon, 2007; Kessler and Scherer, 2011; Billio et al., 2012; 

Patton and Ramadorai, 2013; Savona, 2014a and 2014b; Racicot and Theoret, 2016). Moreover, there 

is a long and growing list of pricing factors (i.e. Fama and French, 1993, 2015; Carhart et al., 2014) 

able to give a better fit of realised returns, many of them specifically addressing the non-normal 

distribution of HF returns (Agarwal and Naik, 2004; Goyenko et al., 2009).  

Such increase in the number and variety of pricing factors, and therefore of potential investment 

strategies, further complicates the decision-making process. In fluid markets, active investors such as 

HFs might decide about a change in strategy based on heuristics or intuition rather than on the basis of 

some accurate, real-time estimates of the portfolio impact of sudden market moves. For many HFs that 

claim to maintain a low beta, and in the same time generate profits, market timing is essential, and 

therefore reaction speed can be an advantage. In this context, it seems reasonable to assume that they 
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might prefer a faster, but less accurate approach to adjusting their desired portfolio exposures to the 

targeted pricing factors, thus trading off accuracy for speed in this process. We address this trade-off 

upfront by employing data-filtering techniques that proxy for different accuracy levels and allow us to 

gain insights into the HFs’ decision-making process under uncertainty. 

With the advent of algorithmic trading, about two decades ago, transaction speed has collapsed to 

within milliseconds. However, what we are more interested in here is not the time required for trade 

execution, which is the final step in the portfolio adjustment process, but the speed through which 

changes in tactical allocations occur. On the one hand, the decision process leading to such changes is 

time consuming, even in today’s HF industry, as it involves selecting among alternative strategies, 

evaluating and back-testing, and finally implementing the trade(s).41 On the other hand, many HFs hold 

illiquid exposures that take time to reverse (Getmansky et al., 2004); for example, Aragon et al., (2013) 

find that HFs seek confidential treatment (and delay disclosure) for their illiquid positions to avoid 

front-running by other investors, implying that such positions are very important for HFs. 

Consider the market factor as the most relevant pricing factor for a HF manager and think about her 

having to choose between a “moving-with-the-market” and a “moving-against-the-market” strategy, or 

else between a “high-beta” and a “low-beta” strategy in reaction to a sudden change in her information 

set. Beta is key for hedging effectiveness in portfolio management, and therefore changes in beta can 

be a good proxy for changes in strategy. A binary decision, formulated as a discrete prediction of beta, 

would require focusing her attention on a smaller subset of data or indicators, and therefore be much 

easier to take in an uncertain market environment (section 2 provides a detailed description of our 

conceptual framework). This simplification, however, is likely to be inefficient in normal times, when 

higher accuracy and attention levels are required to uncover smaller profit opportunities.  

Allowing for time-varying levels of accuracy in HFs’ predictions with respect to their portfolio 

exposures (i.e. betas) should be key for understanding HFs risky choices and behaviours under 

uncertainty. Whether this assumption is acceptable or not is the main question we address in the 

following sections. A battery of empirical models shows that strategies based on less accurate 

predictions can speed up HFs’ reactions to relevant shocks in their information set, exposing a trade-

off between accuracy and speed during market high-stress periods. To justify HFs’ swift adjustments, 

we run a simulation exercise where we show that a portfolio switching from high to low-level accuracy 

betas during uncertain or risky periods is likely to outperform other strategies. Market timing requires 

higher reaction speed for HFs and, according to our empirical analysis and simulation exercise, this 

implies accepting lower accuracy levels in setting their portfolio exposures (betas). 

                                                           
41 With algorithmic trading, execution can indeed take milliseconds, but it might take days as well, depending on whether the 

order is split in smaller sizes and allocated over time and across different market venues.  
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Although we consider a representative HF set-up when introducing and formulating the accuracy–

speed trade-off, in our empirical application we differentiate HFs by investment style to capture the 

idea that HFs specialise in analysing and profiting from different information flows (e.g. equity hedge, 

macro, and relative arbitrage). While this specialization remains true in general, it cannot explain the 

prominent role that HFs have come to play in the cross-sectional transmission of systemic stress (Fung 

and Hsieh, 2006). In Cipriani and Guarino (2008), information spill-overs can lead to contagion when 

trading activity is correlated across markets, although fundamentals are not necessarily related. In the 

early model of King and Wadhwani (1990), contagion occurs when investors, despite investing in 

different markets, mistakenly interpret an idiosyncratic signal as carrying common, i.e. systemic, 

information. We follow this theoretical strand to explain some of our results from the empirical section, 

in which we find that various HF styles might respond simultaneously to unexpected shocks in some 

market-wide risk and uncertainty measures.42 

We make two important contributions in this chapter. Firstly, we formulate and empirically examine 

the accuracy–speed trade-off, which characterises HFs investment strategies best during market stress 

episodes. We select the precision or accuracy of our beta estimates upfront, and then identify speed 

gains from within our empirical analyses. As discussed above, we let HFs formulate both accurate and 

less accurate predictions (i.e. estimates) about their portfolio betas, which are relabelled hereafter for 

convenience as realised beta, and expected beta respectively.43 Intuitively, accuracy here refers to the 

full range of possible values taken by the prediction errors for the two betas, i.e. either a continuous 

interval or some range of discrete values. Technically, the derivation of the realised beta is based on a 

time-varying coefficients (TVC) Kalman filter, which is more precise in estimating beta, but less 

flexible, particularly in case of sudden changes in the data. By contrast, the expected beta is derived 

from a Markov Switching (MS) model, which can be considered a discrete version of the Kalman filter. 

Note that the recursive nature of the two filters represents an essential ingredient in an empirical analysis 

of decision-making. The main difference though between the two filters is that the unobservable nature 

of the hidden Markov Chain process behind the MS model requires approximations obtained by 

collapsing some of the terms (therefore, implying information losses) in the derivation of its likelihood 

function (see Kim, 1994). From an empirical perspective, this rather technical particularity of the MS 

filter should reflect the lower-level accuracy associated with filtering out expected betas from the data.   

Secondly, we find that the less accurate predictions, measured by expected betas, could lead to 

simultaneous portfolio adjustments across different HF styles in reaction to large shocks that also have 

                                                           
42 The difference between uncertainty and risk, though important, is less relevant to our discussion here. However, in section 

3, we provide a full description and discuss in detail the list of risk and uncertainty measures employed in the present analysis.  

43 We label the more accurate prediction of beta as realised beta to deliberately suggest its higher informational content, and 

the less accurate prediction as expected beta to suggest a lower informational content. To some extent, the two betas might be 

also seen as the ex-post and ex-ante predictions derived from information processing.  
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high propensity to capture systemic stress and contagion risk. Our findings thus are in line with the 

theoretical models developed in King and Wadhwani (1990), and Cipriani and Guarino (2008), 

predicting that information spill-overs across various market segments can lead to contagion (see also 

Hasler and Ornthanalai, 2018). Two early warning indicators that might signal rapid shifts in HFs’ risk 

appetite are identified from our analysis: the CBOE Volatility index (VIX) and the Composite Indicator 

of Systemic Stress (CISS) – a highly relevant policy indicator for the European financial sector. 

The remainder of the chapter is organised as follows. Section 2 reviews the relevant literature, and 

provides the conceptual and mathematical formulation of the accuracy–speed trade-off. Section 3 

presents a detailed description of the data. Section 4 lays out the empirical approach and discusses its 

main findings. Section 5 presents a simulation exercise that compares two hypothetical portfolios built 

on two strategies with different accuracy levels and market timing. Finally, section 6 concludes. More 

detailed results of our analyses are provided in three Appendixes at the end of the chapter.  

 

2. CONCEPTUAL FRAMEWORK 

Skilled, active investors like HFs can reallocate their attention44 over time in order to extract the most 

relevant information from many diverse and noisy sources, including market moves, asset prices, news 

and rumours etc. In the general equilibrium model of Kacperczyk et al., (2016), attention allocation is 

optimally determined along with asset prices and portfolio allocations; skilled investors prefer to learn 

more about idiosyncratic risks in expansions, and more about aggregate risks during recessions, because 

such risks affect a higher share of their portfolios during market turmoil (given the increase in 

correlations across different asset classes). Similar theoretical mechanisms can be found in the recent 

literature45 investigating the relationship between uncertainty and market volatility on the one side, and 

investors’ (in)attention and information acquisition behaviour on the other side (see, Huang and Liu, 

2007; Andrei and Hasler, 2015, 2019). In line with these theoretical predictions, we want to understand 

whether allowing for time-varying levels of accuracy in HFs’ predictions can explain HFs’ shifts in 

portfolio exposures. Assuming prediction accuracy is an increasing function of attention, we can 

suppose that a HF manager focuses only on aggregate risks during market turmoil and prefers to 

formulate her decision in terms of a simple binary choice, for example in terms of choosing between a 

“high-beta” versus a “low-beta” strategy.46 Intuitively, during volatile periods her prediction accuracy 

                                                           
44 Time-varying attention features in the studies of Da et al., (2014), Yuan (2015), Lu et al., (2016) among many others. 

45 There is a larger and growing literature strand on rational inattention in general, encompassing both psychology and 

economics fields, as recently summarised in Gabaix (2017), and Spiliopoulos and Ortmann, (2018). Woodford (2014), and 

Steiner et al., (2017) present significant theoretical contributions in this area.  

46 We focus on beta, which is the coefficient of the market factor, because of its prime role in portfolio management. Moreover, 

Blocher and Molyboga (2017) and Agarwal et al., (2018) find recent evidence that HF clients use an overall market index as 
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will be low; to simplify, it can be restricted to some discrete values to which her portfolio exposures 

will be set accordingly. In less volatile periods, her accuracy instead might increase in order to exploit 

a wider range of market opportunities.  

Similar ideas can be found in the “category-learning behaviour” described by Peng and Xiong 

(2006), or in the “simple forecasts and paradigm shifts” described by Hong, Stein, and Yu (2007). Peng 

and Xiong (2006) rely on psychological evidence that attention is a scarce cognitive resource to 

motivate learning in their asset-pricing model. They find that investors tend to focus more on market-

level rather than firm-specific information when the information-processing efficiency is low (e.g. in 

turbulent times). Hong et al. (2007) also use arguments rooted in psychology that provide evidence on 

how people tend to simplify complex problems due to limited attention and the cognitive costs 

associated with information processing.  

From an empirical perspective, we use two recursive filters to reflect two different levels of 

prediction accuracy with respect to HFs portfolios’ beta, and then investigate the consequences of time-

varying accuracy on decision-making. Bollen and Whaley (2009) also compare the performances of 

two estimated betas, one discrete and one time-continuous version, concluding that the discrete beta 

(i.e. a changepoint regression in their case) has superior statistical power in revealing HFs’ time-varying 

exposures. Unsurprisingly, the use of Kalman filters has been common in the recent empirical literature 

investigating HFs’ dynamic exposures to pricing factors (e.g. Billio et al., 2012; Racicot and Theoret, 

2016). To the best of our knowledge, this is the first attempt that relies on (both discrete and continuous) 

Kalman filters to expose the accuracy-speed trade-off, which is novel in the empirical finance literature, 

though there is plenty of experimental evidence in both psychology and economics (some recent 

reviews are Gabaix, 2017; Spiliopoulos and Ortmann, 2018). 

A handful of empirical approaches bear some similarities to our paper. Brogaard and Detzel (2015) 

study the asset-pricing implications of uncertainty (i.e. economic policy uncertainty, which is a type of 

uncertainty based on news and keywords, as proposed by Baker et al., (2016), which is also covered 

here) in a static CAPM framework. The studies of Ferson and Schadt (1996), Patton and Ramadorai 

(2013), Bali et al., (2014), Savona (2014a and 2014b), and Amisano and Savona (2017) model dynamic 

portfolio exposures using macroeconomic predictors. In particular, Patton and Ramadorai (2013) 

investigate how implied volatility influences the dynamics of HF exposures and find that HFs reduce 

their market exposure only during highly volatile periods. Billio et al., (2012) also study the time-

varying non-linear HF exposure to pricing factors during different market volatility regimes and 

propose a measure of contagion based on the joint probability that all HFs are in the high-volatility 

regime; other papers dealing with contagion across HFs are those by Boyson et al., (2010) and Dudley 

                                                           
a performance evaluation benchmark; therefore, we can presume that HF managers also attend most closely to market risk to 

attract clients and justify their high management fees. 
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and Nimalendran (2011). Compared with these papers, our approach investigates in greater depth how 

the decision process is affected when we allow for different accuracy levels in the real-time estimation 

of portfolio exposures.  

Another related strand in the empirical literature focuses on forecast combinations as a means of 

improving forecasting accuracy in the presence of structural changes, implying a well-known trade-off 

between bias and variance (Pesaran and Timmermann, 2007; Clark and McCracken, 2009). Our 

emphasis instead is not on improving HFs’ (possible) forecasting models, but on evaluating the 

consequences of varying prediction accuracy levels on decisions.  

Our work relates to the experimental literature as well, as recently summarised in Spiliopoulos and 

Ortmann (2018). A closely related strand is the literature dealing with “learning-to-forecast” 

experiments, as described by Hommes et al. (2005) and Heemeijer et al. (2009). Pastor and Stambaugh’s 

(2009) show how a Bayesian investor can exploit model design and misspecification to improve 

prediction accuracy, even when “imperfect predictors” are available. In contrast to these papers, the ex-

post forecasting ability of HFs is not the main focus of our analysis. 

Finally, we touch on the literature strand concerned with contagion and information spill-overs. King 

and Wadhawani’s (1990) model provides a theoretical channel through which a signal extraction 

“mistake” in one market can be transmitted to all other markets (i.e. separated by the non-overlapping 

trading hours in the original model) because agents cannot clearly differentiate between systemic and 

idiosyncratic information signals, or shocks (see also Cipriani and Guarino, 2008). In a similar vein, 

Hasler and Ornthanalai (2018) highlight the role of information spill-overs in amplifying contagion 

because increased investors’ attention can lead to correlated trades executed across separate markets. 

 

2.1 Mathematical formulation 

Modelling the reactions of every HF in a precise way is, naturally, an impossible task. Consider the 

problem of a representative HF manager updating her prior belief distribution to a posterior, when the 

parameters of interest are given via a loss function, say 𝐿(𝑅, 𝑉; 𝜃), where 𝑅 is a vector of the 

characteristics related to returns, 𝑉 is a vector of the characteristics related to volatility and 𝜃 is a 

parameter vector unknown to the HF. Bissiri et al. (2016) show that rational agents can update 𝜃 under 

such circumstances without full information on the data-generating process. Following Bissiri et al. 

(2016), we assume that 𝑝(𝜃) represents prior beliefs about the parameters 𝜃 and, hence, a Bayesian 

posterior/update of the beliefs about the parameters can be made using: 

𝑝(𝜃|𝑅, 𝑉) ∝ 𝑝(𝜃)  exp(−𝐿(𝑅, 𝑉; 𝜃)) (1) 
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In other words, we have a well-defined parameter of interest 𝜃 and an initial belief distribution about 

the location of the parameter 𝑝(𝜃); in this case the loss function defines a likelihood on which the HF 

manager can rely to update information. Clearly, this provides a basis for Bayesian learning by using 

belief probability distributions based on a solid foundation (loss) for which managers, generally, have 

a clear notion. Bayesian learning features in the theoretical models of Andrei and Hasler (2015) and 

Kacperczyk et al., (2016) as well. Thus, we can say that for some function 𝜓, we must have:  

𝑝(𝜃|𝑅, 𝑉) = 𝜓 [𝐿(𝑅, 𝑉; 𝜃), 𝑝(𝜃)] (2) 

Consider now the updating of manager’s subjective beliefs, 𝑝(𝜃|𝑅, 𝑉), as an action made under 

uncertainty using decision theory to guide the optimal action. To assess her ability to outperform the 

market, assume the HF manager focuses on just two parameters, say 𝜁 and 𝜉, that proxy for her 

selectivity and market timing abilities (Ferson and Schadt, 1996). Consequently, there is a subjective 

loss function 𝐿(𝜁𝑡, 𝜉𝑡; 𝜃) with selectivity (𝜁𝑡) and market timing (𝜉𝑡) both specified as time-varying. 

Given a prior 𝑝(𝜃), an optimal posterior distribution, say 𝑣∗(𝜃), is obtained by minimizing expected 

loss, in which case we have a general form: 𝑣∗(𝜃)= 𝑎𝑟𝑔𝑚𝑖𝑛𝑣[𝐿(𝜁𝑡 , 𝜉𝑡; 𝜃)].  

Based on the same information set and by imposing the same basic model structure, let us consider 

now the loss function 𝐿𝑖 , 𝑖 = {𝑓, 𝑝}, as follows: (i) 𝐿𝑓 is an approximation of the manager’s loss 

function under full information, and can be taken to be the current-period expectation of an inter-

temporal loss function; and (ii) 𝐿𝑝 is the approximation of the manager’s loss function under partial 

(incomplete) information. Denote as 𝐼𝑡−1 the information set up to period 𝑡 − 1; therefore, updated 

beliefs are given as:  

𝑝(𝜁𝑡 , 𝜉𝑡 , 𝜃|𝐼𝑡−1) ∝ 𝑝(𝜁𝑡−1, 𝜉𝑡−1, 𝜃)  exp(−𝐿𝑖(𝜁𝑡, 𝜉𝑡; 𝜃)) (3) 

Here, we update information on selectivity, market timing and any structural parameters, 𝜃, based 

on a prior 𝑝(𝜃) and a subjective loss function, 𝐿𝑖(𝜁𝑡 , 𝜉𝑡; 𝜃)) under a Bayesian process. Although 

𝑝(𝜁𝑡−1, 𝜉𝑡−1, 𝜃) can be any prior, it can be defined more reasonably as the posterior from the previous 

period. This specification implies that we can formulate a suitable model on selectivity and market 

timing and proceed with the usual methods of Bayesian inference. If prior 𝑝(𝜃) is diffused or “loose” 

(relative to the likelihood), standard frequent methods can be used to estimate 𝜃 as well as 𝜁𝑡 , 𝜉𝑡 , for 

example through the use of a Kalman filter. Depending on the prior specification, we make a distinction 

between the realised and expected betas, such that market timing will be dealt with separately in the 

estimation. With respect to selectivity, our formulation implies that HF managers draw on the market 

factor when analysing portfolios’ strategy.  
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3. DATA 

Our data set comes from different sources and includes weekly observations for a period spanning from 

the beginning of July 2004 until the end of May 2017. The timespan is rich enough to include many of 

the most significant economic and financial stress events that have affected the global financial industry 

and reverberated across the investable universe of a representative HF, including events originating in 

the US, Europe, and elsewhere.47 Moreover, besides financial triggers, the sample includes recent social 

and political events that were relevant to the HF industry and have generated significant market 

reactions, such as the Brexit referendum (June 2016), the latest US presidential election (November 

2016), terrorist attacks (e.g. in Paris, London, etc.), and so on.  

To compute HFs’ weekly average returns, we use data provided by Hedge Fund Research 

(henceforth HFR), which has constructed a robust classification system that includes a strategy, sub-

strategy, and regional investment focus. Billio et al. (2009) provide a full description of the various 

statistical aspects of the data provided by different HF data sets, including HFR; when analysing 

differences in the distributional properties of HF returns at both daily and monthly frequencies, they 

find larger deviations from normality for monthly rather than daily returns. Patton and Ramadorai 

(2013) analyse similar issues and find that the intra-month variation in HFs’ portfolio exposures is 

significant, because, as long as HFs report on a voluntary basis (normally at the end of the month), they 

have a strong incentive to engage in window dressing. Based on the above, and the fact that some of 

the most important indicators on which we condition the decision-making process in our empirical 

analysis are available only on a weekly basis, we choose to use weekly observations in the empirical 

analysis. 

Self-selection, backfilling, and survivorship biases are quite common in the HF industry, but some 

of them, especially the last two, could be mitigated by using investable (rather than non-investable) 

benchmarks. Our empirical analysis focuses mainly on four investable HF main styles, which are 

captured by the following indexes: (i) the HFRX Event Driven Index, denoted by ED; (ii) the HFRX 

Equity Hedge Index, denoted by EH; (iii) the HFRX Macro/CTA Index, denoted by M; and (iv) the 

HFRX Relative Value Arbitrage Index, denoted by RVA. Since we are using aggregated (index) data, 

the returns can be considered the returns of a representative HF that follows a given investment style, 

                                                           
47  Among the most important economic stress events covered in our data set, we can recount here the US subprime mortgage 

crisis that erupted in August 2007, the Lehman Brothers’ moment of September 2008, the start of the European sovereign debt 

crisis in May 2010, the three quantitative easing (QE) programmes implemented by the FED (e.g. 2008, 2009, and 2012), the 

liquidity support programmes of the ECB, and so on.  
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for example ED, EH, M, or RVA. In a robustness check, we employ nine HF sub-styles (of the four main 

styles mentioned above), for which weekly data are available from the same data source.48  

We compute the excess HF weekly returns using a risk-free rate proxy. To better reflect the HFs’ 

investable universe and have a basis for comparison among them, we estimate specifications with global 

(and not just US-based) risk-free rates and global pricing factors, which we download from Kenneth R. 

French’s website.49 For simplicity, we use the CAPM model as a workhorse specification throughout 

the paper, but our approach is robust and can accommodate other factors as well.50 

There is a continuous and growing interest in the literature in how to measure risk and uncertainty. 

We take no stand on which measure is best and use a range of indicators that are already available in 

the literature. We split the various available risk and uncertainty measures into three broad groups. A 

majority of these measures refer to the US market, as it is the most liquid and sophisticated financial 

market worldwide. Nevertheless, we include risk and uncertainty measures that have global or European 

coverage, the latter being particularly useful in exposing some important stress events originating in 

Europe during our sample period.  

