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Abstract

IMPORTANCE The diagnosis of rare diseases and other genetic conditions can be daunting due to
vague or poorly defined clinical features that are not recognized even by experienced clinicians.
Next-generation sequencing technologies, such as whole-genome sequencing (WGS) and whole-
exome sequencing (WES), have greatly enhanced the diagnosis of genetic diseases by expanding the
ability to sequence a large part of the genome, rendering a cost-effectiveness comparison between
them necessary.

OBJECTIVE To assess the cost-effectiveness of WGS compared with WES and conventional testing
in children with suspected genetic disorders.

DESIGN, SETTING, AND PARTICIPANTS In this economic evaluation, a bayesian Markov model was
implemented from January 1 to June 30, 2023. The model was developed using data from a cohort
of 870 pediatric patients with suspected genetic disorders who were enrolled and underwent testing
in the Ospedale Pediatrico Bambino Gesù, Rome, Italy, from January 1, 2015, to December 31, 2022.
The robustness of the model was assessed through probabilistic sensitivity analysis and value of
information analysis.

MAIN OUTCOMES AND MEASURES Overall costs, number of definitive diagnoses, and incremental
cost-effectiveness ratios per diagnosis were measured. The cost-effectiveness analyses involved 4
comparisons: first-tier WGS with standard of care; first-tier WGS with first-tier WES; first-tier WGS
with second-tier WES; and first-tier WGS with second-tier WGS.

RESULTS The ages of the 870 participants ranged from 0 to 18 years (539 [62%] girls). The results
of the analysis suggested that adopting WGS as a first-tier strategy would be cost-effective compared
with all other explored options. For all threshold levels above €29 800 (US $32 408) per diagnosis
that were tested up to €50 000 (US $54 375) per diagnosis, first-line WGS vs second-line WES
strategy (ie, 54.6%) had the highest probability of being cost-effective, followed by first-line vs
second-line WGS (ie, 54.3%), first-line WGS vs the standard of care alternative (ie, 53.2%), and first-
line WGS vs first-line WES (ie, 51.1%). Based on sensitivity analyses, these estimates remained robust
to assumptions and parameter uncertainty.

CONCLUSIONS AND RELEVANCE The findings of this economic evaluation encourage the
development of policy changes at various levels (ie, macro, meso, and micro) of international health
systems to ensure an efficient adoption of WGS in clinical practice and its equitable access.
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Key Points
Question Is whole-genome sequencing

(WGS) more cost-effective than

whole-exome sequencing for children

with suspected genetic disorders?

Findings The results of this economic

evaluation of a cohort of 870 pediatric

patients suggest that adopting WGS as a

first-tier strategy would be cost-

effective at a willingness-to-pay

threshold of €30 000 to €50 000 (US

$32 625-$54 375), specifically for the

diagnosis of severely ill infants with

suspected genetic disorders.

Meaning These findings suggest that

wider use of WGS may minimize

diagnostic delays and facilitate timely

implementation of appropriate

treatments.
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Introduction

Pediatric rare diseases, typically resulting from genetic variations,1 can emerge from before birth to
childhood, posing notable clinical challenges. First, diagnosing rare diseases and other genetic
conditions can be daunting due to vague or poorly defined clinical symptoms or lack of knowledge
around many disorders as well as around the extension and functional impact of genetic variations.2

Conventional diagnostic tests typically involve sequential single-gene analysis,3 while for many
heterogeneous clinical conditions, multigene panels or genome-wide sequencing methods are
necessary to identify the causative variations.4 Various factors greatly complicate diagnosing rare
diseases in the pediatric population, such as the considerable number of disease-associated genes,
the absence of pathognomonic features or signs, and the heterogeneous nature of the underlying
pathogenic changes.5 The process is often lengthy, requires prompt recognition of suggestive
features and timely referral to different specialists,6 and may require multiple attempts.