Group A: Uncertainty measures based on media sources  

There has been a significant increase in the number of available indicators measuring uncertainty 

based on (text) information accessible via the Internet from various newspapers and other media 

sources. The success of these indicators seems to come from their ability to reflect, with high 

frequencies, agents’ behaviour in relation to news, events, and other media-related factors (see, among 

others, Pastor and Veronesi, 2012; Da et al., 2014; Brogaard and Detzel, 2015; Baker et al., 2016). For 

our empirical analysis, we focus on three measures, which come from Baker et al. (2016) and are based 

on the frequency of some relevant keywords appearing in newspapers and major media sources in the 

US and across the globe. The first two measures refer to the US and the third is a global one; the three 

                                                           
48 HFR utilises a methodology based on certain well-defined, predetermined rules and objective criteria to select and rebalance 

index components and maximise the representation of the HF investable universe. The construction of each index employs 

state-of-the-art quantitative techniques and qualitative analysis (i.e. multi-level screening, cluster analysis, Monte Carlo 

simulations, optimisation techniques, etc.), which ensure that each index is a pure representation of its corresponding HF 

investment style. A detailed description of HFR styles and sub-styles can be found in Table B1, in Appendix B. More details 

of the description of the HFR investment styles can be found at: https://www.hedgefundresearch.com/hfrx-index-

characteristics.  

49 Using US-based pricing factors does not significantly alter the results or the conclusions of our analysis.  

Source : http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

50 As an alternative specification, the three-factor model of Fama and French (1993) produces very similar results (which we 

do not present here to save space), because betas are not significantly altered by the inclusion of additional (pricing) factors.  

https://www.hedgefundresearch.com/hfrx-index-characteristics
https://www.hedgefundresearch.com/hfrx-index-characteristics
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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indicators are: economic policy uncertainty, denoted by EPU; US equity market uncertainty, denoted 

by EQU; and global political risk, denoted by GPR.51  

Group B: Market-based risk measures 

This second group refers to market-based indicators of risk, which are commonly used in many 

empirical exercises. We firstly use the VIX (i.e. Volatility Index) and TYVIX (i.e. Treasury Yields 

Volatility Index), which are provided by the Chicago Board Options Exchange (CBOE) and are 

available from the Bloomberg database. Even though the VIX is the most followed measure of implied 

volatility, commonly referred to as “the fear index”, the TYVIX is equally important for active players 

like HFs, because it covers the most liquid segment of the financial market, that is, the fixed-income 

market. While equity volatility (VIX) can be specified exogenously, government bond volatility needs 

to fulfil “no-arbitrage” restrictions and to be consistent with the dynamics of the whole yield curve.  

We also include in this group the volatility risk premium (or variance premium) denoted 𝑉𝑃, which 

is defined as the difference between the ex-ante risk-neutral expectation of the future return variation 

and the ex-post realised return variation over a specific period (we chose 𝑛𝑚 = 10 days), in line with 

Bollerslev et al. (2009). The variance premium is given by 𝑉𝑃𝑖,𝑡 = 𝐼𝑉𝑖,𝑡 − 𝑅𝑉𝑖,𝑡. The first term (𝐼𝑉𝑖,𝑡) is 

proxied by the square of the respective model-free implied volatility index, in our case the VIX, while 

the second term is proxied by the ex-post realised return variation of the underlying index, in our case 

the S&P 500 Index.52 The term 𝐼𝑉𝑖,𝑡 denotes the recorded closing value of the implied volatility index 

squared for the last trading day of period 𝑡, which also represents the market participants’ expectation 

of the future realised variance of the underlying benchmark index in time period 𝑡. The term 𝑅𝑉𝑖,𝑡 

denotes the ex-post realised variance, calculated as 𝑅𝑉𝑖,𝑡 =
252

𝑛𝑚
∑ (𝑟𝑖)2𝑛𝑚

𝑡=1 , where 𝑟 is the daily return of 

the underlying S&P 500 Equity Index and 𝑛𝑚 = 10 is the number of trading days in a year (i.e. we use 

the 252-day counting convention). Higher levels of implied volatility refer to upcoming volatile periods. 

However, historical observations show that implied volatility tends to overestimate future realised 

volatility, as most portfolio managers generally dislike variance; the volatility risk premium is shown 

to be a good proxy for market sentiment (Bollerslev et al., 2009).  

Group C: Constructed measures of (systemic) risk 

For the US market, a commonly used measure to track systemic stress is the Financial Stress Index 

(FSI), constructed by the St. Louis Fed and available on a weekly basis. It is an equal-variance weighted 

                                                           
51 All the data and methodology notes are available at www.policyuncertainty.com. Only EQU is available on a daily basis; 

therefore, we interpolate the other two, that is, EPU and GPR, using the Denton method from a monthly into a weekly 

frequency, relying on the EPU intra-month variation.  

52 We compute the VP in relation only to the VIX and not to the TYVIX, as the market for derivatives based on the TYVIX is 

less liquid than the market for derivatives based on the VIX.  
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average of eighteen explanatory variables, capturing various aspects of risk and uncertainty in different 

segments of the market.53 The FSI is constructed using principal component analysis, in which it is 

assumed that financial stress is the primary factor influencing the co-movement of all these variables. 

A similar financial stress indicator (with weekly availability) is the Composite Indicator of Systemic 

Stress (CISS), which captures instability in the financial system of the euro area (Hollo et al., 2012). 

The aggregation method takes into account the time-varying cross-correlations between the sub-indices. 

Therefore, the CISS puts relatively more weight on situations in which stress prevails in several market 

segments simultaneously.54  

Finally, Diebold and Yilmaz (2009, 2014) propose a set of financial stress measures that, within the 

relevant literature, are normally referred to with the label connectedness. Grounded in modern network 

theories but drawing on variance decomposition methods, these measures quantify the spillovers arising 

between financial intermediaries, and between financial markets for various instruments. The three 

measures of connectedness that we retain for our analysis55 are computed for: (i) global equity markets 

(denoted ConnEQ); (ii) global foreign exchange markets (denoted ConnFX); and (iii) global sovereign 

bond markets (denoted ConnSB). 

 

The list of uncertainty and risk measures described above is inherently limited. However, the 

relevance of our empirical approach is not restricted by the list of selected indicators, which can 

obviously be expanded with new additions. Nevertheless, the selected measures cover a broad range of 

indicators from different sources and based on different methodologies. Moreover, all these risk and 

uncertainty measures have high (absolute) values for skewness and kurtosis, confirming their high 

sensitivity to stress events.56 

 

4. EMPIRICAL ANALYSIS 

Using the theory-based CAPM, one can specify the excess (over the risk-free rate) HF returns as: 

[𝑅𝐻𝐹 − 𝑟𝑓]
𝑡

= 𝛼 + 𝛽 ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝜖𝑡 (4) 

                                                           
53 Three main categories of indicators are included: (a) interest rates (e.g. federal funds rates, short- and long-term Treasury 

rates, corporate bond yields, etc.); (b) yield spreads; and (c) other indicators (e.g. market volatility indices). Source: 

https://fred.stlouisfed.org/series/STLFSI.  

54 The CISS includes fifteen market-based financial stress measures for the financial intermediary sector, money markets, 

equity markets, bond markets, and foreign exchange markets. 

55 Daily data are available since 2004 and are downloaded from http://financialconnectedness.org/data.html.  

56 A detailed description of the summary statistics can be found in Table B2 from Appendix B. 

https://fred.stlouisfed.org/series/STLFSI
http://financialconnectedness.org/data.html
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where 𝑅𝐻𝐹 is the weekly return on a HF-style index portfolio, 𝑟𝑓 is the risk-free rate return, 𝑀𝑘𝑡 is the 

return on the market portfolio, 𝑡 is the time index and 𝜖𝑡 is the error term. The factor loading, denoted 

by 𝛽, would capture the portfolio’s exposure to the market portfolio, while 𝛼 is a measure of the 

portfolio’s abnormal returns.  

Coefficient 𝛽 is a well-known measure used in portfolio management. Blocher and Molyboga (2017) 

and Agarwal et al. (2018) argue that HF clients prefer to use simple models to evaluate HFs performance 

rather than models with many (and more complex) pricing factors. Intuitively, it can be inferred simply 

by comparing the observed returns of a specific investment strategy with the returns of a broad market 

index. There is a wide consensus that most actively managed investment funds, particularly HFs, face 

very few investment constraints, and hence their exposures to pricing factors are essentially dynamic; 

that is, the factor loadings are not constant over time (see Billio et al., 2012; Savona, 2014a and 2014b; 

Racicot and Theoret, 2016; Amisano and Savona, 2017). In this context, our empirical framework can 

be split into two steps. In the first step, we apply data filters to extract the time-varying counterparts of 

𝛽′s from equation (4), the so-called betas, from the observed (excess) HF returns. In the second step, 

we employ a series of multivariate models that allows us to analyse the complex interactions between 

betas and changes in the information set, which we proxy using various risk and uncertainty measures. 

Appendix A relaxes the assumptions required for inference in a CAPM structure by considering a non-

parametric filter for beta; according to our findings, in the case of HF returns any estimate of beta is 

likely to have nonlinear interactions with some of the risk/uncertainty measures described in section 3.   

 

 

4.1 Discrete and time-continuous filters of betas  

In this section we rely on the mathematical formulation of our conceptual idea (as detailed in section 2) 

casting the representative HF decision-making problem in a Bayesian framework. The implementation 

is a juxtaposition of: (i) a discrete filter, implemented as a Markov Switching model, used to proxy for 

the less accurate beta predictions; and (ii) a continuous-time filter, implemented as a Kalman filter on 

a time-varying coefficients version of CAPM, used to proxy for more accurate predictions. The 

recursive nature of the two filters is an essential property that allows us to use them in HF decision-

making analysis.  

As a first filter, we adopt a MS specification of the CAPM that allows the estimation of the hidden 

Markov chain process driving the parameters of the model between some discrete, unobserved states or 

regimes. We then use the regime-dependant filtered probabilities and estimated coefficients to compute 

a time-varying beta as a proxy for the expected beta. For the second filter, we use a TVC Kalman filter 

on the same data set and model structure to derive a time-varying beta that will reflect the realised beta, 

or the high-level accuracy prediction of beta. The observation equation of the filter specifies the excess 

HF returns as a function of market excess returns, while the state equations define the time-varying 
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coefficients specified as pure unit root processes. We intentionally keep the state equations as simple 

as possible to avoid making any additional assumptions at this point about HF managers’ ability to time 

their strategies to market conditions (e.g. as in Ferson and Schadt, 1996; Racicot and Theoret, 2016).  

The first step of our empirical approach, therefore, consists in applying two data filters on the time-

varying version of equation (4): 

Filter 1: Expected beta to be inferred from a Markov Switching (MS) specification  

[𝑅𝐻𝐹 − 𝑟𝑓]
𝑡

= (𝑎𝑙𝑝ℎ𝑎)𝑠(𝑡) + (𝑏𝑒𝑡𝑎)𝑠(𝑡) ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝜀𝑠(𝑡) (5) 

where 𝑠𝑡 is a first-order unobserved Markov chain with two regimes and a transition matrix 𝑃 (with 

elements on each row summing to 1) such that 𝑠𝑡 = 𝑃 ∗ 𝑠𝑡−1, which also acts as a (discrete) state 

equation in the case that the model is considered in its state–space form. The 𝜀𝑠(𝑡) are error terms with 

𝜀𝑠(𝑡)=1~𝑁(0, 𝝈𝒔=𝟏
2) and 𝜀𝑠(𝑡)=2~𝑁(0, 𝝈𝒔=𝟐

2). Due to its discrete nature and the approximations 

inherent in its maximum likelihood derivation (see Kim, 1994), the MS implies information losses in 

the data inference process and should be a poorer fit to the observed HF returns, indirectly providing us 

with a measure HFs’ less accurate predictions.  

Filter 2: TVC Kalman filter for the realised beta 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞: [𝑅𝐻𝐹 − 𝑟𝑓]
𝑡

= (𝑎𝑙𝑝ℎ𝑎)𝑡 + (𝑏𝑒𝑡𝑎)𝑡 ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝜀𝑡 (6) 

𝑠𝑡𝑎𝑡𝑒 𝑒𝑞: (𝑏𝑒𝑡𝑎)𝑡 = (𝑏𝑒𝑡𝑎)𝑡−1 + 𝜀𝑏,𝑡,  (7) 

𝑠𝑡𝑎𝑡𝑒 𝑒𝑞: (𝑎𝑙𝑝ℎ𝑎)𝑡 = (𝑎𝑙𝑝ℎ𝑎)𝑡−1 + 𝜀𝑎,𝑡 (8) 

where 𝜀𝑡~𝑁(0, 𝝈2). We use the filtered state (𝑏𝑒𝑡𝑎)𝑡 from equation (7) as a measure of the realised 

beta. Table 1 reports the estimation results of the two filters.  
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Table 1. CAPM model specification estimated on excess HF weekly returns 

Style ED EH M RVA 

 
Expected 

beta filter 

Realised 

beta 

filter 

Expected 

beta filter 

Realised 

beta 

filter 

Expected 

beta filter 

Realised 

beta 

filter 

Expected 

beta filter 

Realised 

beta 

filter 

Panel A: Markov Switching model estimates used to derive expected betas 

LogL -470.06  -610.65  -689.53  -301.95  

AIC 3.69  3.17  2.93  4.58  

Regime 1: (more persistent and lower risk regime) 

(𝑎𝑙𝑝ℎ𝑎)𝑠=1 0.146***  0.103***  0.053*  0.052***  

(𝑏𝑒𝑡𝑎)𝑠=1 0.103***  0.220***  -0.013  0.039***  

𝜎𝑠=1 0.363***  0.384***  0.560***  0.244***  

p11 0.966***  0.929***  0.970***  0.981***  

Regime 2 (alternative regime) 

(𝑎𝑙𝑝ℎ𝑎)𝑠=2 -0.422***  -0.326***  -0.481*  -0.221**  

(𝑏𝑒𝑡𝑎)𝑠=2 0.154***  0.194***  0.281*  0.146***  

𝜎𝑠=2 0.895*  0.964  1.642***  1.147**  

p22 0.883***  0.871***  0.729*  0.934***  

         

Panel B: Kalman filter, used to derive realised betas 

LogL  -591.7  -721.9  -800.5  -512.5 

AIC  -6.77  -7.16  -7.37  -6.48 

𝜎  0.269***  0.436***  0.550***  0.152*** 

Note: Estimation results from equation (5) are displayed in panel A, while estimation results for the system of equations (6)-

(8) are displayed in panel B. Both panels include the log-likelihood value at the optimum (LogL) and the Akaike Information 

Criterion (AIC). The 𝜎𝑠=1 and 𝜎𝑠=2 in panel A are regime-specific standard deviations of the model estimated in equation (5), 

while p11 and p22 denote the diagonal elements of transition matrix P. Panel B displays only the standard deviation of the 

observation equation, 𝜎, which is comparable to the standard deviation of the model in panel A; the other coefficients are not 

displayed to save space. The four HF investment styles are specified in the first row of the table: Event Driven, denoted by 

ED; Equity Hedge, denoted by EH; Macro/CTA, denoted by M; and Relative Value Arbitrage, denoted by RVA. The 

estimation sample runs from the first week of July 2004 to the last week of May 2017. The (*), (**), and (***) denote coefficients’ 

statistical significance at the 10%, 5%, and 1% levels, respectively. 

 

It is worth noting that the MS specification allows both the coefficients and the equation’s variance 

to vary over time across the two regimes, meaning that we are explicitly aiming at getting a good fit for 

the HF returns; the TVC Kalman filter instead allows only the coefficients (not the variance) to vary 

over time. For the MS estimates, with only one exception (style M, regime 1), the coefficient of the 

market factor is always statistically significant in both regimes. The constant term is always statistically 
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significant, positive in regime 1 but negative in regime 2; the persistence of regime 1 is always greater 

that the persistence of regime 2, according to the estimated probabilities, 𝑝11 and 𝑝22, respectively 

(which are the diagonal elements of the matrix 𝑃). Note that, based on the AIC criterion, the MS model 

always provides a worse fit than the TVC Kalman filter, a finding in line with the idea that MS provides 

a smoother (i.e. less accurate) perspective on the data. Figure 1 plots the realised and expected betas 

for each HF style, highlighting the partial overlap between the two measures. Moreover, there is 

interesting overlapping in terms of timing, with periods from 2007 to 2008 being identified as belonging 

to the high-volatility regime by all HF styles. 

 

Figure 1. Expected and realised betas, by HF investment style 

  

  
Note: The figure displays the expected and realised betas filtered using (i) a CAPM specification with coefficients switching 

between two unobserved regimes that follow a Markov Chain and (ii) a CAPM specification with time-varying coefficients 

set in a state-space and filtered using a standard Kalman filter, respectively. The four HF investment styles are specified in the 

in the titles: Event Driven, denoted by ED; Equity Hedge, denoted by EH; Macro/CTA, denoted by M; and Relative Value 

Arbitrage, denoted by RVA. We discard the first three months of data as a burn-in period, given the well-known erratic 

dynamics of the filtered states in a Kalman filter during the initial periods. Accordingly, the effective estimation sample that 

will be used in the empirical section starts with the first week of October 2004 and ends with the last week of May 2017, just 

as displayed in the figure above. 
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4.2 Multivariate analysis: Causal influences 

The relationships between betas and various risk and uncertainty measures are neither simple, nor 

unidirectional, as highlighted by the application of the non-parametric filter ANOVA presented in 

Appendix A. Market moves give rise to risk-taking, hedging, and safe-haven motivations that can differ 

from one investor to another. Moreover, HFs can amplify uncertainty and increase the market risk levels 

through their trading strategies, leveraged bets and portfolio exposures vis-à-vis other investors (Fung 

and Hsieh, 2006). In addition, using various data filters to measure the betas (which is a standard 

procedure in the literature) does not necessarily help in disentangling the actual causality influences, 

due to the possible impact of unobserved factors on realised portfolio returns. 

To mitigate these concerns in an analysis of causal inferences, we employ the partial Granger 

causality (GC) approach set in the time domain, pioneered by Guo et al. (2008), and applied for example 

in Philippas and Dragomirescu-Gaina (2016). This approach, which is more robust to model 

misspecification and the omission of other relevant factors, allows us to isolate all traces of common 

exogenous (measured) factors and latent (unmeasured) factors, assuming that they all have 

simultaneous effects on all the observed components of the system. Hence, we account for any 

exogenous and latent (endogenous) factors that can produce misleading results or inaccurate causal 

inferences in a multivariate setting.  

We briefly present the partial GC general framework. Without loss of generality, consider a 

multivariate process 𝑾𝒕 with the following autoregressive formulation: 

𝑩(𝐿)𝑾𝑡 = 𝑢𝑡 (9) 

where 𝐿 is the lag operator, and 𝑩 is a polynomial matrix of 𝐿; in particular 𝑩(0) = 𝑰, the identity 

matrix; 𝐸(𝑢𝑡) = 𝟎 and 𝑣𝑎𝑟(𝑢𝑡) = 𝜮. The process 𝑾𝑡  is an aggregation of three components (measured 

variables or groups of variables), denoted by 𝒙𝑡, 𝒚𝑡, and 𝒛𝑡. Accordingly, 𝑾𝑡 = [𝒙𝑡 𝒚𝑡 𝒛𝑡]′ can be 

used to model the causality influences arising between the first two components, for example from 𝒚𝑡  to 

𝒙𝑡, conditional on the third one, for example 𝒛𝑡.  

The error term 𝑢𝑡 can also be decomposed into a noise term, 𝑒𝑡, together with an exogenous term, 

denoted as 𝐸𝑡, and a latent variable term, Λ𝑡, which depends on the process 𝑾𝒕. Thus, the unrestricted 

multivariate VAR model of the process 𝑾𝑡  involving the factors 𝒙𝑡, 𝒚𝑡, and 𝒛𝑡 can be written (in matrix 

form) as: 

𝑩(𝐿)𝑾𝑡 = 𝑒𝑡 + 𝐸𝑡 + 𝑩∗(𝐿)Λ𝑡 (10) 

where 𝑩∗ = [𝐵𝑥
∗ 𝐵𝑦

∗ 𝐵𝑧
∗]′ is a matrix of polynomials in the lag operator 𝐿, 𝑒𝑡 = [𝑒𝑥,𝑡 𝑒𝑦,𝑡 𝑒𝑧,𝑡]′ is 

the noise term, 𝐸𝑡 = [𝐸𝑥,𝑡 𝐸𝑦,𝑡 𝐸𝑧,𝑡]′ is the exogenous input, and 𝛬𝑡 = [𝜀𝑥
𝛬 𝜀𝑦

𝛬 𝜀𝑧
𝛬]′ represents 

the latent variables that cannot be measured in the system, but which are normally distributed random 
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vectors, with the vectors 𝐸𝑡 and Λ𝑡 independent of 𝑒𝑡, and the variance–covariance matrix of the vector 

autoregressive unrestricted model denoted by 𝚺(𝑥,𝑦,𝑧),𝑡. Using the Wold representation, the latent 

variables can be represented as the summation of normally distributed random inputs; therefore, using 

an 𝑅 superscript to denote the restricted VAR model for 𝑾𝑡
𝑅 = [𝒙𝑡  𝒛𝑡], we can write:  

𝑩𝑅(𝐿)𝑾𝑡
𝑅 = 𝑒𝑡

𝑅 + 𝐸𝑡
𝑅 + 𝑩𝑅(𝐿)Λ𝑡

𝑅 (11) 

where the noise variance–covariance matrix of the restricted model is 𝑺(𝑥,𝑧),𝑡.   

In the time domain setting, the partial GC shows the causal influence of one component, 𝑥, on 

another, 𝑦, conditioned on the other component 𝑧, using a partial correlation specification that 

eliminates the influence of the common exogenous inputs and any latent variables. Thus, the test statistic 

takes the following expression:  

𝐹𝑦→𝑥/𝑧 = 𝑙𝑛 [
𝑺𝑥𝑥 − 𝑺𝑥𝑧𝑺𝑧𝑧

−1𝑺𝑧𝑥

𝚺𝑥𝑥 − 𝜮𝑥𝑧𝛴𝑧𝑧
−1𝜮𝑧𝑥

] (12) 

where 𝑺𝑥𝑥, 𝑺𝑥𝑧, 𝑺𝑧𝑧, and 𝑺𝑧𝑥 are corresponding elements (or partitions in the multivariate case) of the 

𝑺(𝑥,𝑧) matrix, while 𝚺𝑥𝑥, 𝚺𝑥𝑧, 𝚺𝑧𝑧 and 𝚺𝑧𝑥 are elements (or partitions) of the 𝚺(𝑥,𝑦,𝑧) matrix. 

Table 2 presents the results derived from applying the partial Granger causality approach to a 

multivariate specification that includes all four (expected or realised) betas and one uncertainty/risk 

measure, which is displayed in the first column under the general label factor. Including all four betas 

should accommodate all the interactions that might arise from the fact that different HFs might 

simultaneously implement changes to their investment strategies in response to unexpected market 

moves and shocks. Similar results are obtained even if we consider a bivariate setting that pairs each 

beta with each risk or uncertainty measure. 
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Table 2. Partial Granger causality influences between expected/realised betas and factors 

Factor 

Expected 
beta  

→  
Factor 

Expected 
beta  

→  
Factor 

Expected 
beta  
 →  

Factor 

Expected 
beta  
 →  

Factor 

Factor 
→ 

Expected 
beta 

Factor 
→ 

Expected 
beta 

Factor 
→ 

Expected 
beta 

Factor 
→ 

Expected 
beta 

Style ED EH M RVA ED EH M RVA 

EQU  Yes  Yes  Yes Yes  

EPU   Yes   Yes    

GPR  Yes     Yes  

VIX   Yes Yes Yes Yes Yes Yes 

TYVIX    Yes  Yes  Yes 

VP Yes Yes Yes Yes   Yes Yes 

CISS  Yes Yes   Yes  Yes  

FSI Yes Yes Yes Yes Yes  Yes Yes 

ConnEQ  Yes Yes Yes   Yes  

ConnFX  Yes Yes Yes Yes  Yes Yes 

ConnSB Yes Yes Yes    Yes  

 

Factor 

Realised 

beta  

→  

Factor 

Realised 

beta 

 →  

Factor 

Realised 

beta 

 →  

Factor 

Realised 

beta 

 →  

Factor 

Factor 

→ 

Realised 

beta 

Factor 

→ 

Realised 

beta 

Factor 

→ 

Realised 

beta 

Factor 

→ 

Realised 

beta 

Style ED EH M RVA ED EH M RVA 

EQU   Yes  Yes Yes Yes  

EPU   Yes Yes Yes  Yes Yes 

GPR Yes Yes Yes  Yes  Yes Yes 

VIX   Yes  Yes Yes Yes Yes 

TYVIX   Yes       

VP         

CISS  Yes Yes Yes  Yes Yes   Yes 

FSI   Yes  Yes  Yes Yes 

ConnEQ     Yes Yes Yes Yes 

ConnFX  Yes Yes Yes Yes Yes Yes Yes 

ConnSB  Yes Yes Yes Yes Yes Yes Yes 

Note: Cells display the label “Yes” when we cannot reject the existence of partial Granger causality using 5% as the confidence 

level; a grey cell is displayed otherwise. The arrow in the first row indicates the direction of causality influences. The four HF 

investment styles are specified in the second row of the table: Event Driven, denoted by ED; Equity Hedge, denoted by EH; 

Macro/CTA, denoted by M; and Relative Value Arbitrage, denoted by RVA. 

 

The results show interesting patterns of influence that differ, sometimes significantly, between 

expected and realised betas. We cannot infer a unique causal ordering that holds for all possible beta–

uncertainty/risk pairs, but some qualitative results stand out. Firstly, only VIX affects all expected and 

realised betas, providing us with evidence in favour of its prominent role (see also the results obtained 

in Appendix A). Secondly, starting with the left half of the table, we see many more significant outgoing 
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causality influences from expected betas toward uncertainty/risk factors, rather than outgoing causality 

influences from realised betas toward uncertainty/risk factors, except those from group A (based on 

media sources). This finding gives us a first hint that less accurate predictions can lead to (actions with) 

negative feedbacks on (market-based and systemic) risk/uncertainty measures. Thirdly, as we move on 

to the right half of the table, we find many more significant incoming causality influences toward 

realised betas, rather than toward expected betas, stemming from uncertainty/risk factors, especially 

those from groups A and C. This reveals the higher information content of realised betas, pointing to 

their ex-post, rather than ex-ante, nature. These last two findings are reassuring, because the data too 

seems to reflect the particular differences in the construction of the two filters. Note that none of the 

uncertainty/risk factors was included in the dataset used to filter the betas (i.e. a standard CAPM-based 

specification for excess HFs returns).  

Using the same approach, we bundle together all of our risk and uncertainty measures into a model 

specification that can help us to understand better the existing patterns of causality influences among 

them. Table 3 below summarises the results of this exercise. Some of our indicators are very sensitive 

to incoming causality influences, but at the same time indifferent to influences from most others; for 

example, the FSI is influenced by almost every factor, except ConnEQ and ConnFX, but influences 

none. On the contrary, indicators like TYVIX, VIX, CISS, and ConnSB seem to influence many other 

indicators but are influenced by only a few others, thus being some of the most “exogenous” indicators 

in our list. This is an important finding in light of the results obtained and discussed in the rest of the 

empirical section. 
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Table 3. Partial Granger causality influences among risk and uncertainty measures 

Factor 
→ 

EQU 
→  

EPU 
→  

GPR 
→  
VIX 

→ 
TYVIX 

→ 
VP 

→ 
CISS 

→ 
FSI 

→ 
Conn 

EQ 

→ 
Conn 

FX 

→ 
Conn 

SB 

EQU→ -       Yes Yes Yes  

EPU→ Yes -      Yes    

GPR→ Yes  -     Yes    

VIX→ Yes   -  Yes Yes Yes Yes Yes  

TYVIX→ Yes Yes Yes  - Yes Yes Yes Yes Yes Yes 

VP→      - Yes Yes Yes Yes Yes 

CISS→  Yes Yes  Yes  Yes - Yes Yes Yes  

FSI→        -    

ConnEQ→         - Yes Yes 

ConnFX→         Yes - Yes 

ConnSB→ Yes  Yes  Yes Yes  Yes Yes Yes - 

Note: The first column displays the “senders”, which represent the origin of the estimated causality influence, while the first 

row displays the “receivers”. Cells display the label “Yes” when we cannot reject the existence of partial Granger causality 

using 5% as a confidence level; a grey cell is displayed otherwise. The four HF investment styles are specified in the second 

row of the table: Event Driven, denoted by ED; Equity Hedge, denoted by EH; Macro/CTA, denoted by M; and Relative Value 

Arbitrage, denoted by RVA. 

  

 

4.3 Multivariate analysis: Vector Autoregressive (VAR) models 

We claim that the decision-making process of a representative HF can be framed as a trade-off between 

prediction accuracy and reaction speed, a trade-off that becomes binding particularly during turbulent 

market periods. We apply this idea to data by specifying a vector autoregressive model with three 

variables: the expected beta denoted as (𝑏𝑒𝑡𝑎)𝑠(𝑡), the realised beta or (𝑏𝑒𝑡𝑎)𝑡, and one 

risk/uncertainty measure or 𝑓𝑎𝑐𝑡𝑜𝑟𝑡. Our intention is to reveal the main differences in the adjustment 

speed of the two betas to sudden changes in the information set, which we proxy using unexpected 

shocks in the 𝑓𝑎𝑐𝑡𝑜𝑟𝑡. The model includes both betas to reflect the fact that both strategies are 

(hypothetically) available to any HF at any given moment; therefore, the endogenous vector 𝑦𝑡 is 

specified as: 𝑦𝑡 = [𝑓𝑎𝑐𝑡𝑜𝑟𝑡 (𝑏𝑒𝑡𝑎)𝑡 (𝑏𝑒𝑡𝑎)𝑠(𝑡)]′.  

We estimate several VAR specifications and derive our findings based on the analysis of generalised 

impulse response functions (GIRFs) to unexpected shocks in each uncertainty/risk measure (Koop et 

al., 1996; Pesaran and Shin, 1998). Order-invariant GIRFs are better suited to tracking the dynamics of 

shocks through a system of simultaneous equations, especially when there is no prior understanding of 

the exogeneity rankings between the endogenous variables of the model. If we were to accept that 

estimating the empirical counterpart of an unobserved mental process implies that changes in the 
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information set are exogenous57, i.e. factor ordered first, then there would still be no difference between 

Choleski-based impulse responses and GIRFs to a shock in the first equation, which is our main focus.  

Lag lengths correspond to approximately one month and were chosen based on standard selection 

criteria (e.g. Akaike Information Criterion); if necessary, the number of lags was increased to insure 

lack of serial correlation in residuals. The effective estimation sample runs from the first week of 

October 2004 to the last week of May 2017. All estimated models are stable, with roots inside the unit 

circle. It should be noted that since our multivariate models include generated regressors (i.e. the two 

betas), the confidence intervals might be inaccurate. To obtain robust confidence intervals we bootstrap 

the estimated VARs for 5000 times following the approach proposed in Kilian (1998); in addition, we 

use a rather conservative confidence level of 95% (or +/- 2 standard deviations) for GIRFs to gauge the 

statistical significance of the results.  

Table 4 displays the sign and the horizon intervals for which the GIRFs are statistically significant. 

These estimates can help us gauge the timing and direction of changes in expected and realised betas 

in reaction to uncertainty/risk shocks. 

 

  

                                                           
57 Most readers would disagree though, and rightly so, given the extensive evidence showing that HFs play an essential role in 

the transmission of systemic shocks (Fung and Hsieh, 2006; Racicot and Theoret, 2016). In addition, our evidence in section 

4.2 does not support a unique causal ordering that can be applied to all beta-to-uncertainty/risk pairs. 
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Table 4. Estimated VARs: GIRFs to an unexpected positive uncertainty/risk shock  

Significant 

GIRFs 

(horizon) 

Style ED Style EH Style M Style RVA 

Expected 

beta 

Realised 

beta 

Expected 

beta 

Realised 

beta 

Expected 

beta 

Realised 

beta 

Expected 

beta 

Realised 

beta 

Group A: Uncertainty measures  

EPU 1-2 (+) 5-50 (-) 1-8 (-) 4-50 (-) n.s. 2-50 (-) n.s. n.s. 

EQU 1-11 (+) 12-50 (-) 1-15 (-) 4-50 (-) n.s. 6-50 (-) n.s. n.s. 

GPR n.s. 6-50 (+) n.s. 6-50 (+) n.s. n.s. n.s. 8-9 (+) 

Group B: Market-based risk indicators  

VIX 2-21 (+) 12-50 (-) 3-35 (-) 8-50 (-) 2-8 (+) 12-50 (-) 2-50 (+) n.s. 

TYVIX 1-14 (+) 13-50 (-) 1-45 (-) 12-50 (-) 2-3 (+) 11-50 (-) 1-50 (+) 3-4 (+) 

VP 1-5 (+) n.s. 1-2 (-) n.s. n.s. n.s. n.s. n.s. 

Group C: Computed measures of (systemic) risk  

ConnEQ 1-11 (+) n.s. 2-13 (-) n.s. 2-4 (+) 20-50 (-) 2-5 (+) 4-5 (+) 

ConnFX 2-7 (+) 7-47 (-) 2-7 (-) 8-50 (-) 11-48 (-) 10-50 (-) 2-4 (+) n.s. 

ConnSB n.s. n.s. n.s. n.s. 9-50 (+) n.s. 1-3 (+) n.s. 

FSI 1-13 (+) 35-50 (-) 1-8 (-) 6-37 (-) n.s. n.s. 1-50 (+) 2-4 (+) 

CISS 1-13(+) 19-50 (-) 1-28 (-) 17-50 (-) 1-3 (+) 8-50 (-) 1-50 (+) 3-4 (+) 

Note: The numbers displayed in the table denote the horizon intervals for which the GIRFs are statistically significant, with 

bootstrapped confidence bands set at +/- 2 standard deviations; 5000 bootstrap replications of the estimated model are used 

for the confidence interval, following Kilian (1998) approach. The (-) or (+) denotes the sign or direction of the GIRFs in the 

specified interval. The n.s. label in the table means that, given the confidence bands, the GIRFs are not significant for (at least) 

two consecutive observations. The maximum horizon is truncated at 50 weeks (approximately 1 year). The four HF investment 

styles are specified in the first row of the table: Event Driven, denoted by ED; Equity Hedge, denoted by EH; Macro/CTA, 

denoted by M; and Relative Value Arbitrage, denoted by RVA. The corresponding GIRF figures are reported in Figure B2, 

Appendix B. 

 

The results summarised in Table 4 show, with very few exceptions, a stronger and faster reaction 

for the expected betas, but a weaker, slower (or delayed) reaction for the realised betas. Therefore, 

relying on less accurate predictions implies faster portfolio adjustments in reaction to sudden changes 

in the information set. This is our first important result that survives across different estimation and 

robustness checks. In fact speed is key for market timing, and the HFs literature provides rich empirical 

evidence that (at least) some HFs have such abilities that allow them to earn extra profits, i.e. positive 

alpha (see Cao et al., 2013; Bali et al., 2014). With the remarkable exception of the EH style, the 

generally positive responses seen for expected betas suggest that most HFs tend to increase portfolio 

exposures in volatile markets; this finding in line with Billio et al., (2012), but in contrast to Patton and 
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Ramadorai (2013), suggesting that differences in HF investment styles are important to consider when 

analysing the direction of HFs exposure changes during turmoil. In the case of those HFs pursuing 

Equity Hedge (EH) strategies, for example, expected betas show reactions that are generally negative, 

most likely due to an over-reliance on hedge positions that explore idiosyncratic rather than general 

market trends. Notwithstanding differences in the direction of their bets, our results show that all HFs 

would be able to gain speed and thus improve their market timing abilities by adopting strategies with 

lower levels of accuracy, or to put it differently, by allowing their exposures to change more swiftly 

during turmoil (e.g. due to shifts in leverage, or exposures to option-like payoffs).  

Looking at Table 4 we see further that all HFs styles react to innovations in some particular indicators 

like VIX, TYVIX, ConnEQ, and CISS; more specifically, we find that all expected betas react to these 

same shocks, though we cannot find a similar result in the case of realised betas. Although HFs’ market 

exposures can increase or decrease, depending on the adopted investment style, having a common 

sensitivity to any single specific factor might lead to simultaneous reactions in case of large shocks. 

This is a good enough reason for including these risk indicators on supervisors’ watch lists. In fact, VIX 

and CISS were also two of the most ‘exogenous’ indicators already identified in section 4.2 and 

Appendix A, supporting the idea that they contain valuable information to signal early shifts in HFs’ 

risk appetite and market timing efforts. This potential simultaneity in case of large shocks is our second 

important result from the empirical analysis, with implications for contagion and market stress. King 

and Wadhwani (1990), and more recently Cipriani and Guarino (2008) advocate the importance of 

information spill-overs that can lead to contagion when trading activity is correlated across markets, 

although fundamentals are not necessarily related. Our empirical results are in line with this idea: due 

to their possible simultaneous actions and reliance on the same signal indicators for market timing, HFs 

can play a key role in the cross-sectional transmission of market stress and, therefore, contagion. 

 

4.4 Extensions of the model to HF investment sub-styles 

To better reflect the heterogeneity of HF investment styles, we replicate the analysis using HFRX 

indexes at different levels of aggregation, both below and above the one used so far. More precisely, 

besides the four main HF investment styles (i.e. ED, EH, M, and RVA), we use nine HF sub-styles and 

one global index.58 Our previous first main result is re-confirmed: expected betas react more quickly 

and/or strongly while realised betas are slower and weaker in response to an uncertainty/risk shock.  

                                                           
58 The correspondence between the nine sub-styles and the four main styles can be found in Appendix B, Table B1. Figure B1, 

in the same Appendix B, plots the realised and expected betas for each HF sub-style and for the Global style. A summary of 

the empirical results pertaining to this section are available in Appendix B, Table B4. 
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With respect to the second main result, we showed above that all HF investment styles can react 

simultaneously to certain shocks, despite important differences in terms of their particular investment 

strategy, geographical focus, financial markets, assets, and instruments employed. However, when 

differentiating HFs further into sub-styles, this result becomes less clear, though by a very small margin: 

there is only one exception out of nine sub-styles, for both VIX and CISS, while the other early-warning 

indicators drop out of our narrow list. Suppose all HF styles process information flows from non-

overlapping sources; however, in periods with high volatility, signal extraction “mistakes” can be 

transmitted to all other markets, generating contagion (see King and Wadhwani, 1990; Cipriani and 

Guarino, 2008; Hasler and Ornthanalai, 2018). Therefore, while having only four main HF styles could 

guarantee that the non-overlapping assumption holds exactly, a more granular approach could pose 

methodological challenges, but not as strong as to weaken the main implication about increasing 

contagion risks. 

 

4.5 Robustness checks 

To overcome some concerns regarding the specification used to explain HF excess returns and infer the 

betas, we employ a series of robustness checks. Much of the HF literature explains HF excess returns 

based on various pricing factors (e.g. Agarwal and Naik, 2004; Carhart et al., 2014). We replicate the 

empirical analysis above by using a model specification with the three Fama-French factors (the only 

readily available at a weekly frequency), and even by adding a forth pricing factor, which we proxy by 

one of the uncertainty/risk measures in our list. Conclusions are similar. In fact, the more pricing factors 

we include, the better the explanatory power of the model, a dimension on which the TVP Kalman 

already proved superior compared to MS. Therefore, the success of expected betas over realised betas 

in terms of reaction speed does not lie in the explanatory power of the specification used to model HF 

returns. Instead, it seems to be dependent on the inability of the TVP Kalman filter to reflect the time-

varying nature of volatility, which the MS filter deals with directly during its estimation.  

To add more information into the filtered betas, Savona (2014a and 2014b) proposes a system 

estimation where time-varying betas are a function of some primitive risk signals (i.e. in essence, 

volatility proxies). We take a more direct approach here by changing the signal-to-noise ratio at the 

TVP Kalman filter stage. Note that we have specifically adopted a random walk (rather than AR(1) or 

mean reverting as in Savona, 2014a and 2014b) specification for the state equations to allow for a higher 

contemporaneous pass-through of volatility signals into the filtered beta state (i.e. equation 7). As a 

robustness check, we allow the signal-to-noise ratio in the TVP filter go to infinity (i.e. recent 

observations receive more weight during signal extraction), but we end up with noisier betas that do 

not react faster than expected betas. These findings highlight the advantages of a discrete filter (see also 

the results in Bollen and Whaley, 2009) in striking the right balance between inferring a time-varying 
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beta (needed to control portfolio exposures) and picking up relevant volatility jumps, which provide the 

best signals that can help managers in timing the market (Bali et al., 2014; Kacperczyk et al., 2016).   

 

5. SIMULATION EXERCISE 

This section presents a simulation exercise where we compare the performances of two hypothetical 

portfolios, both built based on two benchmark strategies that correspond to extreme accuracy levels. 

More technical details are relegated to Appendix C. Here we just provide the main intuition behind the 

construction of these portfolios and strategies, and describe the main results.  

The first benchmark strategy, denoted as S1, covers the “perfect accuracy” case and consists in a 

portfolio constructed such as its (excess) returns track the (excess) market returns at all times, assuming 

a small but positive and constant beta of 0.1 at all times.59 The second benchmark strategy, S2, 

corresponds to the “no accuracy” case where we assume managers just place random bets on the market 

based on a simulated Markov Chain (MC) variable that governs the direction of their bets (‘on’ or 

‘against’ the market), therefore, allowing for some degree of persistency in the strategy being followed; 

the value of beta for strategy S2 is necessarily time-varying, switching between two discrete values, but 

its average equals the same value of 0.1 just as for strategy S1.60 With some inherent simplifications, 

these two benchmark strategies S1 and S2 are consistent with the two investment strategies discussed 

so far; to see this, note that the prediction errors for the two betas are either zero (for realised beta) or 

a discrete range of values (for expected beta), in line with the intuition provided in the introduction. 

Next, we construct two hypothetical portfolios that alternate their investing strategy between the two 

benchmark strategies above, S1 and S2, depending on some information signal that reflects market 

timing. The empirical results we obtained in the previous section have identified the accuracy–speed 

trade-off during extreme market stress periods, which were proxied by the uncertainty/risk shocks in 

the multivariate (VAR) models. To keep things simple in this simulation exercise, we assume that the 

signal can be extracted from our uncertainty/risk measures, such that one strategy is replaced by the 

other one whenever the (standardised) value of some uncertainty/risk indicator crosses a certain level 

(determined according to its distributional properties). We assume that portfolio PA adopts strategy S1 

for most of the time, except for when signals identify volatile periods, prompting a switch to strategy 

S2; similarly, portfolio PB adopts strategy S2 most of the time, except for volatile periods when it 

                                                           
59 A small beta value of 0.1 has been selected to approximate the sample average of estimated realised betas of the four HFs 

styles. In the same time, such a low beta reflects the idea that HFs aim at having a low correlation with the market in order to 

attract client flows and present themselves as effective diversification instruments. 

60 We set the upper and lower bounds of beta as (0.05, 0.15) to approximate the estimated variation interval between the two 

states in Table 1, panel A. The transition matrix for the MC is calibrated with an equal persistence of 0.95 for both regimes. 
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switches to strategy S1. Although these two mixed-strategy portfolios are complementary with each 

other by construction, their simulated performances are completely different (see Appendix C for more 

technical details).  