Next-generation sequencing (NGS) technologies have greatly enhanced the diagnosis of genetic
diseases by expanding the ability to sequence large parts of the genome.7 Whole-exome sequencing
(WES) analyzes protein-coding sections of the genome, while whole-genome sequencing (WGS)
analyzes both coding and noncoding regions. Both WES and WGS are increasing the diagnostic rate
in children with suspected genetic disorders, helping to minimize diagnostic delays and facilitate the
timely initiation of appropriate treatments. Moreover, they are more efficient in identifying genetic
diseases and offer higher clinical utility.8,9 Of note, the increasing number of diagnoses must be
balanced against false-positive rates, especially for disorders where genetic testing identifies the risk
of developing the disease rather than detecting the disease. Despite known benefits of WES, WGS
adoption lags due to complexity and cost, intensifying health burdens and family strains.10,11

Diseases contributing to the US health care costs of $4.6 to $17.5 billion represent 12% to 47%
of children’s inpatient care expenses. In 2019, rare diseases cost US $966 billion, with 57%
nonmedical and 43% direct medical expenses.12,13 To date, a limited number of studies14,15 have
investigated the cost-effectiveness of WGS and WES in pediatric populations with potential genetic
disorders, but they have shown encouraging results. Therefore, this study estimates the cost-
effectiveness of WGS compared with WES and conventional testing in children with suspected
genetic disorders over their lifetime. The main methodological contribution of our report estimates a
bayesian Markov model. The main advantage of this method is the possibility of combining it with
Markov chain Monte Carlo (MCMC) algorithms to perform the probabilistic sensitivity analysis (PSA).
In this way, convergence to the target distribution of interest, that is, the posterior distribution of
costs and effects, is guaranteed and can be tested with diagnostic tools.

Methods

This economic evaluation followed the Consolidated Health Economic Evaluation Reporting
Standards (CHEERS) reporting guideline. Ethical review and approval were obtained from the
Institutional Review Board of Ospedale Pediatrico Bambino Gesù (OPBG), Rome, Italy, and written
informed consent was obtained from participants or guardians. The analysis was performed
according to the perspective of the Italian National Health Service (NHS).

Target Population
In this model, 870 patients (aged 0-18 years) suspected of having a rare genetic disease, but still
undiagnosed, were consecutively enrolled and underwent testing in the OPBG’s Undiagnosed
Patients Program between January 1, 2015, and December 31, 2022. Clinical suspicion for each
patient was based on results of a multidisciplinary evaluation, including craniofacial appearance,
anthropometric measurements, and a detailed clinical appraisal on a case-to-case basis. This process
guided the selection of WES or WGS analyses based on clinical spectrum and/or results of previously
performed testing.
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The patients were seeking evaluations for varied clinical presentations, including
encephalopathy, epilepsy, and syndromic intellectual disabilities. Those diagnosed prenatally (eg,
trisomy 21) or at birth (eg, cystic fibrosis) or needing single-gene tests (eg, neurofibromatosis) were
excluded. The clinical pathway was retrieved using the scientific literature. Briefly, after consultation
with medical specialists in the pediatric field, if clinical conditions were suggestive, patients were
referred to a genetic specialist who performed genetic consultation and chose the genomic test.16

Overall, 300 patients received the standard of care (SOC); 480, WES; and 90, WGS.

Intervention and Comparators
The cost-effectiveness model focused on comparing first-tier WGS, the intervention evaluated in the
analysis, with 4 comparators: SOC, first-tier WES, second-tier WES, and second-tier WGS. In this
study, SOC referred to the combination of standard genetic tests and diagnostic investigations
commonly used in routine clinical practice, such as single-gene panels, multigene panels,
chromosomal microarray (CMA), and karyotype. Whole-exome sequencing was not considered part
of the standard diagnostic workup. A first-tier test was defined as the first diagnostic test usually
used when a patient without a diagnosis visits the hospital.

Time Horizon, Currency, Discount Rate, and Threshold
Within our Markov simulation, the time horizon was divided into several discrete periods known as
Markov cycles. Sixty cycles, each of annual length, were chosen as the period. Based on the
guidelines provided by the National Institute for Health and Care Excellence17 and children’s clinical
features, the selected timeframe could be sufficient for evaluating intervention benefits; in fact,
some genetic disorders may cause severe, life-threatening complications that shorten their life
expectancy.18-21 All costs are presented in 2022 euros (€) and US dollars (US $), adjusted using
historical exchange rates22 and the Consumer Price Index.23 The conversion factor was 1.0875 (ie,
€1 = US $1.0875). A discount rate of 3% per year was applied to both costs and effects.24,25 To guide
the decision-making process on the endorsed alternative, the Eurozone threshold, which ranges
between €30 000 and €50 000 (US $32 625-$54 375), was used.