There is strong empirical evidence that some HFs are able to time market liquidity (Cao et al., 2013) 

and uncertainty or, more generally, volatility spikes in financial and macroeconomic variables (Bali et 

al., 2014; Kacperczyk et al., 2016). Depending on the uncertainty/risk factor we select as a signal source, 

the timing of switching between the two benchmark strategies will change, as well as their 

performances. Using the real (excess) market returns over the October 2004 – May 2017 period and a 

random normally distributed noise added to each period returns, we repeatedly simulate the two 

portfolios PA and PB over a sample that matches the estimation sample length (i.e. 661 weeks/periods). 

Simulation results based on 5000 replications are displayed in Table 5 below. We report the median 

value (computed across all simulations) for the various summary statistics instead of the mean value, 

because the former suffers less impact from any possible outlier (i.e. simulated portfolio with extreme 

outcomes). We also report the Kolmogorov-Smirnov (henceforth KS) test statistics to facilitate the 

comparison of any two simulated distributions. 

 

Table 5. Simulation results 

Factor End of period 

portfolio value: 

median 

(KS test) 

Standard 

deviation: 

median 

(KS test) 

 

Skewness: 

median 

(KS test) 

 

Kurtosis: 

median 

(KS test) 

 

Sharpe Ratio: 

median 

(KS test) 

Benchmark 

strategies 

S1: 9.4943 

S2: 9.5410 

(KSS1=S2: 0.0160) 

S1: 0.5550 

S2: 0.5675 

(KSS1=S2: 0.290*) 

S1: -0.1097 

S2: -0.1397 

(KSS1=S2: 0.198*) 

S1: 3.3285 

S2: 3.5809 

(KSS1=S2: 0.308*) 

S1: 0.0259 

S2: 0.0256 

(KSS1=S2: 0.0192) 

Group A: Uncertainty measures 

EPU PA: 9.5937 

(KSA=S1: 0.0112) 

PB: 9.5449 

(KSA=B: 0.0128) 

PA: 0.5592 

(KSA=S1: 0.117*) 

PB: 0.5639 

(KSA=B: 0.114*) 

PA: -0.1466 

(KSA=S1: 0.230*) 

PB: -0.1015 

(KSA=B: 0.236*) 

PA: 3.5009 

(KSA=S1: 0.301*) 

PB: 3.4102 

(KSA=B: 0.285*) 

PA: 0.0259 

(KSA=S1: 0.0122) 

PB: 0.0255 

(KSA=B: 0.0138) 

EQU PA: 9.6241 

(KSA=S1: 0.0082) 

PB: 9.3694 

(KSA=B: 0.0126) 

PA: 0.5587 

(KSA=S1: 0.121*) 

PB: 0.5641 

(KSA=B: 0.127*) 

PA: -0.1309 

(KSA=S1: 0.195*) 

PB: -0.1175 

(KSA=B: 0.178*) 

PA: 3.4758 

(KSA=S1: 0.305*) 

PB: 3.4093 

(KSA=B: 0.288*) 

PA: 0.0258 

(KSA=S1: 0.0086) 

PB: 0.0251 

(KSA=B: 0.0134) 

GPR PA: 9.4783 

(KSA=S1: 0.0074) 

PB: 9.5139  

(KSA=B: 0.0108) 

PA: 0.5561 

(KSA=S1: 0.032*) 

PB: 0.5665 

(KSA=B: 0.253*) 

PA: -0.1165 

(KSA=S1: 0.028*) 

PB: -0.1366 

(KSA=B: 0.179*) 

PA: 3.3438 

(KSA=S1: 0.028*) 

PB: 3.5638 

(KSA=B: 0.299*) 

PA: 0.0258 

(KSA=S1: 0.0088) 

PB: 0.0254 

(KSA=B: 0.013) 

Group B: Market-based indicators 

VIX PA: 9.6021 

(KSA=S1: 0.0108) 

PB: 9.3944 

(KSA=B: 0.0124) 

PA: 0.5605 

(KSA=S1: 0.161*) 

PB: 0.5626 

(KSA=B: 0.103*) 

PA: -0.1421 

(KSA=S1: 0.213*) 

PB: -0.1054 

(KSA=B: 0.216*) 

PA: 3.5496  

(KSA=S1: 0.313*) 

PB: 3.3628 

(KSA=B: 0.311*) 

PA: 0.0259 

(KSA=S1: 0.009) 

PB: 0.0252 

(KSA=B: 0.012) 
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TYVIX PA: 9.5547 

(KSA=S1: 0.0106 ) 

PB: 9.5097 

(KSA=B: 0.0116) 

PA: 0.5599 

(KSA=S1: 0.156*) 

PB: 0.5631 

(KSA=B: 0.107*) 

PA: -0.1315 

(KSA=S1: 0.198*) 

PB: -0.1165 

(KSA=B: 0.186*) 

PA: 3.519 

(KSA=S1: 0.309*) 

PB: 3.385 

(KSA=B: 0.304*) 

PA: 0.0257 

(KSA=S1: 0.0122) 

PB: 0.0256 

(KSA=B: 0.0128) 

VP PA: 9.6443 

(KSA=S1: 0.0094) 

PB: 9.4396 

(KSA=B: 0.0106) 

PA: 0.5585 

(KSA=S1: 0.108*) 

PB: 0.5646 

(KSA=B: 0.141*) 

PA: -0.1358 

(KSA=S1: 0.211*) 

PB: -0.1115 

(KSA=B: 0.204*) 

PA: 3.4666 

(KSA=S1: 0.295*) 

PB: 3.4274 

(KSA=B: 0.273*) 

PA: 0.0259 

(KSA=S1: 0.0088) 

PB: 0.0251 

(KSA=B: 0.0128) 

Group C: Computed measures of (systemic) risk  

connEQ PA: 9.5435 

(KSA=S1: 0.004) 

PB: 9.5683 

(KSA=B: 0.0174) 

PA: 0.5554 

(KSA=S1: 0.0106) 

PB: 0.5673 

(KSA=B: 0.283*) 

PA: -0.1101 

(KSA=S1: 0.0054) 

PB: -0.1393 

(KSA=B: 0.198*) 

PA: 3.3278 

(KSA=S1: 0.0052) 

PB: 3.580 

(KSA=B: 0.311*) 

PA: 0.0259 

(KSA=S1: 0.004) 

PB: 0.0255 

(KSA=B: 0.0206) 

connFX PA: 9.5886 

(KSA=S1: 0.0062) 

PB: 9.4291 

(KSA=B: 0.016) 

PA: 0.5560 

(KSA=S1: 0.029*) 

PB: 0.5666 

(KSA=B: 0.258*) 

PA: -0.1070 

(KSA=S1: 0.0124) 

PB: -0.1418 

(KSA=B: 0.204*) 

PA: 3.3382 

(KSA=S1: 0.015) 

PB: 3.5772 

(KSA=B: 0.305*) 

PA: 0.0259 

(KSA=S1: 0.0054) 

PB: 0.0252 

(KSA=B: 0.018) 

connSB PA: 9.5682 

(KSA=S1: 0.006) 

PB: 9.4584 

(KSA=B: 0.0154) 

PA: 0.5554 

(KSA=S1: 0.0182) 

PB: 0.5672 

(KSA=B: 0.276*) 

PA: -0.1104 

(KSA=S1: 0.0072) 

PB: -0.1390 

(KSA=B: 0.196*) 

PA: 3.33 

(KSA=S1: 0.0044) 

PB: 3.5808 

(KSA=B: 0.310*) 

PA: 0.0261 

(KSA=S1: 0.0062) 

PB: 0.0253 

(KSA=B: 0.0184) 

FSI PA: 9.6293 

(KSA=S1: 0.0094) 

PB: 9.4888 

(KSA=B: 0.012) 

PA: 0.5599 

(KSA=S1: 0.152*) 

PB: 0.5632 

(KSA=B: 0.110*) 

PA: -0.1314 

(KSA=S1: 0.196*) 

PB: -0.1166 

(KSA=B: 0.186*) 

PA: 3.5209 

(KSA=S1: 0.310*) 

PB: 3.384 

(KSA=B: 0.304*) 

PA: 0.0259 

(KSA=S1: 0.0094) 

PB: 0.0255 

(KSA=B: 0.012) 

CISS PA: 9.6558 

(KSA=S1: 0.0078) 

PB: 9.5223 

(KSA=B: 0.0132) 

PA: 0.5596 

(KSA=S1: 0.135*) 

PB: 0.5637 

(KSA=B: 0.114*) 

PA: -0.1317 

(KSA=S1: 0.185*) 

PB: -0.1189 

(KSA=B: 0.168*) 

PA: 3.5209 

(KSA=S1: 0.306*) 

PB: 3.4012 

(KSA=B: 0.293*) 

PA: 0.0258 

(KSA=S1: 0.0116) 

PB: 0.0256 

(KSA=B: 0.0146) 

Note: Table presents simulation results based on 5000 replications of the two hypothetical portfolios PA and PB; the two 

benchmark strategies S1 and S2 are displayed on the second row for comparability. The first column indicates the 

uncertainty/risk indicator used to determine the level that triggers the switch (i.e. market timing) between the two benchmark 

strategies. We report the median values, computed across all simulations, for the distribution of the following summary 

statistics: end of period portfolio value (i.e. cumulated returns), returns’ standard deviation, returns’ skewness, returns’ kurtosis 

and Sharpe ratio. In parentheses, we report the Kolmogorov-Smirnov test statistics, denoted KSX=Y, on the equality of two 

simulated distributions X and Y; the * denotes rejection of the null that the two distributions are equal at the 5% statistical 

significance level. More technical details can be found in Appendix C.  

 

Firstly, notice that compared to strategy S1, S2 is more likely to display characteristics associated 

with HF returns (see Appendix B, Table B1), meaning higher risk (or standard deviation), lower skew 

and higher kurtosis; these differences are statistically significant according to the KS tests. Higher 

kurtosis and more negative skew arise from a higher probability of extreme returns, and particularly 

positive returns, something HFs are aiming to achieve; Dijk et al., (2014) explain how competition for 

social status can explain a preference for negative skew assets by over-performers, who want to preserve 

their status. Therefore, it is interesting to see how a simple strategy that randomly bets on the market 

direction can deliver a distribution of payoffs with higher kurtosis and more negative skew, reflecting 

therefore some important characteristics of the actual HF returns’ distribution.  
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Secondly, HFs (along with other active players in general) face strong incentives deriving from the 

possibly large, but asymmetric payoffs they can obtain in times of market stress. Since the previous 

section revealed speed gains from switching to lower accuracy during market stress, we concentrate on 

making a comparison (in probability terms) between PA on the one side, and PB (as well as S1) on the 

other side; this is to say that we are only interested in comparing strategies that differ during turmoil 

periods, while ignoring strategy differences, if any, during calm periods. In all 11 cases, portfolio PA 

displays lower risk than PB (as well as S1), a difference that is statistically significant according to KS 

tests. More importantly, PA displays statistically significant higher kurtosis and more negative skewness 

in 7 cases if we compare it to PB (and in 8 cases if we compare it to S1). As a confirmation of our 

previous findings, both VIX and CISS lie among the indicators delivering the best outcomes and market 

timing; the connectedness indicators instead do not seem to provide the best timing, given their much 

higher persistency and measurement focus. Clearly, HFs would prefer strategies with a lower risk, 

higher kurtosis and more negative skew, since the probability of high positive returns is much larger 

(see Dijk et al., 2014). In a majority of cases, therefore, our simulation demonstrates the stochastic 

dominance of PA over PB (as well as over S1) in terms of lower standard deviation and skew, and higher 

kurtosis; this finding is in line with the trade-off uncovered in the previous section, in which we find 

that periods of extreme uncertainty/risk are likely to be associated with low accuracy strategies where 

beta dynamics is discrete as in the case of PA. Overall, the simulation exercise shows that switching 

exposures from a high to a low accuracy beta only during volatile times could deliver payoffs with 

distributions that are preferable by most HF managers, i.e. negative skew and excess kurtosis. 

The simulation results are robust to a series of sensitivity checks we report in Appendix C at the end 

of this chapter. Obviously, our simulation exercise is an inherent simplification of reality, ignoring 

many important aspects for HF profitability such as liquidity and trading costs, margin requirements, 

clients’ outflows (redemptions) or inflows etc. In addition, it includes a very simple signal extraction 

mechanism for market timing, randomly selected direction of the bets (i.e. changes in beta), symmetric 

transitions between regimes, etc. However, it helps in revealing some very clear incentives that HFs 

have to switch to a low accuracy strategy by timing the market and profiting from its extreme moves; 

with PA being a dominating mixed-strategy portfolio (in probability terms), HFs will tend to implement 

it as fast as possible in order to profit from initial market moves, which are usually the biggest. The fear 

of missing an opportunity is probably stronger than the fear of losing a bet, also because HFs portray 

themselves as ‘low beta’ investment vehicles that might face scarce opportunities in trending markets; 

on the contrary, the increase in correlation across different asset classes could prevent more refined and 

carefully designed strategies from being implemented in extreme market conditions, leaving therefore 

many HFs with few choices. 
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6. DISCUSSION AND CONCLUDING REMARKS 

We provide new insights into the investment decision-making process of hedge funds, some of the most 

active and astute investors. Drawing on the HFR database, we differentiate HFs according to several 

investment styles, and sub-styles, which define particularities with respect to investment horizon and 

strategy, preferred asset classes and market segments, etc. Despite large differences in style, their 

decision-making process boils down to a series of estimates and predictions that are continuously 

updated with new information. We assume this process can be framed as a trade-off between prediction 

accuracy and reaction speed, a trade-off that is best revealed during turbulent markets. We cast this 

process in a Bayesian framework and present a series of empirical analyses and a simulation exercise 

that concur in providing evidence in favour of this trade-off. 

Most HFs claim to generate excess returns that have a low, or even zero beta with a broad market 

index. Moreover, hedging effectiveness in portfolio management relies heavily on the same beta, and 

therefore changes in beta can be a good proxy for changes in investment strategy. Using the same data 

set and a common CAPM model structure, we apply one discrete filter and one time-continuous filter 

to extract two separate measures of beta that entail different levels of prediction accuracy. More 

specifically, a low-level accuracy prediction we label expected beta is filtered from a two-state Markov 

switching specification, which is more flexible, but provides a worse fit to HF returns than a time-

varying coefficient Kalman filter used to infer realised beta – the high-level accuracy prediction.  

The empirical analysis presented in section 4 shows that less accurate portfolio strategies 

(implemented as expected betas) would adjust more quickly to a series of uncertainty/risk shocks, which 

we use as proxies for changes in the relevant information set. Meantime, more accurate portfolio 

strategies (implemented as realised betas) would be slow in adjusting to similar shocks. Therefore, we 

highlight the accuracy–speed trade-off with respect to extreme market conditions, when unknown 

shocks are most likely to disturb the information set on which investors rely for valuation purposes. In 

section 5 we justify this result by emphasizing the dominance of a portfolio that switches its beta from 

a high-level to a low-level accuracy in times of extreme market moves, which we identify based on our 

uncertainty/risk factors. Our simulation exercise proves that return distributions with lower risk, more 

negative skew and higher kurtosis are associated with a mixed strategy that switches to a low accuracy 

beta during extreme market moves. It is easy to see how these alternating patterns in market exposure 

(i.e. beta) can also deliver the option-like payoff structure outlined in the HFs literature (e.g. in Agarwal 

and Naik, 2004; Billio et al., 2012). Therefore, market timing remains an essential ingredient for success 

in the HF industry. Moreover, since opportunities are scarce and might disappear quickly, HFs have 

strong incentives to precipitate implementation and gain more speed, which implies lower accuracy 

according to our results. These findings align with theoretical predictions from Kacperczyk et al., (2016) 
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where skilled managers allocate their (time-varying) attention to analysing aggregate risks during 

turmoil, and idiosyncratic risk during calm periods.  

Our empirical results also show that changes in some specific risk measures, mainly VIX and CISS, 

contain relevant information that helps HFs to better time the market. Although, in reality, the diversity 

of methods used by HFs to improve their market timing abilities might be hard to quantify, the two 

indicators we identify can summarize relevant information to provide regulators with early warnings 

regarding the upcoming (and possibly simultaneous) shifts in risk-appetite across a heterogeneous HF 

sector. Better counter measures that rely on the same indicators and thresholds could then be designed 

by market operators and regulators. Our analysis underlines the importance of proper regulations and 

market designs to prevent the negative consequences stemming from sudden shifts in risk-appetite. 

Many HFs (and active players as well) face strong incentives deriving from the possibly large, but 

asymmetric payoffs they can obtain in times of market stress. Market regulators and supervisory 

authorities have long considered ways to restrict this type of behaviour, and the literature on this topic 

is extremely rich. More effective early warning indicators and market circuit breakers, counter-cyclical 

margins and collateral requirements that restrict HFs’ ability to place highly leveraged bets during 

market stress are just some possible examples of intervention tools. Some negative consequences 

stemming from the cross-sectional transmission of market stress can be reduced as long as such risky 

strategies are discouraged or simply delayed by means of intervention tools that rely on the same 

indicators used by active players. In this context, proper identification of such indicators remains key 

for determining intervention effectiveness. 
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Appendix A 

A Non-parametric filter: A smoothing spline ANOVA  

A parametric model imposes a formal structure on the underlying data-generating process, which can 

be described fully by a finite number of parameters, allowing easy computation of summary statistics. 

However, given the well-known non-standard characteristics of the distribution of HF returns, some of 

the hypotheses required for standard statistical inference (e.g. linear dependence, normality, etc.) would 

be hard to satisfy, but can be relaxed using non-parametric techniques, also called smoothing methods 

(e.g. Billio et al. (2009) use kernel smoothing methods for HFs). In this appendix, we use the non-

parametric filter introduced by Ratto et al. (2007) and Ratto and Pagano (2010), which combines the 

Kalman filter with fixed interval smoothing. The main advantages of using this non-parametric filter 

come from the easiness of interpreting its results, improvements in the fitness, and flexibility of the 

estimation approach. We only provide an intuitive description below and refer the interested reader to 

the studies referenced above.61  

Any model output, 𝑦, can be seen as a mapping on a set of inputs, 𝑋 = [𝑥1, 𝑥2, … ]. Allowing for 

both first-order and second-order interactions between these inputs, and ignoring the possible time 

subscripts, the output can be specified as follows: 

𝑦 = 𝑓(x1, x2, … ) = g0 + g1(x1) + g2(x2) + g3(x1 ∗ x2) + ⋯ (A*) 

where gi are functions that need to be identified.  

Here we consider the one-factor model of Ferson and Schadt (1996) for excess HF returns, where a 

time-varying beta is allowed to depend on some lagged predetermined variables denoted by 𝑍, 

according to: 

[𝑅𝐻𝐹 − 𝑟𝑓]
𝑡

= 𝑎 + 𝛽(𝑍𝑡−1) ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝑒𝑡 

𝛽(𝑍𝑡−1) = 𝑏 + 𝐵 ∗ (𝑍𝑡−1) 

with 𝑎, 𝑏 and 𝐵 coefficients, 𝐸(𝑒𝑡│𝑍𝑡−1) = 0 and 𝐸(𝑒𝑡 ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

│𝑍𝑡−1) = 0.  

In compact form, we have:  

[𝑅𝐻𝐹 − 𝑟𝑓]
𝑡

= 𝑎 + 𝑏 ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝐵 ∗ (𝑍𝑡−1) ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝑒𝑡 (A**) 

where (𝑀𝑘𝑡 − 𝑟𝑓)
𝑡
 is the market factor, and 𝑒𝑡 is an error term.  

                                                           
61 The codes for running the filter are part of the global sensitivity analysis (GSA interface) toolbox, which is integrated into 

the Dynare platform, developed by the Joint Research Centre of the European Commission (see http://www.dynare.org).  
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We apply the non-parametric filter to our case assuming that HF excess returns can be explained by 

a set of inputs summarized by a vector 𝑋𝑡 = [[𝑀𝑘𝑡 − 𝑟𝑓]𝑡 ,  𝑍𝑡−1]. The filter can show the potential 

explanatory power of our inputs, allowing us to gauge the ones that make the biggest contribution to 

mapping the realised excess returns, [𝑅𝐻𝐹 − 𝑟𝑓], for each HF style. The main (or first-order) effects 

are computed as the percentage of variance explained by the first-order terms, while the second-order 

effects reflect the percentage of variance explained by the second-order (i.e. interactions) terms. The 

total effects include both the first- and the second-order interaction effects (the latter being double 

counted by construction).  

Table A1 displays the results obtained from filtering the excess HF weekly returns using the 

smoothing spline ANOVA model. Three main findings emerge from the table. The first is that the 

market factor, [𝑀𝑘𝑡 − 𝑟𝑓], has always an important first-order effect, although most of the time it is 

dominated by other factors’ contributions, especially by the VIX (the EH style could be seen as an 

exception, though marginally).62 The second finding is that some of our measures, especially those from 

groups B and C (e.g. VIX, CISS) are very important in explaining HF excess returns. The third finding 

refers to the important increase in contributions once we account for second-order terms (or 

interactions), illustrating the non-linearities that one needs to account for. Particularly, the second order 

effects related to the market factor hint at some direct influences stemming from various 

uncertainty/risk factors, even when using lags, onto any beta one might wish to estimate in a CAPM 

settings when using HFs returns.63  

 

  

                                                           
62 Bali et al., (2014) find that variation in uncertainty betas can explain a significant share of the cross-sectional variation in 

HF returns; although their results are not directly comparable with ours in terms of empirical design, we make a similar 

argument here. 

63 Second order effects related to the market factor are much higher if we use contemporaneous uncertainty/risk factors. Since 

the Ferson and Schadt (1996) model specification includes the lagged  𝑍𝑡−1 term, we maintain consistency with this paper in 

order to show that, even in this case, any estimate of beta would be non-linearly depending on some uncertainty/risk factors. 
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Table A1. A smoothing spline ANOVA model for excess HF returns 

ANOVA 

decomposition  

Style ED Style EH Style M Style RVA 

Main 

effects 

Total 

effects 

Main 

effects 

Total 

effects 

Main 

effects 

Total 

effects 

Main 

effects 

Total 

effects 

𝑀𝑘𝑡 − 𝑟𝑓 0.227 0.236 0.319 0.319 0.026 0.079 0.049 0.057 

Group A 

EPU 0 0 0 0 0 0 0 0 

EQU 0.005 0.005 0 0 0 0 0 0 

GPR 0.000 0.007 0 0 0 0 0 0 

Group B 

VIX 0.496 0.525 0.304 0.315 0.147 0.242 0.122 0.122 

TYVIX 0.016 0.016 0 0 0.031 0.047 0 0.109 

VP 0.005 0.021 0 0.012 0 0 0 0.082 

Group C 

ConnEQ 0.015 0.015 0 0 0 0 0 0.081 

ConnFX 0 0.031 0.019 0.029 0.057 0.189 0 0.028 

ConnSB 0 0 0 0 0 0.007 0 0 

FSI 0 0.033 0 0.012 0 0.007 0 0.074 

CISS 0.072 0.089 0.122 0.122 0 0 0.123 0.123 

Total 0.836 0.979 0.765 0.810 0.261 0.571 0.294 0.677 

Note: The four HF investment styles are specified in the first row of the table: Event Driven, denoted by ED; Equity Hedge, 

denoted by EH; Macro/CTA, denoted by M; and Relative Value Arbitrage, denoted by RVA. The main (or the first-order) 

effects are calculated as the percentage of variance explained by the first-order terms in equation (A*); second-order effects 

follow the same logic for the second-order terms in equation (A*). The total effects include both first- and second-order effects, 

the latter being double counted by the construction of the interaction terms; the first-order effects can lie between 0 and 1, but 

the second-order effects can exceed 1. Note that according to specification (A**) all the uncertainty/risk factors are lagged by 

one week. 
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Appendix B 

 

Table B1. HFRX Hedge Fund style and sub-style classifications. Summary Statistics. 

HF Investment Style Ticker Freq. 
Availabili

ty 
Mean St. dev. Skew Kurt 

Event Driven (ED) HFRXED D Apr. 2003 0.0509 0.6849 -1.9174 11.79 

Activist - M      

Credit Arbitrage - M      

Distressed/Restructuring HFRXDS D Apr. 2003 -0.0128 0.6115 -1.3669 8.26 

Merger Arbitrage HFRXMA D Apr. 2003 0.0871 0.4729 -1.4751 34.27 

Special Situations HFRXSS D Jan. 2009 0.0889 0.6648 -1.0777 6.47 

Multi-Strategy - M      

Equity Hedge (EH) HFRXEH D Apr. 2003 0.0090 0.8619 -1.3714 7.54 

Equity Market Neutral HFRXEMN D Apr. 2003 0.0040 0.4718 -1.5632 14.48 

Fundamental Growth HFRXEHG D Jan. 2009 0.0357 1.0575 -0.5972 5.16 

Fundamental Value HFRXEHV D Jan. 2009 0.0372 0.8111 -1.1604 7.42 

Quantitative Directional - M      

Sector: Energy/Basic Materials - M      

Sector: Healthcare - M      

Sector: Technology - M      

Short Bias - M      

Multi-Strategy - M      

Macro (M) HFRXM D Apr. 2003 0.0111 0.7980 -1.3533 10.08 

Active Trading - M      

Commodity: Agriculture - M      

Commodity: Energy - M      

Commodity: Metals - M      

Commodity: Multi - M      

Currency: Discretionary - M      

Currency: Systematic - M      

Discretionary Thematic - M      

Systematic Diversified HFRXSDV D Jan. 2009 -0.0329 0.8792 -0.3246 3.90 

Multi-Strategy - M      

Relative Value (RVA) HFRXRVA D Apr. 2003 0.0129 0.6688 -4.6999 52.12 

Fixed Income-Asset Backed - M      

Fixed Income-Convertible Arbitrage HFRXCA D Apr. 2003 -0.0432 1.1503 -7.066 69.93 

Fixed Income-Corporate - M      

Fixed Income-Sovereign - M      

Volatility - M      

Yield Alternatives: Energy 

Infrastructure 
- M      

Yield Alternatives: Real Estate - M      

Multi-Strategy HFRXRVMS D Jan. 2009 0.1044 0.4659 0.4156 6.42 

Note: Time series frequency is reported as M for monthly and D for daily. Availability refers to the month and 

year of the first observation in the HFR database. The mean, standard deviation (st. dev.), skewness (skew) and 

kurtosis (kurt) are computed with respect to average weekly returns and over the sample used in the multivariate 

analysis, i.e. first week of October 2004 to last week of May 2017; where sample availability is shorter, statistics 

are computed starting with the first weekly observation from April 2009 until the last week of May 2017.   
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Table B2. Summary statistics of risk and uncertainty measures 

Descriptive statistics 

 EPU EQU GPR VIX TYVIX VP CISS FSI 
Conn

EQ 

Conn

FX 

Conn 

SB 

Mean 4.476 3.511 4.310 2.856 1.801 -0.038 -1.836 -0.432 63.86 61.35 60.41 

St.dev. 0.527 0.749 0.456 0.384 0.273 0.050 0.847 1.106 9.11 5.58 8.45 

Skew 0.058 0.467 0.387 1.098 0.846 2.551 0.108 2.287 -0.171 -0.317 -0.651 

Kurt 2.78 3.16 3.18 4.12 3.24 18.9 1.92 9.17 2.24 2.81 3.02 

N 661 661 661 661 661 661 661 661 661 661 661 

 

Contemporaneous correlations       

 EPU EQU GPR VIX TYVIX VP CISS FSI 
Conn

EQ 

Conn

FX 

Conn

SB 

EPU 1           

EQU 0.58 1          

GPR -0.05 -0.11 1         

VIX 0.53 0.50 -0.28 1        

TYVIX 0.48 0.40 -0.27 0.78 1       

VP 0.08 0.28 0.05 0.14 0.10 1      

CISS 0.55 0.42 -0.32 0.78 0.70 0.05 1     

FSI 0.30 0.42 -0.27 0.74 0.76 0.23 0.63 1    

ConnEQ 0.44 0.35 -0.10 0.63 0.52 0.01 0.68 0.46 1   

ConnFX 0.44 0.20 0.02 0.35 0.31 -0.05 0.38 0.04 0.63 1  

ConnSB -0.27 0.06 -0.01 0.16 0.27 0.14 0.03 0.52 0.10 -0.30 1 

Note: The table presents the mean, standard deviation (st.dev.), skewness (skew), excess kurtosis (kurt), number 

of weekly observations (N) and correlation coefficients for all the uncertainty/risk measures included in our 

sample, which runs from the first week of October 2004 until last week of May 2017. All variables are in log 

terms, except for VP and FSI. 
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Table B3. Partial Granger Causality influences 

 

Expecte

d beta 

→  

Factor 

Expecte

d beta 

→  

Factor 

Expecte

d beta 

 →  

Factor 

Expecte

d beta 

→  

Factor 

Expecte

d beta 

→ 

Factor 

Expecte

d beta 

→ 

Factor 

Expecte

d beta 

→ 

Factor 

Expecte

d beta 

→ 

Factor 

Expecte

d beta 

→ 

Factor 

Sub-

style 
CA DS EHG EHV EMN MA RVMS SDV SS 

EQU Yes Yes Yes Yes  Yes Yes Yes Yes 

EPU Yes Yes  Yes  Yes Yes Yes Yes 

GPR Yes   Yes    Yes  

VIX Yes  Yes Yes      

TYVIX Yes   Yes  Yes  Yes  

VP Yes   Yes Yes   Yes  

CISS  Yes Yes  Yes Yes Yes Yes  Yes 

FSI Yes   Yes Yes Yes Yes Yes Yes 

ConnEQ Yes Yes  Yes Yes  Yes Yes Yes 

ConnFX Yes Yes  Yes Yes  Yes  Yes 

ConnSB Yes Yes  Yes Yes  Yes Yes Yes 

 

Factor 

 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Factor 

→ 

Expecte

d beta 

Sub-

style 
CA DS EHG EHV EMN MA RVMS SDV SS 

EQU Yes Yes Yes  Yes Yes Yes Yes Yes 

EPU Yes Yes   Yes  Yes Yes Yes 

GPR Yes Yes  Yes Yes Yes Yes Yes Yes 

VIX Yes Yes Yes Yes Yes Yes Yes Yes Yes 

TYVIX Yes Yes  Yes Yes Yes Yes Yes Yes 

VP    Yes      

CISS  Yes Yes Yes Yes Yes Yes Yes Yes Yes 

FSI Yes Yes   Yes Yes Yes Yes Yes 

ConnEQ Yes Yes  Yes   Yes Yes Yes 

ConnFX Yes Yes Yes  Yes  Yes   

ConnSB Yes Yes Yes  Yes  Yes Yes Yes 

Note: Cells display the label “Yes” when we cannot reject the existence of partial Granger causality using 5% as 

a confidence level; a grey cell is displayed otherwise. The arrow in the first row indicates the direction of 

causality influences.   
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Table B4. Bootstrapped GIRFs to an unexpected uncertainty/risk shock 

Significant 

GIRFs 

(horizon) 

Main Style ED 

Sub-style DS Sub-style MA Sub-style SS 

Expected 

beta  

Realised 

beta  

Expected 

beta  

Realised 

beta  

Expected 

beta  

Realised 

beta  

Group A: Uncertainty measures 

EPU 1-8 (-) n.s. 2-7 (+) 5-6 (-) n.s. n.s. 

EQU 2-8 (-) 7-40 (-) 1-10 (+) n.s. 2-6 (+) n.s. 

GPR n.s. n.s. n.s. n.s. n.s. 7-50 (+) 

Group B: Market-based risk indicators 

VIX 3-50 (-) n.s. 2-13 (+) n.s. 2-13 (+) n.s. 

TYVIX 1-50 (-) n.s. 1-11 (+) n.s. n.s. n.s. 

VP 1-4 (-) n.s. 2-9 (+) n.s. 1-4 (+) n.s. 

Group C: Computed measures of (systemic) risk 

ConnEQ 2-6 (-) n.s. 1-7 (+) 10-11(+) 2-7 (+) 2-18 (-) 

ConnFX 3-10 (-) n.s. n.s. 11-45 (-) n.s. 1-19 (-) 

ConnSB n.s. n.s. n.s. 15-30 (+) n.s. n.s. 

FSI 1-11 (-) 1-5 (+) 2-18 (+) 1-4 (+) 1-16 (+) n.s. 

CISS 1-50 (-) n.s. 1-13 (+) n.s. 1-4 (+) n.s. 

 

Significant 

GIRFs 

(horizon) 

Main Style EH 

Sub-style EMN Sub-style EHG Sub-style EHV 

Expected 

beta  

Realised 

beta  

Expected 

beta  

Realised 

beta  

Expected 

beta  

Realised 

beta  

Group A: Uncertainty measures 

EPU 5-13 (-) n.s. n.s. n.s. 1-5 (+) n.s. 

EQU 2-21 (-) n.s. n.s. n.s. 1-6 (+) n.s. 

GPR n.s. n.s. 3-12 (-) n.s. n.s. 5-50 (+) 

Group B: Market-based risk indicators 

VIX 2-31 (-) 5-50 (-) 2-21 (+) n.s. 3-11 (+) n.s. 

TYVIX 2-33 (-) n.s. 1-16 (+) n.s. 1-5 (+) n.s. 

VP 6-19 (-) 8-34 (-) n.s. 1-2 (-) 1-4 (+) n.s. 

Group C: Computed measures of (systemic) risk 

ConnEQ 2-50 (-) n.s. 1-6 (+) 7-33 (-) 2-8 (+) 3-4 (-) 

ConnFX n.s. 13-50(-) n.s. 4-22 (-) 7-30 (-) 3-11 (-) 

ConnSB 23-46 (-) n.s. n.s. 2-4 (-) n.s. n.s. 

FSI 8-23 (-) 9-50 (-) 1-10 (+) 1-9 (-) 1-11 (+) n.s. 

CISS 1-34 (-) 18-50 (-) 1-13 (+) n.s. 1-6 (+) 21-50 (-) 
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Significant 

GIRFs 

(horizon) 

Main Style M Main Style RVA  

Global HF index Sub-style SDV Sub-style CA Sub-style RVMS 

Expected 

beta 

Realised 

beta 

Expected 

beta 

Realised 

beta 

Expected 

beta 

Realised 

beta 

Expected 

beta 

Realised 

beta 

Group A: Uncertainty measures   

EPU n.s. n.s. n.s. n.s. n.s. 3-22 (-) 1-2 (+) 6-48 (-) 

EQU n.s. 6-15 (-) n.s. n.s. n.s. 1-8 (-) 1-8 (+) 5-37 (-) 

GPR n.s. 2-7 (+) n.s. n.s. n.s. 5-48 (+) n.s. 5-28 (+) 

Group B: Market-based risk indicators    

VIX 5-33 (-) 6-23 (-) 3-50(+) n.s. 3-27 (+) 2-11 (-) 2-20 (+) 8-50 (-) 

TYVIX 4-22 (-) n.s. 1-50 (+) n.s. 2-8 (+) n.s. 1-20 (+) 8-50 (-) 

VP n.s. 3-22 (-) 1-30 (+) 7-13 (-) n.s. n.s. 1-4 (+) n.s. 

Group C: Computed measures of (systemic) risk   

ConnEQ 5-35 (-) n.s. n.s. 3-4 (+) 2-7 (+) n.s. 2-11 (+) 20-45 (-) 

ConnFX n.s. 1-4 (+) n.s. n.s. n.s. 1-7 (-) 2-5(+) 4-50 (-) 

ConnSB 7-22 (-) n.s. n.s. n.s. 1-3 (+) n.s. 17-26 (+) n.s. 

FSI 10-37 (-) n.s. 2-50 (+) 9-50 (-) 1-44 (+) n.s. 1-14 (+) 
1-4 (+); 

20-50 (-) 

CISS 4-45 (-) n.s. 1-30 (+) n.s. 2-8 (+) 2-7 (-) 1-6 (+) 12-50 (-) 

Note: Numbers displayed in the table denote the horizon intervals for which the bootstrapped GIRFs are 

statistically significant at +/- 2 standard deviations. The (-) or (+) denotes the sign or direction of the GIRFs in the 

specified interval. The label n.s. in the table means that, given the bootstrapped confidence bands, GIRFs are not 

significant for (at least) two consecutive observations. The maximum horizon is truncated at 50 weeks 

(approximately one year).  
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Figure B1. Expected and realised betas for HF sub-styles and for global HF style index GL 
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Note: We discard the first three months of data as a burn-in period, given the well-known erratic dynamics of the 

filtered states in a Kalman filter during the initial period. Accordingly, the effective estimation sample for the 

VARs starts with the first week of October 2004, and ends with last week of May 2017; for EHG, EHV, SDV, 

RVMS, and SS the effective estimation sample starts from the first week of April 2009 and ends with the last 

week of May 2017. 
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Figure B2. Bootstrapped GIRFs to an unexpected positive uncertainty/risk shock 

Note: The figure presents the bootstrapped GIRFs to a one standard deviation positive shock in different 

uncertainty/risk measures, for each of the four main HF styles, in panels 1 to 4. The central line 

represents the median estimate of the bootstrapped impulses, while the dotted lines around the median 

denote the confidence bands (set at +/- 2 standard deviations); 5000 bootstrapped replications of the 

estimated VAR are used. The maximum horizon is truncated at 50 weeks (approximately one year). 

 

Panel 1: HF style ED 

Group A: Uncertainty measures  

Expected beta response to: Realised beta response to: 

1 std. shock in EPU 1 std. shock in EPU 

 

1 std. shock in EQU 1 std. shock in EQU 

 
1 std. shock in GPR 1 std. shock in GPR 

 

 

Group B: Market-based risk indicators 

Expected beta response to: Realised beta response to: 

1 std. shock in VIX 1 std. shock in VIX 
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1 std. shock in TYVIX 1 std. shock in TYVIX 

 

1 std. shock in VP 1 std. shock in VP 

 

 

Group C: Computed measures of (systemic) risk 

Expected beta response to: Realised beta response to: 

1 std. shock in ConnEQ 1 std. shock in ConnEQ 

 

1 std. shock in ConnFX 1 std. shock in ConnFX 

 

1 std. shock in ConnSB 1 std. shock in ConnSB 
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1 std. shock in FSI 1 std. shock in FSI 

 

1 std. shock in CISS 1 std. shock in CISS 

 

 

Panel 2: HF style EH 

Group A: Uncertainty measures 

Expected beta response to: Realised beta response to: 

1 std. shock in EPU 1 std. shock in EPU 

 

1 std. shock in EQU 1 std. shock in EQU 

 

1 std. shock in GPR 1 std. shock in GPR 
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Group B: Market-based risk indicators 

Expected beta response to: Realised beta response to: 

1 std. shock in VIX 1 std. shock in VIX 

 

1 std. shock in TYVIX 1 std. shock in TYVIX 

 

1 std. shock in VP 1 std. shock in VP 

 

 

 

Group C: Computed measures of (systemic) risk 

Expected beta response to: Realised beta response to: 

1 std. shock in ConnEQ 1 std. shock in ConnEQ 
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1 std. shock in ConnFX 1 std. shock in ConnFX 

 

1 std. shock in ConnSB 1 std. shock in ConnSB 

 

1 std. shock in FSI 1 std. shock in FSI 

 

1 std. shock in CISS 1 std. shock in CISS 

 

 

Panel 3: HF style M 

Group A: Uncertainty measures 

Expected beta response to: Realised beta response to: 

1 std. shock in EPU 1 std. shock in EPU 
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1 std. shock in EQU 1 std. shock in EQU 

 

 

1 std. shock in GPR 

 

1 std. shock in GPR 

 

 

Group B: Market-based risk indicators 

Expected beta response to: Realised beta response to: 

1 std. shock in VIX 1 std. shock in VIX 

 

1 std. shock in TYVIX 1 std. shock in TYVIX 

 

1 std. shock in VP 1 std. shock in VP 
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Group C: Computed measures of (systemic) risk 

Expected beta response to: Realised beta response to: 

1 std. shock in ConnEQ 1 std. shock in ConnEQ 

 

1 std. shock in ConnFX 1 std. shock in ConnFX 

 

1 std. shock in ConnSB 1 std. shock in ConnSB 

 

1 std. shock in FSI 1 std. shock in FSI 

 

1 std. shock in CISS 1 std. shock in CISS 
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Panel 4: HF style RVA 

Group A: Uncertainty measures 

Expected beta response to: Realised beta response to: 

1 std. shock in EPU 1 std. shock in EPU 

 
1 std. shock in EQU 1 std. shock in EQU 

 
1 std. shock in GPR 1 std. shock in GPR 

 

 

 

Group B: Market-based risk indicators 

Expected beta response to: Realised beta response to: 

1 std. shock in VIX 1 std. shock in VIX 
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1 std. shock in TYVIX 1 std. shock in TYVIX 

 

1 std. shock in VP 1 std. shock in VP 

 

 

Group C: Computed measures of (systemic) risk 

Expected beta response to: Realised beta response to: 

1 std. shock in ConnEQ 1 std. shock in ConnEQ 

 

1 std. shock in ConnFX 1 std. shock in ConnFX 

 

1 std. shock in ConnSB 1 std. shock in ConnSB 
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1 std. shock in FSI 1 std. shock in FSI 

 

1 std. shock in CISS 1 std. shock in CISS 
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Appendix C 

 

This Appendix provides more technical details about the simulation exercise performed in section 5. 

We first present the construction of two benchmark strategies: S1 – the “perfect accuracy” strategy, and 

S2 – the “no accuracy” strategy. Accuracy here refers to the range of possible values for the prediction 

error associated with a one-step-ahead forecast of beta. 

Strategy S1 is constructed by cumulating all profits and losses according to the following equation: 

𝑆1𝑡 = 𝑆1𝑡−1 + 𝛽 ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝜖𝑡,    with 𝑡 = 1,2, … 661 and 𝑆10 = 0 

We calibrate 𝛽 = 0.1 and 𝜖𝑡~𝑁(0, 0.5) to match the average estimates presented in Table 1 in the 

text. Since 𝛽 is constant, prediction errors are zero, meaning that the manager has perfect accuracy 

regarding her portfolio strategy in any market context. Note that all simulated returns are implicitly 

excess returns. Using the same value of 𝜖𝑡 we also construct strategy S2 by cumulating all profits and 

losses according to the following equation: 

𝑆2𝑡 = 𝑆2𝑡−1 + 𝛽𝑠(𝑡) ∗ [𝑀𝑘𝑡 − 𝑟𝑓]
𝑡

+ 𝜖𝑡,   with 𝑡 = 1,2, … 661 and 𝑆20 = 0 

This time, coefficient 𝛽𝑠(𝑡) is not constant but switches randomly between two extreme values, set 

at 0.05 and 0.15, following to a Markov Chain process:  𝑠(𝑡) = 𝑠(𝑡 − 1) ∗ 𝑃, with symmetric transition 

matrix given by 𝑃 = (
0.95 0.05
0.05 0.95

), which matches the average of the estimates provided in Table 1. 

Given a signal extracted from a variable 𝑋𝑡, the two mixed-strategy portfolios 𝑃𝐴 and 𝑃𝐵 are 

generated according to the following rules: 

𝑃𝐴
𝑡 = {

𝑆1𝑡 ,   𝑖𝑓 𝑋𝑡 < 𝑥 
𝑆2𝑡 ,   𝑖𝑓 𝑋𝑡 ≥ 𝑥 

       and       𝑃𝐵
𝑡 = {

𝑆2𝑡 ,   𝑖𝑓 𝑋𝑡 < 𝑥 
𝑆1𝑡 ,   𝑖𝑓 𝑋𝑡 ≥ 𝑥 

 

where 𝑋𝑡 is the standardised value of some risk/uncertainty factor, and 𝑥 = 1.65 such that we separate 

between calm (90%) and volatile periods (10%) according to the distribution properties of 𝑋𝑡.  