Type of Model
A bayesian Markov model was set up. Figure 1 displays the model, depicting all the Markov states.

Figure 1. Markov Model Structure
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standard genetic test or next-generation sequencing
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potentially a different clinical management, a
definitive diagnosis with no different clinical
management, or remain without a definite diagnosis.
In case of a multistep strategy (ie, second-line whole-
genome sequencing or second-line whole-exome
sequencing), undiagnosed patients undergo a second
test, namely NGS, which can be diagnostic and may or
may not be followed by a change in clinical
management or remain undiagnosed.
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On first contact in a symptomatic health state, individuals with potential genetic disorders
undergo genetic tests, either standard or NGS based on the strategy. Subsequently, they might be
diagnosed with or without altered clinical management or remain undiagnosed. In multistep
strategies including second-line WES or WGS, undiagnosed patients receive another NGS test,
potentially leading to a diagnosis with potential management changes or continued uncertainty. The
bayesian model presents a comprehensive probability distribution for a dichotomic outcome, θ = (c,
e), consisting of potential combinations of costs and effects. Additional information about the
inference is found in the eMethods in Supplement 1.

Model Inputs
Transition probabilities for diagnosis were sourced from the OPBG’s records. Clinical management
change probabilities came from scientific literature. The model incorporated only direct costs. Clinical
geneticists retrospectively reviewed all procedures using the hospital’s information system.
Diagnostic, management, and therapeutic costs, including initial and continued care, were evaluated.
Testing costs followed Italian NHS tariffs. The cost differences associated with each pathway arose
from the consumable costs and the capacity to analyze multiple samples concurrently using identical
equipment, such as the sequencing chip. In particular, the SOC analysis allowed for the examination
of 96 samples with a single chip, the WES analysis accommodated 24 samples, and the WGS analysis
was limited to a single sample per chip. Additionally, there were differences in data analysis costs,
quantified in economic terms as personnel expenses, representing the human resource hours
dedicated to each analysis. Differences also involved the training costs required for the personnel
engaged in genomic analysis. Care costs were estimated according to resource use and costs
attached to them. Post-WES or post-WGS procedure costs, as well as diagnostic odyssey costs, were
drawn from scientific literature. The diagnostic odyssey for patients with a suspected genetic
disorder was defined as a complex and often prolonged journey of medical evaluations and testing to
identify the underlying genetic cause of their symptoms.

International agencies and scientific evidence26,27 suggest the use of the quality-adjusted life-
year (QALY)28,29 for its standardization, promoting broader comparisons of medical technologies
and resource allocation. However, when evaluating genomic technologies, QALY is infrequently used
due to its data requirements and shortcomings30; it overlooks outcomes such as personal utility and
family spillover effects.31-33 Given patient population and care pathway diversity, QALY impacts were
not collected. Instead, diagnostic yield was the primary outcome, being a prevalent measure in WGS
studies.8,9,34 This choice stemmed from a lack of strong data to determine QALYs from clinical
management shifts35 since no follow-up was available. The analysis excluded outcomes related to
family, although costs of WES and WGS incorporated confirmatory and trio testing with parents.
Table 1 depicts the parameters used in the base case analysis for each strategy.8,27,36-39

Model Outcomes
The primary outcomes of the economic model encompassed the number of diagnoses and the
expected costs. The projected cost for each Markov cycle was determined by multiplying the cost by
the quantity of resources required during the patient’s duration in a specified health state.
Comparing the 2 interventions allowed for the calculation of the incremental cost-effectiveness ratio
(ICER) and net monetary benefits for the investigated testing strategies.

Statistical Analysis
To tackle uncertainty related to the calculated outcomes, a PSA was performed. A specific
distribution was assigned to each parameter: a beta distribution was applied for diagnostic yields and
changes in clinical management, while costs were characterized by a log-normal distribution. In the
robustness analysis, costs related to change in clinical management after diagnosis were considered.
This information is not widely available in the scientific literature, and the available studies are
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focused on specific populations.27,36,37 Therefore, a uniform distribution, defined over a large interval
of values, was used to reflect its uncertainty.

These distributions match prior researchers’ knowledge about the model parameters. The
log-normal or the beta distribution are the informative priors, that is, they assign higher probabilities
to values close to the mean. The uniform distribution is, instead, a vague prior since it provides equal
probabilities to each value in the specified intervals. Table 1 lists an extensive list of model parameters
along with the distributions used in the PSA.

In the PSA, the Gibbs algorithm was used to perform 100 000 MCMC simulations, which
entailed drawing random sets of parameter values from the associated probability distributions for
each model parameter and subsequently calculating incremental costs, incremental effectiveness,
and ICERs for each set. Additional information about how findings were presented is provided in the
eMethods in Supplement 1.

Data were analyzed from January 1 to June 30, 2023. All analyses were run using R software,
version 4.2.3 (R Project for Statistical Computing).

Results

Base Case Results
A total of 870 patients were included in the analysis (331 [38%] boys and 539 [62%] girls). As
expected, the SOC testing strategy had both the lowest costs and the lowest diagnostic yield for the
target population. The base case findings showed that considering the chosen threshold of €30 000
to €50 000 (US $32 625-$54 375) per additional diagnosis, first-line WGS would be a cost-effective
strategy compared with SOC (ICER of €24 824 [95% CI, €23 255-€26 615] [US $26 996 (95% CI,
$25 290-$28 944)]), first-line WES (ICER of €29 728 [95% CI, €20 609-€53 171] [US $32 329 (95%
CI, $22 412-$57 823)]), second-line WES (ICER of €22 127 [95% CI, €18 806-€26 863] [US $24 063
(95% CI, $20 452-$29 214)]), or second-line WGS (ICER of €21 458 [95% CI, €15 075-€37 192] [US

Table 1. List of Parameters Used in the Economic Model

Model parameter Base estimatea Distribution Source
Diagnostic yield following testing strategy

First-line SOC 0.43b Beta Hospital data

First-line WES 0.58b Beta Hospital data

First-line WGS 0.64b Beta Hospital data

Change in clinical management SOC 0.06 Beta Clark et al,8 2018

Change in clinical management WES 0.17 Beta Clark et al,8 2018

Change in clinical management WGS 0.27 Beta Clark et al,8 2018

Costs

First contact, access, and continuity of
care (SOC)

€29 870 (US $32 484)c Log-normald Hospital data

First contact, access, and continuity of
care (WES)

€61 704 (US $67 103)c Log-normald Hospital data

First contact, access, and continuity of
care (WGS)

€79 170 (US $86 097)c Log-normald Hospital data

SOC testing €450 (US $489)e Log-normald Hospital data

WES testing €1800 (US $1958)e Log-normald Hospital data

WGS testing €3700 (US $4024)e Log-normald Hospital data

Change in clinical management SOC €4241 (US $4612) Uniform Greely et al,36 2011

Change in clinical management WES €9611 (US $10 452) Uniform Stark et al,27 2019

Change in clinical management WGS €15 785 (US $17 166) Uniform Farnaes et al,37 2018

After WES or WGS testing costs with
diagnosis

€92 (US $100) Log-normald Lavelle et al,38 2022

After WES or WGS testing costs without
diagnosis

€162 (US $176) Log-normald Lavelle et al,38 2022

Diagnostic odyssey €2375 (US $2583) Log-normald Radio et al,39 2019

Abbreviations: SOC, standard of care; WES, whole-
exome sequencing; WGS, whole-genome sequencing.
a These estimates are calculated on a yearly basis.
b The hospital cohorts of 300 pediatric patients

associated with SOC, 480 with WES, and 90 with
WGS testing strategies were used to estimate
diagnostic yield.

c The accounted costs encompass those generated
from diagnostic, management, and therapeutic
procedures.

d Specification of log-normal distributions is made by
the lower and upper limits of the 95% CIs.

e Costs related to the testing strategies also include
labor, supplies, bioinformatics, and equipment
expenses.
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$23 336 (95% CI, $16 394-$40 446)]) per added diagnosis. Table 2 lists the mean discounted costs,
discounted effectiveness, and the base case results for the simulated cohort.