We generate 5000 simulations of 661-long time series for both the noise term 𝜖𝑡 and the Markov 

Chain 𝑠(𝑡) processes. No exit is assumed even for negative portfolio values (since the initial value can 

be set arbitrarily high); there are no client inflows or outflows (redemptions). We report the median 

value of the following summary statistics: end of period portfolio value or cumulated (excess) returns, 

returns’ standard deviation, returns’ skewness, returns’ kurtosis and Sharpe ratios. To facilitate 

comparison across simulated statistics, we report the Kolmogorov-Smirnov test statistics for the 

equality of two distributions in Table 5 (see the text). 
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Our calibration of the simulation inputs generally follows the estimates reported in Table 1 (see the 

text). To check the robustness of the simulation results, we perform a sensitivity analysis with respect 

to the main inputs. Our main findings, i.e. the stochastic dominance of 𝑃𝐴 over 𝑃𝐵 (as well as S1) in 

terms of lower risk, higher kurtosis and more negative skew, remain qualitatively similar (and 

statistically significant according to KS tests) in the following cases. Firstly, we vary the standard 

deviation of the random noise process 𝜖𝑡~𝑁(0, 𝜎𝜖) from 𝜎𝜖 = 0.4 to 𝜎𝜖 = 0.7 Secondly, we calibrate 

the persistence of the MC process both lower to 𝑃 = (
0.9 0.1
0.1 0.9

) and higher to 𝑃 = (
0.97 0.03
0.03 0.97

). Thirdly, 

we keep the mean at 0.1 but change the range of values allowed for 𝛽𝑠(𝑡) by narrowing the interval to 

[0.07; 0.13] or widening it to [0.025; 0.175]; wider intervals can lead to bimodal distributions for skew 

and/or kurtosis (driven by the MC process) making it hard to interpret and qualify the simulation results.  

Our simulation faces several constraints that refer to the inherent simplifications we impose, such as 

a symmetric transition matrix and symmetric variation interval for 𝛽𝑠(𝑡), equal variance across the MC 

generated regimes, etc. Obviously, some of these constraints can be relaxed in other simulations, but 

the interpretation and robustness of the results might suffer as well due to increased complexity.  
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Chapter 3 

On herding behaviour, ‘green’ energy and uncertainty‡ 

 

Abstract 

The transition to a low-carbon economy poses significant challenges, entailing higher uncertainty, not 

just higher risks, for investors in energy markets. Given the current hype around ‘green’ investing, and 

climate change in general, investors should worry for price distortions driven by behavioural biases, 

which arise particularly in markets characterised by uncertainty and information frictions. We provide 

evidence on herding behaviour, and therefore social learning, in a context where investors can opt 

between investing in an old technology (i.e. oil) and a new (i.e. ‘green’) one. Based on herding dynamics 

and its responses to various shocks, our findings suggest that: (i) investment strategies into newer 

opportunities require a better information set than into older, more established ones; and (ii) policy 

uncertainty is a better indicator than financial risk proxies, like VIX, in reflecting the multidimensional 

nature of risks associated with ‘green’ investing today. 

 

Keywords: herding; green energy; crude oil. 

JEL codes: C24; G14; G15; Q40 
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1. INTRODUCTION 

An increasing number of institutional investors are divesting64 from fossil fuel stocks and shifting 

billions of dollars into alternative assets belonging to a new sector, which claims promoting a ‘green’ 

or environmental-friendly and socially responsible investment agenda (Kaminker and Steward, 2012). 

Allured by wide media coverage, retail investors are jumping onto this bandwagon as well, for fear of 

missing out on an investment opportunity that seems to align better with the ongoing shifts in societal 

preferences. According to Morningstar, net inflows into the ‘sustainable’ sector during 2019 stand at 

USD 20.6 bn., nearly four times the USD 5.5 bn. record registered for the previous year.65  

When prices do not efficiently aggregate information, a trending market can enable investors to gain 

more from trading rather than from acting on their private information signals, raising the probability 

of information cascades and, thus, herding behaviour (Cipriani and Guarino, 2008). Since herding is 

usually associated with information frictions and volatility spikes, its impact on financial markets and 

prices can be substantial and persistent (Park and Sabourian, 2011; Schmitt and Westerhoff, 2017). We 

aim at addressing this problem upfront in this chapter, by analysing social learning and investors’ group 

behaviour with respect to the ongoing ‘greening’ in investment preferences.  

Given the current hype growing around ‘green’ investing, and climate change topics in general, 

financial investors should fear for price distortions which arise particularly in markets characterised by 

information frictions. In the case of ‘green’ investing, information is often costly or limited as reflected 

in the high uncertainty surrounding the long-term economic viability prospects of many ‘green’ 

technologies (Kaminker and Steward, 2012; Andersson et al., 2016). As long as this uncertainty 

prevails, it might be that investing in an old technology (i.e. oil or fossil fuels) is less risky66 than 

investing a new (i.e. ‘green’) technology (see Hall and Khan, 2003). High uncertainty delays the 

necessary learning process of identifying the most profitable market opportunities evaluated in risk-

adjusted terms, but it might also incentivise (particularly skilled) investors to pay more attention and 

learn more about the newer opportunities (Kacperczyk et al., 2016).  

It is also the case that the economic success of new technologies depends on regulations and 

government policies that greatly impact on the innovation process itself (Wustenhagen and Menichetti, 

                                                           
64 As of December 2019, various institutions ranging from NGOs, Philanthropic Foundations and Educational Institutions to 

Corporations have publicly announced and committed to divest from at least one type of fossil fuel almost $11.94 trillion. 

Source: http://gofossilfree.org/commitments, accessed on February 20, 2020. 

65 Source: “Sustainable Fund Flows in 2019 Smash Previous Records“, Morningstar, January 10, 2020, see 

https://www.morningstar.com/articles/961765/sustainable-fund-flows-in-2019-smash-previous-records. 

66 During the transition to a low-carbon economy, ‘green’ investing entails dealing with higher uncertainty, not just higher 

risks. See the discussion in Thoma and Chenet (2017) on the distinction between uncertainty and risk in relation to the financial 

implications of climate change. 

http://gofossilfree.org/commitments
https://www.morningstar.com/articles/961765/sustainable-fund-flows-in-2019-smash-previous-records
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2012; Andersson et al., 2016; Mazzucato and Semieniuk 2018). Mazzucato and Semieniuk (2018) find 

that public financial institutions (e.g. state banks) invest in higher risk technologies, and therefore can 

create a direction for change; in fact, Mazzucato and Semieniuk (2017) show that successful past 

policies in the innovation sector have been more about incentivising and shaping new markets, rather 

than addressing market failures.  

With no certainty regarding long-term prospects and without a coherent global policy response (to 

which the recent U.S. withdrawal from the Paris climate accord is the latest proof), financial markets 

remain key to financing our society’s responses to climate-related challenges67 (Kaminker and Steward, 

2012; Andersson et al., 2016; Baker et al., 2019). As multidimensional uncertainty interacts with 

investors’ own behavioural biases, the social learning process becomes more complicated, possibly 

driving prices away from their fundamental values and increasing volatility (Avery and Zemsky, 1998). 

Within this market environment characterized by costly or limited information and constant 

regulatory challenges, the paper aims at understanding how financial investors deal with the inherent 

uncertainty that surrounds their current portfolio allocations in energy assets. We focus on U.S. energy 

stocks, which are the most likely to be affected by climate-related challenges. We are most interested 

though in investors’ collective or group dynamics, which is likely to display herding and other similar 

behavioural biases usually associated with information frictions and volatility spikes in financial 

markets. A 2015 survey conducted by the CFA Institute amongst professional portfolio managers places 

herding on top of a list including several behavioural biases.68 Herding arises when investors choose to 

suppress their own private information and instead mimic the actions of others, leading to information 

cascades (Bikhchandani et al., 1992; Banerjee, 1992). Many theories predict that herding leads to higher 

volatility and deviations from stocks’ fundamental values, i.e. asset booms and busts (Froot et al., 1992; 

Avery and Zemsky, 1998; Avramov et al., 2006; Park and Sabourian, 2011; Schmitt and Westerhoff, 

2017). The main questions we address in this context are: What drives herding behaviour in U.S. energy 

sector and how does social learning occur? What should investors learn before abandoning an 

established investment strategy, to chase for newer (i.e. ‘greener’) investment opportunities?  

To address these questions, we look for the main determinants of herding, considering uncertainty 

and the risk-return trade-offs relevant for investors in energy assets. Our main contribution is to provide 

                                                           
67 It is encouraging to see banks increasingly becoming aware of their contribution to fighting climate risks, particularly 

through their financing decisions. The European Investment Bank (EIB) is reported to consider changing its mandate and 

adapting its lending policies in order to fight climate change (Source: “EIB begins metamorphosis into climate bank”, Euractiv, 

September 9, 2019). The Dutch financial group ING Groep NV says it is allocating resources to estimate its overall carbon 

footprint, based on asset types and lending transactions (source: “Banks Are Finally Starting to Account for Climate Change 

Risk”, Bloomberg Businessweek, September 12, 2019).  

68 Survey results are available at: https://blogs.cfainstitute.org/investor/2015/08/06/the-herding-mentality-behavioral-finance-

and-investor-biases. 

https://blogs.cfainstitute.org/investor/2015/08/06/the-herding-mentality-behavioral-finance-and-investor-biases/
https://blogs.cfainstitute.org/investor/2015/08/06/the-herding-mentality-behavioral-finance-and-investor-biases/
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evidence on herding behaviour, and therefore social learning, in a market context where investors can 

opt between investing in an old technology (i.e. oil) versus a new (i.e. ‘green’) one. We find that 

investors in U.S. energy stocks herd more in response to shocks in oil returns, but not to shocks in oil 

volatility; investing in an old technology thus requires little besides information on returns. In contrast, 

the same investors herd less in response to ‘green’ volatility shocks, but seem immune to shocks in 

‘green’ returns; opting for a newer investment opportunity, therefore, requires a better information set. 

Another contribution of our analysis regards portfolio allocations in the current market context. 

Environmental, social and governance (ESG) criteria are gaining in popularity among investors and 

companies alike, but despite this euphoria, 8 of the 10 biggest ESG funds in U.S. own substantial equity 

shares in big oil companies (e.g. ExxonMobil).69 Our findings help explain this allocation strategy as 

well, by providing empirical evidence on the lack of sensitivity for crude oil to policy uncertainty that 

highly affects ‘green’ portfolio allocations. 

From a methodological perspective, we first employ a time-varying coefficient version of the 

original empirical specification proposed in Chang et al., (2000) in order to expose herding towards the 

market consensus in U.S. energy stocks. Next, we set up vector autoregressive (VAR) models including 

a dynamic herding metric along with returns, volatility and uncertainty that proxy for the relevant 

information set available to investors. Last, we derive our main insights based on empirical tests and 

impulse responses from several estimated VAR models.  

This chapter of the thesis is organized as follows. Section 2 provides an overview of the relevant 

literature, while section 3 describes our dataset used in the empirical analysis. Section 4 presents the 

empirical methodology and a discussion of the main results. Finally, section 5 concludes. 

 

 

 2. LITERATURE REVIEW 

The current hype in ‘greening’ portfolio allocations looks exciting, although great risks and uncertainty 

dominate ‘green’ assets’ valuations and their long-term prospects. Despite these inherent challenges, 

and despite some previous disappointing returns, ‘green’ assets are considered by portfolio managers 

for diversification motives (Miralles-Quiros and Miralles-Quiros, 2019), but also as a way to attract 

client inflows in the current social context. Not the same can be said about oil portfolio allocations. 

Andersson et al., (2016), Batten et al., (2018) and Engle et al., (2019) propose risk management 

techniques to hedge climate-related risks requiring portfolio allocations to both crude oil and (global) 

stocks. Currently, crude oil serves as a hedge against various uncertainty sources stemming mainly from 

                                                           
69 Source: “ESG Funds Enjoy Record Inflows, Still Back Big Oil and Gas”, Wall Street Journal, November 11, 2019, see 

https://www.wsj.com/articles/top-esg-funds-are-all-still-invested-in-oil-and-gas-companies-11573468200.  

https://www.wsj.com/articles/top-esg-funds-are-all-still-invested-in-oil-and-gas-companies-11573468200
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the policy and/or political realms (Chkili et al., 2014; Omar et al., 2017); energy equities can serve a 

similar scope by providing their investors with exposure to oil fluctuations and substantial dividends as 

well. These differences in motivations carry a significant importance for those investors deciding their 

portfolio allocations, particularly during periods of market stress and uncertainty.  

Given the complex nature of the associated risks and uncertainties facing investors today, it is useful 

to review the early study of Avery and Zemsky (1998) discussing financial investors’ behavioural 

biases, and in particular herding. Avery and Zemsky (1998) structure their discussion around (i) value 

uncertainty about price signals, under which herding does not occur, (ii) event uncertainty, which makes 

herding possible but also supportive in the price discovery process, and (iii) composition uncertainty, 

under which the proportion of informed versus uninformed investors is not known, thus complicating 

social learning and incentivizing herding behaviour that obscures rather than support price discovery.70    

The concept of herding in financial markets was initially presented in the studies of Bikhchandani 

et al. (1992) and Banerjee (1992), who define it as a tendency for imitation that leads to correlated 

investing (e.g. buy, sell) patterns. The early literature (surveys can be found in Devenow and Welch, 

1996; Bikhchandani and Sharma, 2000; Hirshleifer and Hong Teoh, 2003) has concentrated on 

explaining rational herding behaviour based on: (i) payoff externalities, when an individual agent’s 

payoff depends on the number of other agents adopting the same action; (ii) principal-agent or 

reputational mechanisms, when failing together is less costly than failing alone; and (iii) information 

cascade mechanisms, when investors ignore their own beliefs and private information in order to follow 

the market consensus. The more recent literature adds elements drawing from the physiology and 

neuroeconomics fields, emphasising individuals’ emotional, psychological and/or social traits (e.g. 

Rubinstein, 2001; Shiller, 2002; Baddeley et al., 2012). 

Relying mostly on statistical measures and constructs, a vast empirical literature has analysed the 

presence of herding amongst several financial actors (e.g., institutional investors, fund managers, 

financial analysts), as well as in various financial markets (e.g., stock and bond markets, mutual funds, 

foreign exchange markets). The first literature strand uses micro-data to detect herding amongst (mostly 

institutional) investors (e.g. Sias, 2004; Blasco et al., 2012; Cipriani and Guarino, 2014). The second 

literature strand, to which our approach belongs as well, investigates herding towards the market 

consensus using aggregate market data (e.g. Christie and Huang 1995; Chang et al, 2000).  

The earliest empirical specification designed for herding detection based on aggregate market data 

is provided by Christie and Huang (1995); alternative model specifications and extensions are included 

in Chang et al. (2000); Chiang and Zheng, (2010); Economou et al., (2011); Yao et al. (2014); Galariotis 

et al., (2015; 2016); Demirer et al., (2015); Litimi et al., (2016) etc. Even though herding is expected to 

                                                           
70 This is because the trading patterns in a market with many uninformed traders that exhibit herding behaviour can be similar 

to the trading patterns observed in a market with many informed investors that trade based on news related to fundamentals. 
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be more pronounced during down or declining markets (Chang et al., 2000; Chiang and Zheng, 2010), 

there is evidence of significant asymmetric herding behaviour (Philippas et al, 2013) and during up 

markets as well (Tan et al., 2008; BenMabrouk and Litimi, 2018). We contribute to this literature by 

proposing a time-varying continuous herding proxy, whose inference is more data-efficient than 

existing approaches (e.g. Chiang et al., 2013; Babalos et al., 2015) and which preserves the theoretical 

consistency of the original model (Chang et al., 2000). 

Cipriani and Guarino (2014) prove experimentally that rational herding behaviour increases with 

uncertainty. In a companion paper, they present a theoretical model where investors’ private 

information becomes less important as trading (and volatility) increases (see Cipriani and Guarino, 

2008). Sias (2004) finds that it is more likely for investors to herd in case of small cap stocks, where 

there is less information available and the degree of information asymmetries is higher.  

Sudden changes or regime shifts, such as those triggered by (de-)regulation reforms, can speed up 

learning and facilitate action convergence among market participants, without necessarily being 

considered as herding. In this context, Wustenhagen and Menichetti (2012) discuss how changes in 

government policies and regulations can affect the current trade-offs associated with investing in the 

energy sector. We believe our analysis contributes to this debate by disentangling among different 

information types that affect investors’ learning and portfolio allocations across the energy sector.  

Finally, our paper relates to the recent booming financial literature dealing with attention allocation. 

Kacperczyk et al., (2016) predict that attention and information acquisition behaviour, i.e. learning, 

determine investors’ risky portfolio choices, and present empirical evidence for their claim. Similarly, 

Andrei and Hasler (2019) present a model where optimal attention increase with future returns’ 

uncertainty, treating attention as a non-financial allocation in investors’ portfolios. In this context, we 

interpret herding as a temporary failure to allocate attention by investors. 

 

3. DATA 

Our data set comes from different sources, which we discuss in detail in this section. Data on the 31 

constituent shares of the S&P 500 Energy Index come from Thomson Reuters Eikon.71 The full sample 

spans from January 2011 to December 2018.72 All our indicators are constructed as weekly averages of 

daily observations. Although herding behaviour is more likely to be identified with high-frequency data 

(see Christoffersen and Tang, 2009), daily figures would capture too much of the trading noise. 

                                                           
71 Source: https://us.spindices.com/indices/equity/sp-500-energy-sector.  

72 The chosen period includes several events originating in the USA, Europe, Middle East etc., with potential impact for the 

U.S. and global energy industry. Some examples refer to Brexit referendum, a series of declarations and political actions by 

the U.S. president Donald Trump on the Iranian nuclear deal, OPEC agreements with Russia to limit oil supply, the ongoing 

crisis in Venezuela, political upheaval in the Middle East related to the Syrian war, etc. 

https://us.spindices.com/indices/equity/sp-500-energy-sector
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Moreover, decision-making in finance is a lengthy process, and significant changes in the strategic 

allocations of investors are not visible on a high frequency (e.g. daily) basis, e.g. the reallocation from 

conventional to ‘green’ energy assets. In fact, most changes in portfolio strategy and asset allocations 

are normally associated with phases of the economic cycle, or changes in risk appetite or in the existing 

correlations amongst various asset classes (see Batten et al., 2018). Our results obtained at weekly 

frequency should be viewed therefore as being rather conservative in terms of herding detection. 

The constituents of the energy sector in the S&P 500 Index are some of the biggest oil and gas 

companies, not only in U.S., but globally (e.g. Chevron, Exxon Mobil, Halliburton, ConocoPhillips). 

Some of these energy companies are already positioning as leaders in the transition towards ‘greener’ 

energy sources (Pickl, 2019). The sector includes companies active in various segments of the oil and 

gas industry (e.g. upstream, midstream, downstream), with different levels of vertical integration, being 

thus very heterogeneous. At the end of 2018, the S&P energy sector had a market representation of 

5.3% in the total S&P 500 index, although this value has varied significantly over time. At its lowest 

point in terms of market valuation, i.e. March 2009, the energy sector had a share as high as 14.3%. In 

general, the market valuation share is a function of the capitalization of the constituent stocks, which 

may depend on the economic cycle, geopolitics, risk appetite, etc. Empirical research shows that the 

energy sector’s performance depends mainly on the oil price (Baffes et al., 2015; Ahmadi et al., 2016; 

BenMabrouk and Litimi, 2018), which is the most relevant reference as well as a leading indicator of 

the global economic cycle. We therefore use the WTI crude oil prices as the main proxy for conventional 

energy investing in the following sections. 

To capture the financial performance of ‘green’ assets instead, we rely on various available indexes 

and datasets. Firstly, we use 16 ‘green’ Exchange Traded Funds (ETFs), which are some of the most 

representative ETFs in this sector, and are traded on the New York Stock Exchange and Nasdaq.73 The 

ETFs are an attractive option for many investors, offering diversification benefits and indirect access to 

(sometimes illiquid or inaccessible) international equities or exotic asset classes. ETFs generally have 

low fees, high transparency and liquidity, and trade similarly to stocks, i.e. throughout the day, meaning 

that investors can employ leverage and/or short selling in order to take advantage of market moves in 

real time. Some ETFs might invest exclusively in particular industries (e.g. solar), or focus on specific 

geographical regions (e.g. South America), but many try to hold a diversified portfolio of ‘green’ 

investments in order to counter the impact of low profit margins that characterise this sector, especially 

during its infancy about a decade ago.74 Several empirical papers focusing on the energy sector, use 

‘green’ ETFs in order to study the transition to a low-carbon economy (Andersson et al., 2016; Miralles-

                                                           
73 The data source is Bloomberg. The detailed list of ‘green’ ETFs used in this paper is provided in Appendix A. 

74 Despite growing volumes and capacity, and sometimes generous subsidies from governments, most companies operating in 

the ‘green’ energy sector risk declining prices and margins as the technology improves and investment costs add up, new 

competitors enter the market, or new regulation constraints become binding.  
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Quiros and Miralles-Quiros, 2019). To summarize the 16 ETFs performances with a single aggregate 

indicator, we employ two measures: (i) a time-series of returns derived from an equally weighted (in 

US dollar terms) portfolio based on all 16 ETFs, and (ii) a time-series of synthetic returns derived from 

the first principal component of the 16 ETFs’ weekly returns.75  

Secondly, we use four indexes that are more commonly employed in empirical studies on financial 

aspects of climate change (Rahdari et al., 2015; Baker et al., 2018). These indexes are available from 

Thomson Reuters Eikon and serve to monitor the financial performance of companies, whose investing 

and operating principles are sensitive to environmental and climate-related risks. The first two indexes 

are based on the leading U.S. stock market index, i.e. S&P500, but with different allocations in order 

overweight (underweight) companies that fulfil (do not fulfil) certain criteria. More specifically, we use 

(i) the S&P500 ESG Index, which over-(under-)weights companies that have high (low) ESG scores, 

and (ii) the S&P500 Carbon Efficient Index, which over-(under-)weights companies with a low (high) 

carbon footprint. The last two indexes are (iii) the S&P Global Clean Energy Index, which provides 

investors with exposures to 30 global companies with businesses in clean energy production and 

equipment; and (iv) the S&P Global Water Index, which tracks a portfolio of about 50 global companies 

that do water-related businesses in utilities, infrastructure, equipment and materials.  