Sensitivity Analysis
Figure 2 depicts the cost-effectiveness plan confirming the robustness of the initial findings
considering the chosen threshold. Furthermore, contour plots revealed that 63% of the simulated
points for SOC, 54% for WES, 64% for second-line WES, and 63% for second-line WGS testing
strategies lay in the northeast quadrant of the cost-effectiveness plane, where WGS is characterized
by higher effectiveness and higher costs with respect to the other alternatives (eFigures 1-4 in
Supplement 1).

eFigures 5 and 6 in Supplement 1 depict the cost-effectiveness acceptability curve and the cost-
effectiveness acceptability frontier curve, respectively. Our findings highlight that SOC was the
optimal decision for a willingness-to-pay (WTP) threshold lower than €23 300 (US $25 339) per
diagnosis, while WES was optimal for a WTP threshold between €23 300 and €29 800 (US $32 408)
per diagnosis. For all WTP levels above €29 800 per diagnosis that were tested up to €50 000 (US
$54 375) per diagnosis, first-line WGS vs second-line WES (ie, 54.6%) had the highest probability of
being cost-effective, followed by first-line WGS vs second-line WGS (ie, 54.3%), first-line WGS vs
SOC (ie, 53.2%), and first-line WGS vs first-line WES (ie, 51.1%). As shown in eFigure 7 in
Supplement 1, expected incremental benefit values were positive for all testing strategies at a WTP
of €23 300 (US $25 339), equaling 145 161 for first-line WGS vs SOC, 28 970 for first-line WGS vs first-
line WES, 162 539 for first-line WGS vs second-line WES, and 160 330 for first-line WGS vs second-
line WGS.

Value of Information Analysis
Based on the PSA simulations, the expected value of partially perfect information per patient
amounted to €880 982 (US $958 068) on a WTP threshold of €50 000 (US $54 375) per diagnosis
(Figure 3). The value decreased to €560 235 (US $609 256) considering a WTP threshold of
€30 000 (US $32 625) per diagnosis. Additional findings are provided in the eResults and eFigures 8
to 11 in Supplement 1.

Robustness Analysis Including Costs of Change in Clinical Management
Robustness analysis findings are provided in the eResults and eTable 1 in Supplement 1. Including the
costs of change in management, using first-line WGS would be a cost-effective strategy compared
with the other strategies.

Diagnostic Performance for MCMC Simulation
Overall, the MCMC simulation performed optimally with chains achieving convergence, impressive
effective sample sizes, and accurately derived posterior distributions, thereby enhancing trust in the
accuracy and consistency of results. Additional details are reported in the eResults, eFigures 12 to
58, and eTable 2 in Supplement 1.

Discussion

Our data suggest that WGS is cost-effective for diagnosing infants with potential genetic disorders at
a WTP threshold of €30 000 to €50 000 (US $32 625-$54 375). Our findings contribute to previous
studies exploring the cost-effectiveness of WGS15 and WES.40-42 Runheim et al15 discussed the
cost-effectiveness of WGS vs CMA as first-line strategies in diagnosing rare diseases (ie,
neurodevelopmental disorders) in children and infants. The mean health care cost per patient in the
cohort undergoing WGS was US $2339 lower (95% CI, −$12 238 to $7561) compared with the one
receiving CMA, respectively, with US $2330 in lower costs for outpatient care (95% CI, −$3992 to
−$669), besides showing a higher diagnostic yield (CMA, 20.1%; WGS, 24.7%).15 Another study43
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highlighted WGS’s economic superiority and diagnostic yield over WES (WGS, 54%; WES, 41%) for
mendelian disorders. Additional research44 echoes our findings, emphasizing the cost-effectiveness
of first-line WGS for ill children. Despite a different modeling approach, their cost-effectiveness
findings (ICER of US $15 904) corroborate our results.44 A 2018 review34 showcased health
economics of WGS and WES, highlighting children as the primary study participants and revealing 2
distinct cost (from US $555 to $5169 for WES and from US $1906 to $24 810 for WGS) and diagnostic
yield (from 3% to 79% for WES and from 17% to 73% for WGS) ranges. The cost-effectiveness of WGS
over WES was demonstrated through a pooled assessment of their incremental net benefits,45 while
Clark et al8 demonstrated that the cumulative diagnostic yield of WGS (ie, 41%) surpassed that of
WES (ie, 36%) and SOC (ie, 10%).