Lastly, we take a broader view on risk, expanding beyond standard financial risk measures (e.g. 

volatility), and include (Knightian) uncertainty as well. To reflect risks and uncertainty affecting the 

investment decisions of financial investors in energy stocks, we use the CBOE Volatility index (VIX) 

to proxy for financial markets risk, and the Economic Policy Uncertainty (EPU) index76 developed in 

Baker et al. (2016) for the U.S. The former is the most widely used indicator of financial risk in the 

empirical literature. The latter is a composite index based on the frequency of some relevant keywords 

in leading U.S. newspapers and is available as a daily time-series for U.S. In terms of explaining 

economic dynamics, Baker et al., (2016) show that the EPU is orthogonal to market volatility or risk 

indexes (such as VIX), despite some overlaps and correlation between the two. To refine the content of 

the index, the authors have defined several categorical sub-indexes77 that pertain to different policy 

domains (e.g. monetary, fiscal, trade etc.). Given our research questions, in addition to the more general 

EPU index, and mainly as a robustness check, we use the EPU Regulation index which includes several 

                                                           
75 The main goal of principal component analysis (PCA) in our case is to summarize the correlations among the 16 ‘green’ 

ETFs returns with a smaller set of linear combinations. Considering PCA as an aggregation tool, there is an implicit 

requirement that the ETFs are correlated. Our analysis shows that the correlation between the returns of any two ETFs in our 

list is above 0.4 and statistically significant. 

76 Data and details regarding the methodology are available from www.policyuncertainty.com.  

77 For the complete list of keywords used in the construction of each categorical sub-index, see 

http://www.policyuncertainty.com/categorical_terms.html.  

http://www.policyuncertainty.com/
http://www.policyuncertainty.com/categorical_terms.html
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climate-related terms within its long list of keywords, e.g. carbon tax, drilling restrictions, offshore 

drilling, pollution controls, environmental restrictions, clean air act, clean water act.  

 

4. EMPIRICAL APPROACH 

This section presents our empirical framework, which is divided in two main parts. Firstly, we use 

regressions and data filtering techniques to detect the presence of herding behaviour among the 

constituents of the S&P 500 Energy Index. Secondly, we estimate several VAR models specified in 

herding, uncertainty and risk-return proxies. Finally, we draw our main insights based on impulse 

response functions for herding, oil and ‘green’ assets, and discuss their robustness. 

 

4.1. Herding detection 

We start with herding detection under what has become the common approach in the empirical 

literature, following the seminal paper of Chang et al. (2000). It is standard to use the cross-sectional 

absolute deviation (CSAD) as a proxy for assets’ return dispersion:  

𝐶𝑆𝐴𝐷𝑡 =
∑ |𝑟𝑖,𝑡 − 𝑟𝑚,𝑡|𝑛

𝑖=1

𝑛 − 1
 (1) 

where 𝑟𝑖,𝑡 is the return of asset 𝑖 at time 𝑡, 𝑟𝑚,𝑡 is return on the market portfolio at time 𝑡, and 𝑛 is the 

number of all assets traded on that market.  

Chang et al., (2000) demonstrates that in the presence of herding, the linear relationship that capital 

asset pricing models (CAPM) predict between the dispersion of individual asset returns and the absolute 

market return, |𝑟𝑚|, would be violated. Herding behaviour introduces nonlinearities, as some investors 

may trade closer to the market consensus (i.e. low CSAD values) when faced with extreme market 

moves (i.e. extreme 𝑟𝑚 values). Therefore, herding can be detected in the following model:  

𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1|𝑟𝑚,𝑡| + 𝛽2𝑟𝑚,𝑡
2 + 𝑢𝑡 (2) 

where |𝑟𝑚,𝑡| denotes the absolute value of market returns, 𝑟𝑚,𝑡
2  denotes the squared market returns, 𝛽0, 

𝛽1 and 𝛽2 are coefficients to be estimated, and 𝑢𝑡 is an error term. For herding detection it is sufficient 

to let the market portfolio (used to compute the returns series, 𝑟𝑚,𝑡) simply be an equally weighted 

portfolio constructed from all stocks in our sample, i.e. the constituent stocks of the S&P 500 Energy 

Index.  

The mathematical derivation of eq. (2) implies that the first derivative of cross sectional dispersion 

with respect to the market portfolio is simply a constant term, and that the second derivative is null. 

Therefore, in the absence of herding, the CAPM-based model predicts that variations in market returns 

(in either direction) should be linearly associated with CSAD, demonstrated by a positive and 
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statistically significant 𝛽1 coefficient.78 If herding exists then investors will ignore private information 

and switch from their own strategies to following the market consensus, thus pulling individual asset 

returns towards the market returns. This obscures the linear relationship between CSAD and market 

returns, and it is reflected in a statistically significant and negative 𝛽2 coefficient (see Chang et al., 

2000).  

We estimate eq. (2) with weekly data for the constituent stocks of the S&P 500 Energy Index (see 

section 3). We use OLS, which provides us with consistent estimators, despite larger estimated standard 

errors, to gain some preliminary insights. Table 1 shows that the 𝛽2 coefficient is positive and 

statistically insignificant, and therefore offers no evidence at this point of herding behaviour within the 

constituent stocks of the S&P500 Energy Index. 

 

Table 1. Standard herding model and estimates by OLS 

 𝛽0 𝛽1 𝛽2 

Coefficient  0.364*** 0.182*** 0.013 

Standard error 0.013 0.036 0.017 

Notes: The table presents the results from the estimation of Eq. (2) for the period Jan. 2011 to Dec. 2018, at weekly frequency. 

Newey-West Heteroscedasticity and Autocorrelation consistent (HAC) standard errors are reported below the estimated 

coefficients. The Adjusted R2 of the equation is 0.31. Three stars (***), two stars (**) and one star (*) denote significance at the 

1%, 5% and 10% level, respectively. 

 

Herding has been repeatedly shown to be market-dependent, non-linear, asymmetric and therefore 

essentially time-varying. Several papers have tried to identify what specific market conditions and 

factors, beyond pure volatility, are more likely to be associated with herding towards the market 

consensus. Chang et al. (2000) introduce dummies for up and down markets; Chiang and Zheng (2010), 

Economou et al., (2011) add spill-overs from international markets; Galariotis et al., (2015) and Hwang 

and Salmon (2014) separate between the role of fundamental and non-fundamental factors in driving 

herding; Demirer et al. (2015) include volatility persistency; Yao et al (2014) include traded volume as 

an additional indicator. At this point we prefer not to impose any given model structure, e.g. by adding 

dummies and other explanatory variables, as explained below. 

Given the conditional, non-linear and time-varying nature of herding behaviour, we relax the 

constant coefficient assumption implicit in Eq. (2) and employ a Kalman filter to estimate it. We let 

only 𝛽2 be time-varying and keep the other two coefficients as time-invariant to reflect the linear 

relationship between CSAD and market returns embedded in the CAPM theory. We re-specify eq. (2) 

in state-space form as:  

 

                                                           
78 See Hwang and Salmon (2014) for a model of herding detection when the CAPM does not hold. 
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𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝐶𝑆𝐴𝐷𝑡 = 𝛽′0 + 𝛽′1|𝑟𝑚,𝑡| + 𝛽2,𝑡𝑟𝑚,𝑡
2 + 𝑒𝑡  

𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝛽2,𝑡 = 𝛽2,𝑡−1 + 𝜀𝑡  (3) 

where 𝑒𝑡~𝑁(0, 𝜎2), 𝛽′0 and 𝛽′1 are coefficients, while 𝜀𝑡~𝑁(0, 𝜎𝛽2
2). The filtered time-varying 𝛽2,𝑡 

state will be denoted as our dynamic ‘herding proxy’ in the remaining of the paper, because it reflects 

the time-varying nature of the non-linear relation between cross-sectional dispersion and market 

extreme returns, 𝑟𝑚,𝑡
2 . Although herding is an exceptional market state, a continuous and time-varying 

proxy can help us gain more insights into its potential determinants, without additional assumptions that 

impose a given structure on the estimated equation.  

Estimation of the model given in eq. (3) over the Jan. 2011 – Dec. 2018 sample, using weekly 

observations, leads to statistically significant 𝛽′0 and 𝛽′1, but very close to the values of 𝛽0 and 𝛽1 from 

Table 1, for which reasons we do not report them separately. Figure 1 displays the time-varying 𝛽2,𝑡 

along with its confidence interval set at +/- 2 standard deviations. 

It is important to see our ‘herding proxy’ as reflecting real market phenomena rather than being a 

statistical construct. Our herding proxy generally displays mostly negative (though statistically 

insignificant) values, except some short periods of time at the end of 2015 – beginning of 2016 when it 

becomes positive. Our estimated 𝛽2,𝑡 is significantly negative during most of 2013 and 2014, coinciding 

with a time period when the energy market was peaking and the oil prices were hovering above 100 

USD per barrel; other short periods of negative and significant values for 𝛽2,𝑡 occurred around mid-

2015 and mid-2017. Overall, this observation shows that herding in energy stocks is probably more 

prevalent during rising (or peak) energy stocks and oil prices. This is in line with the recent empirical 

evidence provided in BenMabrouk and Litimi (2018), who find that herding in energy sector is more 

likely during rising rather than declining oil markets. Moreover, given that the market capitalisation 

share of the energy sector in the S&P 500 index is negatively correlated with the business cycle, many 

investors use energy equities and oil for portfolio diversification and protection against recession (i.e. 

macroeconomic) risks. There is also ample evidence on the importance of crude oil as a hedge against 

various other risks, including (geo)political risks (Chkili et al. 2014; Omar et al., 2017; Antonakakis et 

al. 2017); in this context, energy stocks allow portfolio investors not only to gain an exposure to oil as 

a hedge, but also access to (sometimes) substantial dividends and stock buybacks.  
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Figure 1: ‘Herding proxy’ in energy stocks along with S&P 500 Energy and WTI oil prices 

  

Notes: The graph displays the time-varying estimate of 𝛽2,𝑡, i.e. our ‘herding proxy’, as a solid black line along with a 

confidence interval set at +/-2 standard deviations depicted in grey. Sample runs from Apr. 2011 to Dec. 2018, at weekly 

frequency; the first 3 months of 2011 were dropped due to the known erratic behaviour of the filtered states from the Kalman 

filter. The left panel includes the S&P 500 Energy Index in red, while the right panel includes the crude oil prices in USD/barrel 

(on the right hand scale) in red. 

 

We believe our approach to estimating a dynamic ‘herding proxy’ is more data-efficient than the 

existing alternatives, as it allows for more degrees of freedom, and fits some relevant real market 

phenomena. For example, Chiang et al., (2013), Babalos et al., (2015), and Balcilar et al., (2017) 

estimate herding models with time-varying coefficients using complex filtering techniques, but do not 

discuss whether and how their estimates match certain market dynamics or events. In additional, Chang 

et al. (2000) derive their testing model based on the long-run linear relationship between CSAD and 

market return predicted by the CAPM (i.e. constant 𝛽0 and 𝛽1 coefficients); therefore, estimating only 

𝛽2,𝑡 as time-varying is data-efficient and balances the need for a dynamic estimate with the theoretical 

consistency of the original model.  

 

 

4.2. Herding in a multivariate model 

To capture various sources of friction that might be relevant to understanding information cascades and 

herding in the U.S. energy sector, we oppose oil and ‘green’ assets by looking at their returns and 

conditional volatility proxies. To keep things simple, we derive conditional volatility from estimating a 

simple GARCH (1, 1) model specified in weekly returns. For investors, the returns would convey 

information that is relevant from a short-term investing perspective (particularly in trending markets), 

while volatility proxies would carry information about the medium- to long-term portfolio implications.  

While much of the empirical literature concentrates on the impact of volatility (or its proxies) on 

herding behaviour, there is only scarce or less clear evidence available on the inverse relationship. For 

example, using an intraday measure of herding intensity proposed by Patterson and Sharma (2006), 
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Blasco et al. (2012) find that herding impacts positively on the volatility of Spanish stocks. Instead, 

Holmes et al. (2013) show that market volatility impacts negatively on herding, while Litimi et al. 

(2016) and BenSaida (2016) find evidence for U.S. that herding, particularly when trading volume is 

high, reduces aggregate volatility due to the presence of inactive stocks. 

To address the main questions formulated in the introduction, we seek to understand herding and 

thus social learning when investors are facing investment choices that imply trading off an established 

investment strategy (into an old production technology that is oil-dependent) for a new one. To do so, 

we set up a simple VAR model in the following variables: one pair of information-relevant variables 

for each investment option (both oil and ‘green’ assets), the log of VIX, log of EPU, and the estimated 

dynamic ‘herding proxy’ from the previous section (albeit with a negative sign to facilitate 

interpretation). We have included information-rich variables like VIX and EPU indexes as a way to 

filter out market-related and policy-related noise, and thus reflect information from a broader context. 

Compared to other estimation methods (e.g. GARCH-family models for volatility, including 

multivariate specifications), a simple VAR is able to expose the most important linkages and, in the 

same time, to remain flexible in allowing for a larger number of endogenous variables without 

compromising on its inference efficiency. There are 4 or 5 lags (i.e. approximately one month) included 

in all VAR specifications, based on selection criteria and residual autocorrelation tests. All estimated 

VARs are stable, with roots inside the unit circle.  

We choose the equally-weighted portfolio built out of 16 ETFs, henceforth ETF_EQW, as our 

‘green’ proxy in the remaining of this section. All the other 5 ‘green’ proxies described in section 3 are 

used as robustness checks and discussed in the next sub-section.79  

Granger causality tests are a standard check in applied econometrics and can give an overview of 

the existing linkages between variables included in the VAR. We report only the most relevant Granger 

causality results in Table 2 below. To summarize, we find that: (i) conditional volatility in the ‘green’ 

proxy Granger-cause herding in energy stocks; (ii) EPU Granger-causes ‘green’, but not oil conditional 

volatility; and (iii) VIX Granger-cases both conditional volatilities in oil and ’green’ proxy. We do not 

go into more details here, since these results will be discussed later in this section.  

                                                           
79 Appendix B to this chapter provides the summary statistics for oil and ‘green’ returns.  
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Table 2. Selected Granger causality tests  

Panel A:  

Dependent variable DLOG_CRUDEOIL 

Excluded: Chi-square Prob. 

DLOG_ETF_EQW 6.84 0.1442 

LOG(VIX) 0.7257 0.9481 

LOG(EPU) 1.9266 0.7492 

-BETA2 8.8479 0.0650 

  

Dependent variable DLOG_ETF_EQW 

Excluded: Chi-square Prob. 

DLOG_CRUDEOIL 1.3670 0.8499 

LOG(VIX) 3.9260 0.4161 

LOG(EPU) 5.4794 0.2415 

-BETA2 4.6439 0.3258 

  

Dependent variable -BETA2 

Excluded: Chi-square Prob. 

DLOG_CRUDEOIL 0.6466 0.9577 

DLOG_ETF_EQW 3.9377 0.4145 

LOG(VIX) 4.4310 0.3508 

LOG(EPU) 1.5772 0.8129 

Panel B:  

Dependent variable GARCH_CRUDEOIL 

Excluded: Chi-square Prob. 

GARCH_ETF_EQW 11.8774 0.0365 

LOG(VIX) 31.9261 0.0000 

LOG(EPU) 4.1309 0.5307 

-BETA2 18.5617 0.0023 

  

Dependent variable GARCH_ETF_EQW 

Excluded: Chi-square Prob. 

GARCH_CRUDEOIL 10.4965 0.0623 

LOG(VIX) 132.2029 0.0000 

LOG(EPU) 9.3513 0.0958 

-BETA2 23.9310 0.0002 

  

Dependent variable -BETA2 

Excluded: Chi-square Prob. 

GARCH_CRUDEOIL 5.6640 0.3403 

GARCH_ETF_EQW 14.9603 0.0105 

LOG(VIX) 8.7699 0.1186 

LOG(EPU) 2.6793 0.7493 

Notes: For panel A, a 4-lag 5-variable VAR is used, specified in the following variables: weekly WTI crude oil returns denoted 

as DLOG_CRUDEOIL; weekly returns of an equally-weighted portfolio of 16 ‘green’ ETFs, denoted as DLOG_ETF_EQW; 

log of VIX index; log of EPU index; and the negative of the ‘herding proxy’ derived in previous section denoted as -BETA2. 

We report the Chi-square statistics and the associated probability (Prob.) for 4 degrees of freedom. For panel B, a 5-lag 5-

variable VAR is used, specified in the following variables: conditional volatility of WTI crude oil returns denoted as 

GARCH_CRUDEOIL; conditional volatility of an equally-weighted portfolio of 16 ‘green’ ETFs, denoted as 

GARCH_ETF_EQW; log of VIX index; log of EPU index; and the negative of the ‘herding proxy’ derived in the previous 

section, denoted as -BETA2. We report the Chi-square statistics and the associated probability (Prob.) for 5 degrees of 

freedom. Estimation sample for both panels includes weekly observations from Apr. 2011 - Dec. 2018. 
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In terms of identification80, we adopt an agnostic approach and employ generalised impulse response 

functions (or GIRFs) to derive our main insights (see Koop et al., 1996; Pesaran and Shin 1998). We 

believe GIRFs are more appropriate in our case, given that it is hard to impose a-priori restrictions on 

contemporaneous responses or establish a specific ordering in a model featuring fast-moving variables 

like volatilities, along with herding. The GIRFs, however, do not hold any structural interpretation, and 

only provide the average impact expected after a shock.  

 

Figure 2: Selected bootstrapped GIRFs  

Panel A                                                     

 

Panel B 

 

Note: The figure displays the GIRFs with bootstrapped confidence bands (set at +/- 2 standard deviations) and median 

responses to shocks in returns (i.e. DLOG terms) and conditional volatility (i.e. GARCH terms). For panel A, a 4-lag 5-variable 

VAR is used, specified in the following variables: weekly WTI crude oil returns denoted as DLOG_CRUDEOIL; weekly 

returns of an equally-weighted portfolio of 16 ‘green’ ETFs, denoted as DLOG_ETF_EQW; log of VIX index; log of EPU 

index; and the negative of the ‘herding proxy’ derived in the previous section denoted as -BETA2. For panel B, a 5-lag 5-

variable VAR is used, specified in the following variables: conditional volatility of WTI crude oil returns denoted as 

GARCH_CRUDEOIL; conditional volatility of an equally-weighted portfolio of 16 ‘green’ ETFs, denoted as 

GARCH_ETF_EQW; log of VIX index; log of EPU index; and the negative of the ‘herding proxy’ derived in the previous 

section, denoted as -BETA2. Estimation sample for both panels includes weekly observations Apr. 2011 - Dec. 2018. The 

‘herding proxy’ is taken with a negative sign in the VARs, such that an increase in herding is associated with positive values.  

                                                           
80 Structural decomposition methods applied to VAR models designed to study oil and market volatility can be found among 

others in Kilian (2009), Bastianin and Manera (2018). Compared to these studies, our focus is not on identifying structural oil 

shocks, but on analysing the main possible determinants of herding behaviour. 
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Figure 2 provides a selection of the most relevant GIRFs from two VARs, one specified for returns 

and the other one specified for conditional volatility. Given that the VARs include some generated 

regressors (i.e. the conditional volatility, or the GARCH terms, and the herding proxy), robust 

confidence intervals are obtained following Kilian (1998), by bootstrapping the estimated VARs. In 

addition, we use a rather conservative interval of 95% for these confidence bands, or 2 standard 

deviations on either sides of the median impulse responses, in order to draw our main insights.  

Two main results emerge from the analysis of GIRFs, confirming some of our previous insights from 

the Granger causality tests. Firstly, we find that our ‘herding proxy’ does not respond to shocks in 

‘green’ returns, but increases in response to positive shocks in oil returns; given that oil is an established 

investment strategy, into an industry reliant on old production technologies, there is no need for more 

than information on returns. Secondly, our ‘herding proxy’ responds (albeit with a lag that reflects the 

learning process) only to shocks in ‘green’ (but not oil) volatility, which can be best related to the 

medium- and long-term prospects and the quality of the information set available for ‘green’ assets and 

technologies. Therefore, unexpected spikes in ‘green’ assets’ volatility reduce herding intensity 

amongst equity investors, suggesting that some of them might be considering additional information is 

needed before joining the trend. 

What these GIRFs from Figure 2 imply is that unexpected negative oil returns and/or positive spikes 

in ‘green’ volatility might reduce herding intensity among investors in energy equities. The results offer 

a perspective on what type of information is required to resolve uncertainty and ease information 

frictions that are conducive to herding in the first place. Kacperczyk et al., (2016) suggest that skilled 

investors allocate more attention and prefer to learn more about the most uncertain outcomes (see 

Proposition 1);81 in other words, high volatility in ‘green’ assets would incentivize (at least) some 

investors to learn more (i.e. implying less herding) about ‘green’ opportunities. Andrei and Hasler 

(2019) arrive at a similar conclusion in a model where optimal attention represents a non-financial 

allocation in investors’ portfolios. From this perspective, we can interpret herding as a temporary failure 

in allocating attention. While much of the literature surveyed in section 2 suggests that higher volatility 

drives more herding, we provide evidence that an opposite channel might be at work in the ‘green’ 

sector, where higher volatility/uncertainty pushes (at least some) investors towards more learning, and 

therefore less herding. The arrival of better informed investors can break the information cascade and 

reduce herding incidence (Bikhchandani and Sharma, 2000). To summarise, social learning with respect 

to old technologies requires nothing more than information on returns, but newer investment 

opportunities require a better information set in the first place. 

                                                           
81 Grossman and Stiglitz (1980) made a similar prediction much earlier, i.e. when many investors are informed about some 

risk, market prices are being informative, therefore decreasing one’s incentives to learn about the very same risk. 



134 
 

Appendix C at the end of this chapter includes the full set of GIRF derived from the two VARs 

discussed in this section; these plots provide additional evidence in line with our previous Granger 

causality insights where we saw that ‘green’ assets (not oil) are sensitive to policy uncertainty. We find 

that unexpected shocks in EPU lead to higher volatility and lower returns in the case of ‘green’ assets, 

but not in the case of crude oil. In the same time, unexpected VIX shocks drive higher volatility and 

lower returns in both oil and ‘green’ assets. Policy uncertainty is therefore a better indicator than 

financial risk proxies, like VIX, in reflecting the multidimensional nature of risks associated with 

‘green’ investing today. The importance of this result should not be underrated: if policy uncertainty 

drives ‘green’ assets volatility, but not oil volatility, then investors might be able to use oil as a hedge 

against policy uncertainty shocks, and therefore as a hedge for their ‘green’ portfolio allocations against 

policy-related and regulatory changes. This surprising result might thus justify the substantial equity 

shares in big oil companies (e.g. ExxonMobil) reported by some of the biggest ESG funds in U.S. 

Moreover, it is in line with the recent results provided in Andersson et al., (2016), Batten et al., (2018) 

and Engle et al., (2019) regarding the role of oil allocations for financial portfolios that need to hedge 

climate-related risks. 

 

4.3. Robustness  

As robustness checks we implement a series of modifications to the VAR models estimated in the 

previous section. Firstly, we replace the equal-weighted ETF portfolio, ETF_EQW, with each of the 

other 5 ‘green’ proxies mentioned in section 3. Results are qualitatively similar, except for the S&P 

Global Clean Energy Index, where herding responses are not statistically significant based on the 

bootstrapped confidence intervals (set at +/-2 standard deviations around the median response).  

Secondly, we use futures oil prices instead of spot prices. Avery and Zemsky (1998) claim that the 

presence of derivatives makes herding and price bubbles less pronounced as such instruments are better 

at reflecting multidimensional uncertainty. Futures prices provide a link between current prices and the 

expected spot prices after including all relevant uncertainty sources into the price formation process. 

However, in our case herding occurs in a different market segment (i.e. energy equities) than the one 

where we measure volatility (i.e. oil futures market), although the two would be tightly linked. The 

main results remain mostly unchanged, but in addition we find that herding response to an unexpected 

shock in futures oil price volatility is negative (just as in response to a ‘green’ volatility shock); this 

new result validates the interpretation provided in Avery and Zemsky (1998) that derivatives are better 

at reflecting multidimensional uncertainty. Figure D1 in Appendix D provides a selected set of relevant 

GIRFs in this case. 
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Thirdly, we replace EPU with one of its domain-specific sub-indexes, i.e. EPU-Regulation, which 

is expected to be more relevant for the ‘green’ sector given the strong feedbacks between regulation, 

innovation and investing (Mazzucato and Semieniuk, 2018). In addition, we might like to clean EPU 

from those elements that could be unrelated to climate policy and regulatory risks, but instead reflect 

international political crises or conflicts (e.g. U.S. fight against terrorism in Middle East), which are 

known to increase investors’ demand for oil as a hedge (see Omar et al., 2017). Results are qualitatively 

unchanged (see figure D2, Appendix D).  

Fourthly, we re-estimate our herding proxy from section 4.1, eq. (3), this time assuming its dynamics 

follows an autoregressive of order 1, i.e. AR(1), process instead of a unit root, i.e. I(1), process. While 

the persistency of the new estimated state variable, 𝛽2,𝑡, is high and close to 0.9 (statistically significant), 

and the two herding proxies are correlated (i.e. at 0.72), the confidence interval associated with the new 

estimates implies a lack of herding over the sample period. In addition, we believe that the new herding 

proxy is less intuitive and less relevant in terms of matching real market phenomena. However, the 

GIRFs that depict herding responses to ‘green’ and oil shocks are statistically significant, though 

slightly less persistent than in the benchmark case presented in section 4.2 (see Figure D3, in Appendix 

D). Acknowledging that the ‘herding proxy’ remains a model generated variable that might depend on 

specific inference techniques, none of our main findings with respect to herding and social learning are 

affected by the modelling choice adopted for herding persistency.   

Fifthly, we include a 6-th variable in our VAR to reflect mass media coverage of climate-related 

topics, an indicator that complements the market information available to investors from returns or 

volatility proxies. Boykoff et al., (2020) collect data on media coverage from 55 countries, in several 

languages and from different sources, e.g. newspapers, wire services etc.82 The authors show that 

coverage tends to increase around global policy events, such as the United Nations Framework 

Conventions on Climate Change (COPs), or during natural disasters that are most likely to raise 

awareness among the public and investors. Data is provided as a simple count of media news, articles 

and mentions; we remove the upward trend from the data (in order not to bias the results) using a HP 

filter and denote this variable as NEWS. The impulse responses from the extended 6-variable VAR  (see 

Appendix D, Figure D4) confirm the main findings from the previous section, but also show a negative 

response of herding to a positive shock in NEWS. Despite any possible drawbacks that come with such 

(simple count) data, this new result proves that increased media coverage can improve social learning, 

and therefore have a favourable impact on investors’ behaviour with respect to energy stocks – an idea 

in line with our previous discussion.  

                                                           
82 See https://sciencepolicy.colorado.edu/icecaps/research/media_coverage/world/index.html. Data is provided as a simple 

count with no additional transformation, and is available on a monthly frequency since 2004, by source, and by region. We 

use the worldwide aggregated count as our NEWS proxy in the analysis. 

https://sciencepolicy.colorado.edu/icecaps/research/media_coverage/world/index.html
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5. CONCLUSIONS  

Given the current hype associated with ‘green’ investing, and climate change in general, the transition 

to a low-carbon economy entails significant challenges for financial investors trading in energy stocks. 

Whether and how these investors, as a group, learn to deal with various information frictions and to 

navigate through swings in risk appetite and uncertainty is important for their investment choices and 

strategies. Our broader view on risk expands beyond standard financial risk measures, like volatility or 

the common VIX index, to include Knightian uncertainty as well, and particularly policy uncertainty 

(see Baker et al., 2016). In a market context dominated by high risks, uncertainty and information 

frictions, we focus on investors’ herding behaviour, which is associated with situations where social 

learning can lead to significant price distortions. We thus seek to understand investors’ behaviour when 

facing choices that essentially boil down to trading off a conventional investment strategy that is centred 

on oil, for a new one that is ‘greener’, but less predictable.  

We first estimate a proxy for herding towards the market consensus derived from the time-varying 

version of the standard herding detection model of Chang et al., (2000) and next use it to understand 

how herding behaviour in U.S. energy stocks might interact with asset returns, volatility and uncertainty 

proxies. We set up a VAR model and use standard tools such as Granger causality tests and generalised 

impulse response functions to draw conclusions. We find that herding among investors in energy stocks 

responds to ‘green’ volatility shocks, but not to ‘green’ return shocks. In contrast, herding responds to 

shocks in oil returns, but not in oil volatility. Therefore, opting for an investment strategy into an old 

and established technology requires little besides information on returns, but newer investment 

opportunities would require a better information set. This conclusion is further supported by the result 

that, while both oil and ‘green’ assets are sensitive to VIX shocks, only ‘green’ assets are sensitive to 

EPU shocks, which encompass more uncertainty dimensions, spanning across policy-related and 

regulatory realms. The importance of reducing uncertainty and improving information is highlighted 

again in the robustness checks section, where we find that better media coverage of climate-related 

topics can reduce herding in energy sector.  

In the case of ‘green’ assets, uncertainty and information frictions can prevent market prices from 

being fully informative about the associated risk-return trade-offs. This creates a potential for future 

gains because higher uncertainty incentivises (at least some) investors to allocate more attention in 

learning about new risks and opportunities (Kacperczyk et al., 2016; Andrei and Hasler, 2019); such an 

information acquisition behaviour, instead, reduces herding incidence, which can be viewed as a 

(temporary) failure in allocating attention. Our empirical results confirm this interpretation, contributing 

new evidence to the recent booming literature dealing with investors’ attention allocation. 



137 
 

Other implications of our findings concern hedging options, which are important mostly for portfolio 

investors. While negative returns on conventional energy assets, such as oil, might look bad for the 

overall portfolio performance, we find that equity investors herd less and are more likely to refocus and 

search for value within the energy sector itself. In addition, since oil is also used as a hedge against 

various shocks and risks, negative oil returns are can be acceptable for some portfolio investors. When 

it comes to ‘green’ investing, unfortunately, and given that ‘green’ volatility is significantly affected by 

policy uncertainty, investors might have no easy hedge to rely on, except again oil, which appears less 

sensitive to this type of uncertainty. It is not surprising therefore to see that many ‘green’ funds today 

are invested in oil, or holding equity shares in big oil companies. 
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Appendix A  

The list below provides details on all the ‘green’ ETFs included in this paper. All these ‘green’ ETFs 

are traded on the New York Stock Exchange, with the exception of Global Energy Efficient Transport 

Index (PTRP) and Clean Edge Global Wind Energy Index (PWND), which are traded on the Nasdaq 

exchange. Data source is Thomson Reuters Eikon. 

 

Table A1. The list of ‘green’ ETFs used in the empirical section 

Symbol  

(start date) 
Investment objective 

CGW 

(May 2007) 

It replicates the performance of the S&P Global Water Index, which is comprised 

of 50 securities selected based on the relative importance of the global water 

industry within the company’s business model. 

TAN 

(April 2008) 

It replicates the performance of the MAC Global Solar Energy Index, which is 

comprised of 25 securities selected based on the relative importance of the solar 

power within the company’s business model. 

FAN 

(June 2008) 

It replicates the performance of the ISE Global Wind Energy Index, which is 

comprises companies selected based on their actively engagement with the wind 

energy industry, such as the production of distribution of electricity generated by 

wind power, and so on. 

DSI 

(November 2006) 

It replicates the performance of the FTSE KLD 400 Social Index, which provides 

the exposure to companies' common stocks that exhibits positive ESG 

characteristics. 

KLD 

(January 2005) 

It replicates the performance of the FTSE KLD Select Social Index, which 

maximizes the exposure on large capitalization companies that exhibit positive 

ESG characteristics. 

GEX 

(May 2007) 

It replicates the Ardour Global Index, which provides the exposure of publicly 

traded companies that derive over 50% of total revenues from the alternative 

energy industry, in the globe. 

KWT 

(April 2008) 

It replicates the Ardour Solar Energy Index, which shows the exposure to publicly 

traded companies that derive at least 66% of their revenues from solar energy, in 

the global. 

PZD 

(October 2006) 

It replicates the Cleantech Index, which is comprised of companies that produces 

any knowledge-based product, service that improves operation, performance, 

productivity, efficiency, and, meanwhile they reduce costs, inputs, energy 

consumption and pollution. 

PBD 

(June 2007) 

It replicates the WilderHill New Energy Global Innovation Index, which is 

comprised companies that focus on green renewable sources of energy and 

technologies facilitating cleaner energy. 
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PTRP 

(September 2008) 

It replicates the Wilder NASDAQ OMX Global Energy Efficient Transport Index, 

which is comprised companies engaged in societal transition toward using cleaner, 

less costly, and more efficient means of transportation, worldwide. 

PIO 

(June 2007) 

It replicates the Palisades Global Water Index, which is comprised international 

companies engaged with the provision of potable water, the treatment of water and 

the technology/services directly related to global water consumption. 

PWND 

(July 2008) 

It replicates the NASDAQ OMX Clean Edge Global Wind Energy Index, which is 

comprised of companies engaged with the wind energy industry, such as 

manufacturers, developers, distributors, installers and so on.  

PHO 

(December 2005) 

It replicates the Palisades Global Water Index, which is comprised international 

companies engaged with the provision of potable water, the treatment of water and 

the technology/services directly related to global water consumption. 

PBW 

(March 2005) 

It replicates the WilderHill Clean Energy Index, which is comprised of companies 

focusing on green renewable sources of energy and technologies facilitating 

cleaner energy. 

PUW 

(October 2006) 

It replicates the WilderHill Progressive Energy Index, which is comprised of 

companies that exhibit transitional energy technologies. 
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Appendix B 

This Appendix presents the descriptive statistics for crude oil and various ‘green’ assets with respect to 

the S&P 500 Energy Index, which is the benchmark index for energy stocks. 

 

Table B1. Descriptive statistics 

Relative  

returns for: 
Crude oil 

S&P500 

Carbon 
S&P500 ESG 

Global Clean 

Energy 
Global Water ETF_EQW 

 

ETF_PC1 

Mean -0.135758 0.201691 0.199435 -0.120802 0.13068 -0.007396 0.047149 

Median -0.125961 0.19578 0.227077 -0.031001 0.203419 0.054875 0.271420 

Maximum 19.03458 13.06619 13.01171 13.05091 12.72652 11.95351 13.08835 

Minimum -20.5408 -11.32934 -11.45179 -12.4112 -10.3813 -12.11665 -16.91626 

Std. dev. 3.9212 2.734804 2.748969 3.434494 2.773523 2.924592 3.64903 

Skewness -0.226564 0.081546 0.08116 -0.294353 0.166531 -0.34964 -0.75756 

Kurtosis 5.921579 5.708811 5.63433 4.409422 5.070002 4.982961 5.60703 

Jarque-Bera 152.2382 128.2608 121.3252 40.6339 76.56083 77.0013 158.3562 

Observations 418 418 418 418 418 418 418 

 Note: Sample refers to weekly observations between Jan. 2011 and Dec. 2018. All data in the tabel pertains to returns, in log 

terms, and taken with respect to S&P 500 Energy Index, i.e. relative returns. All indicators listed on the top row are described 

in Data section 3. ETF_EQW denotes the equally weighted (in USD terms) portfolio comprising all 16 ETFs mentioned in 

Data section 3; ETF_PC1 denotes the first principal component of the returns series computed from all 16 ETFs. 
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Appendix C 

This appendix displays the bootstrapped GIRFs for the two VARs discussed in section 4.2. Figure C1 

presents the GIRFs from a VAR with oil and ‘green’ returns; figure C2 presents the GIRFs from a VAR 

with oil and ‘green’ conditional volatility. The GIRFs depicted in figure 2 are highlighted with red. 

 

Figure C1. Full set of bootstrapped GIRFs from a VAR with oil and ’green’ returns  

 

Note: The figure displays the bootstrapped GIRFs from a 5-variable VAR specified in the following variables: weekly returns for 

WTI crude oil, denoted as DLOG_CRUDEOIL; weekly returns of an equally-weighted portfolio of 16 ‘green’ ETFs, denoted as 

DLOG_ETF_EQW; log of VIX index; log of EPU index; and the negative of the herding proxy, denoted as -BETA2. Estimation 

sample includes weekly observations from Apr. 2011 to Dec. 2018. A number of 5000 bootstrap replications are used to derive 

median responses along with (+/- 2 standard deviations) confidence bands. 
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Figure C2. Full set of bootstrapped GIRFs from a VAR with oil and ’green’ conditional volatility 

 
Note: The figure displays the bootstrapped GIRFs from a 5-variable VAR specified in the following variables: conditional 

volatility for WTI crude oil denoted as GARCH_CRUDEOIL; conditional volatility of an equally-weighted portfolio of 16 ‘green’ 

ETFs, denoted as GARCH_ETF_EQW; log of VIX index; log of EPU index; and the negative of the herding proxy, denoted as -

BETA2. Estimation sample includes weekly observations from Apr. 2011 to Dec. 2018. A number of 5000 bootstrap replications 

are used to derive median responses along with (+/- 2 standard deviations) confidence bands. 
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Appendix D 

This appendix presents the bootstrapped GIRFs for some of the VARs discussed in section 4.3. 

  

Figure D1. Selected bootstrapped GIRFs from VARs with spot crude and futures oil 

Panel A 

 

 
Panel B 

 
Note: The figure displays the GIRFs with bootstrapped confidence bands and median responses to shocks in returns (i.e. 

DLOG terms) and conditional volatilities (i.e. GARCH terms). For panel A, a 5-variable VAR is estimated, specified in the 

following variables: weekly returns for WTI crude or futures oil; weekly returns for an equally-weighted portfolio of 16 ‘green’ 

ETFs; log of VIX index; log of EPU index; and the negative of the herding proxy, denoted as -BETA2. For panel B, a 5-

variable VAR is estimated, specified in the following variables: conditional volatility of WTI crude or futures oil; conditional 

volatility of an equally-weighted portfolio of 16 ‘green’ ETFs; log of EPU index; and the negative of the herding proxy, 

denoted as -BETA2. In black, the VAR includes spot crude oil; in red, the VAR includes futures oil. The herding proxy is 

always taken with a negative sign in the VARs, such that an increase in herding is associated with positive values. Estimation 

sample includes weekly observations from Apr. 2011 to Dec. 2018. A number of 5000 bootstrap replications are used to derive 

median responses along with (+/- 2 standard deviations) confidence bands. 
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Figure D2. Selected bootstrapped GIRFs from VARs with EPU index and EPU Regulation sub-index 

Panel A 

 
 

Panel B 

 
Note: The figure displays the GIRFs with bootstrapped confidence bands and median responses to shocks in returns (i.e. 

DLOG terms) and conditional volatilities (i.e. GARCH terms). For panel A, a 5-variable VAR is estimated, specified in the 

following variables: weekly returns for WTI crude oil; weekly returns for an equally-weighted portfolio of 16 ‘green’ ETFs; 

log of VIX index; log of EPU index or EPU Regulation sub-index; and the negative of the herding proxy, denoted as -BETA2. 

For panel B, a 5-variable VAR is estimated, specified in the following variables: conditional volatility for WTI crude oil; 

conditional volatility of an equally-weighted portfolio of 16 ‘green’ ETFs; log of EPU index or EPU Regulation sub-index; 

and the negative of the herding proxy, denoted as -BETA2. In black, the VAR includes the log of EPU index; in red, the VAR 

includes the EPU Regulation sub-index. The herding proxy is always taken with a negative sign in the VARs, such that an 

increase in herding is associated with positive values. Estimation sample includes weekly observations from Apr. 2011 to Dec. 

2018. A number of 5000 bootstrap replications are used to derive median responses along with (+/- 2 standard deviations) 

confidence bands. 
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Figure D3. Selected bootstrapped GIRFs from VARs with the herding proxy filtered out both as AR(1) 

and I(1) processes  

Panel A 

 
Panel B 

 
Note: The figure displays the GIRFs with bootstrapped confidence bands and median responses to shocks in returns (i.e. 

DLOG terms) and conditional volatilities (i.e. GARCH terms). For panel A, a 5-variable VAR is estimated, specified in the 

following variables: weekly returns for WTI crude oil; weekly returns for an equally-weighted portfolio of 16 ‘green’ ETFs; 

log of VIX index; log of EPU index; and the negative of the herding proxy. For panel B, a 5-variable VAR is estimated, 

specified in the following variables: conditional volatility for WTI crude oil; conditional volatility of an equally-weighted 

portfolio of 16 ‘green’ ETFs; log of EPU index; and the negative of the herding proxy. In black, the VAR includes the herding 

proxy filtered out as a unit root process, or I(1), as in section 4.1 (thus corresponding to Figure 2 in the main text); in red, the 

VAR includes the herding proxy filtered out as an AR(1) process. The herding proxy is always taken with a negative sign in 

the VARs, such that an increase in herding is associated with positive values. Estimation sample includes weekly observations 

from Apr. 2011 to Dec. 2018. A number of 5000 bootstrap replications are used to derive median responses along with (+/- 2 

standard deviations) confidence bands. 

 

 

  



150 
 

Figure D4. Bootstrapped GIRFs from a 5-variable and 6-variable VAR including the NEWS variable 

Panel A 

 
Panel B 

 
Note: The figure displays the GIRFs with bootstrapped confidence bands and median responses to shocks in returns (i.e. 

DLOG terms), conditional volatilities (i.e. GARCH terms) and media coverage of climate-related topics – a variable we denote 

as NEWS. For panel A, a 5-variable VAR and a 6-variable VAR are estimated, where the latter additionally includes the 

NEWS variable; both VARs share the following variables: weekly WTI crude oil returns; weekly returns for an equally-

weighted portfolio of 16 ‘green’ ETFs; log of VIX index; log of EPU index; and the negative of the herding proxy denoted as 

-BETA2. For panel B, a 5-variable VAR and a 6-variable VAR are estimated, where the latter additionally includes the NEWS 

variable; both VARs share the following variables: conditional volatility for WTI crude oil; conditional volatility of an equally 

weighted portfolio of 16 ‘green’ ETFs; log of VIX index; log of EPU index; and the negative of the herding proxy denoted as 

-BETA2. In black, we display the GIRFs from the 5-variables VAR (thus corresponding to Figure 2 in the main text); in red, 

we display the GIRFs from the 6-variable VAR, which includes the NEWS variable. The herding proxy is always taken with 

a negative sign in the VARs, such that an increase in herding is associated with positive values. Estimation sample includes 

weekly observations from Apr. 2011 to Dec. 2018. A number of 5000 bootstrap replications are used to derive median 

responses along with (+/- 2 standard deviations) confidence bands. 
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