In a pivotal moment, Italy’s pace in reimbursing genomic sequencing, especially WGS, trails
behind. Despite its elevated costs and modest clinical gains, WGS’s adoption lags compared with
WES,34 contrasting with American College of Medical Genetics and Genomics’ pediatric
recommendations.46

This study informs nuanced decision-making throughout the health care landscape. At the
macro level, defining an ad hoc diagnosis related group tariff could encompass the cases in which
WGS has been demonstrated to be cost-effective as a first-line test. Furthermore, genomic policies
are needed to properly regulate and guarantee the provision and sustainability of WGS within the
health care services; patients with suspected genetic diseases often experience a diagnostic odyssey,
with long periods of uncertainty, leading to poor quality of life and clinical outcomes.47 Involved
infrastructures should ensure cross-communication and collaboration among all levels of assistance
(ie, tertiary, secondary, and primary care facilities) to streamline the diagnostic workflow and to
ensure access to and continuity of care for pediatric patients with suspected genetic disorders.

Figure 2. Cost-Effectiveness Plane From Probabilistic Sensitivity Analysis
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investigated alternatives. Incremental means the difference between the 2 options, for
example, the difference between whole-genome sequencing (WGS) and standard of care

(SOC). The dark blue, light blue, gray, and orange dots are individual simulations coming
from probabilistic sensitivity analysis; the red dots represent the incremental cost-
effectiveness ratios. The area to the right of the vertical line represents the cost-effective
region. WES indicates whole-exome sequencing.
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At the meso level, local health units should manage procurement and surveillance of WGS
implementation to guarantee its efficient adoption and to monitor its impact on health outcomes. At
the micro level, advancing genomic awareness of rare diseases among health professionals using
WGS is crucial to enhance individual medical knowledge and to ameliorate personalized health care
services. Last, at the nano level, promoting awareness about rare diseases among patients and
caregivers can enhance understanding of symptoms and available tests, boosting engagement and
compliance.

Limitations
This study has some limitations. Effectiveness was gauged via clinical outcomes, not QALYs, making
cost-effectiveness interpretation and comparison challenging. Other studies, focusing on follow-up
and longer-term impact of genomic sequencing for rare disease diagnoses, have adopted QALYs as a
main outcome measure.26,27

Although reanalysis of WES data might improve the diagnostic yield,48 the model did not
include it, as it is not yet a standard procedure in Italy.49 Incorporating this factor could increase WES
and WGS costs relative to standard practices, yet it could be cost-effective compared with a single-
analysis WES or WGS. The rationale may be due to the reduced cost of reanalysis and its likelihood of
making further diagnoses. Another limit was overlooking that WGS or WES might reveal incidental
findings, which might enhance their estimated cost-effectiveness. A prior study50 has shown that
despite increasing costs, reporting incidental findings also improves health benefits. Nevertheless,
geneticists debate about whether parents should be informed about incidental findings in their
children relating to adulthood-onset diseases.51 Other constraints were the unavailability of Italian
primary data for some cost parameters, requiring us to use estimates from Canada and the US, and
not including mortality as an absorbing health state. Current data on pediatric mortality rates in
genetic disorders is limited and heterogeneous, affecting model accuracy. Our analysis overlooks
additional efforts required for variant interpretation in noncoding regions with WGS compared with
WES and SOC. Despite 85% of pathogenic genetic variants being exonic,52 WGS uncovers numerous
noncoding, yet unknown, region variants that are daunting to interpret due to the dearth of data to
categorize them. Additionally, omitting data storage needs for WGS and WES is another potential

Figure 3. Population Expected Value of Perfect Information (EVPI) Curve
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limitation given WGS’s resource-intensive demands.34 The analysis did not include structural
rearrangements analyses costs, which are more often necessary after WES than WGS.16,53

Conclusions

The findings of this economic evaluation suggest that further cost-effectiveness analyses should
include modeling societal costs (and not only direct costs) and mortality due to rare diseases in the
pediatric population with suspected genetic disorders by adding the related absorbing health state in
the model. Moreover, in planning future primary research projects, change in management should
be included among the main outcomes to allow estimation of the costs associated with it within the
diagnostic workflow. This study champions WGS over WES as a first-tier diagnostic strategy for its
cost-effectiveness, especially for children with suspected rare diseases. Italy’s NHS needs policy
shifts for efficient WGS adoption that are reinforced by further clinical and economic evidence.
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