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Abstract: The increasing sophistication of cyberattacks necessitates the development of advanced
detection systems capable of accurately identifying and mitigating potential threats. This research
addresses the critical challenge of cyberattack detection by employing a comprehensive approach
that includes generating a realistic yet imbalanced dataset simulating various types of cyberattacks.
Recognizing the inherent limitations posed by imbalanced data, we explored multiple data aug-
mentation techniques to enhance the model’s learning effectiveness and ensure robust performance
across different attack scenarios. Firstly, we constructed a detailed dataset reflecting real-world
conditions of network intrusions by simulating a range of cyberattack types, ensuring it embodies
the typical imbalances observed in genuine cybersecurity threats. Subsequently, we applied sev-
eral data augmentation techniques, including SMOTE and ADASYN, to address the skew in class
distribution, thereby providing a more balanced dataset for training supervised machine learning
models. Our evaluation of these techniques across various models, such as Random Forests and
Neural Networks, demonstrates significant improvements in detection capabilities. Moreover, the
analysis also extends to the investigation of feature importance, providing critical insights into which
attributes most significantly influence the predictive outcomes of the models. This not only enhances
the interpretability of the models but also aids in refining feature engineering and selection processes
to optimize performance.
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1. Introduction

The National Institute of Standards and Technology (NIST www.nist.gov/cybersecurity
accessed on 1 June 2024) provides multiple definitions of cybersecurity, which may be col-
lectively synthesized into a singular principle: cybersecurity entails the implementation of
protective measures and controls designed to prevent harm and secure information stored
in computer systems or transmitted through communication networks. This practice is
paramount to ensure the availability, integrity, and confidentiality of information.

A report by the European Union Agency for Cybersecurity (ENISA www.enisa.europa.
eu/publications/enisa-threat-landscape-2022 accessed on 15 June 2024) underscores a
significant augmentation in cyberattacks toward the end of 2022 and into the initial half
of 2023. The ongoing Russian invasion of Ukraine is pinpointed as a primary catalyst for
this uptick. Additionally, the report identifies eight major threat groups, highlighting the
dynamic and evolving nature of cyber threats.

Threats against data are categorized into data leaks and data breaches, which differ
primarily in the intent behind the exposure. A data leak is usually an unintentional exposure
due to human error or system vulnerabilities, whereas a data breach is a deliberate attack
aimed at stealing information.

Threats against availability include Denial of Service (DoS) attacks, which disrupt
normal operations by overwhelming systems or networks with excessive traffic, typically
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originating from multiple sources. Additionally, internet threats comprise a range of
deliberate or accidental disruptions to electronic communications, leading to outages,
blackouts, shutdowns, or censorship caused by various factors including government
actions, natural disasters, or cyberattacks. Information manipulation involves actions that
influence values, procedures, and political processes, often with a manipulative agenda.
While not always illegal, these actions pose significant threats by potentially undermining
democratic principles, destabilizing societies, and eroding institutional trust. Supply chain
attacks represent sophisticated cyberattacks targeting the interconnected relationships
between organizations and their suppliers. These attacks can involve malicious code in
software updates or hardware components, compromised supplier credentials, or exploited
third-party service or product vulnerabilities.

Machine learning (ML) plays a crucial role in classifying and detecting cyberattacks
by analyzing vast amounts of data and identifying patterns indicative of malicious activity.
One significant advantage of ML is its ability to detect anomalies, which can indicate
potential threats such as zero-day attacks and advanced persistent threats (APTs). Moreover,
ML automates the threat identification process, reducing the time needed to detect and
respond to threats, which helps mitigate damage and minimize downtime. ML’s pattern
recognition capabilities are particularly useful in identifying specific types of cyberattacks,
thereby improving threat detection accuracy. Additionally, ML systems are scalable and
can handle large-scale data, making them suitable for enterprises with extensive networks.
Furthermore, ML models can continuously learn from new data, enhancing their detection
capabilities over time. This adaptive learning is essential for staying ahead of emerging
threats. Another benefit of ML in cybersecurity is its ability to reduce false positives in
threat detection, allowing security teams to focus on genuine threats and avoid unnecessary
alerts. By automating many aspects of threat detection and response, ML also reduces the
operational costs associated with manual security monitoring and incident response.

ML models are trained using datasets to classify various types of cyberattacks. How-
ever, these datasets are frequently imbalanced, meaning that some types of attacks are
significantly underrepresented compared to others. This imbalance poses a critical problem
because the models trained on such datasets tend to become biased towards the more
common attack types, resulting in poor detection rates for the rarer, yet potentially more
dangerous, attacks. For example, if a dataset contains a vast majority of data on phishing
attacks but very few instances of zero-day exploits, the model will likely excel at identifying
phishing but fail to recognize the zero-day exploits. To address imbalance issues, cyberse-
curity researchers and practitioners use techniques such as data augmentation, synthetic
data generation, and advanced ML algorithms designed to handle imbalanced data. These
methods help ensure that the models remain robust and capable of accurately identifying
both common and rare cyber threats, thereby providing a more secure defense against a
wide range of attacks.

However, these efforts alone are not particularly compelling unless the ML models are
also employed to assign weights to dataset features. This weighting process is crucial as
it helps identify which features have the greatest influence on the model’s responses. By
understanding feature importance, researchers and practitioners can gain deeper insights
into the factors driving cyber threats, leading to more effective detection and prevention
strategies. Without this, the models remain black boxes, offering limited value beyond
mere classification.

1.1. Aims of the Research

The primary objective of this research was to explore and evaluate various data
augmentation techniques to enhance the effectiveness of supervised learning models in
detecting cyberattacks. By generating a realistic dataset that simulates different types of
cyberattacks, the study aimed to reflect the typical imbalances observed in genuine cyber-
security threats. Subsequently, the application of multiple data augmentation techniques,



Eng 2024, 5 2172

including SMOTE and ADASYN, sought to correct the skewed class distribution, providing
a more balanced dataset for training supervised machine learning models.

Furthermore, the study hypothesized that the implementation of these data augmen-
tation techniques would lead to significant improvements in the detection capabilities of
various models, such as Random Forests and Neural Networks. Another key hypothesis
was that the analysis of feature importance would offer critical insights into which attributes
most significantly influence the predictive outcomes of the models, thereby enhancing their
interpretability and aiding in the refinement of feature engineering and selection processes.

1.2. Contribution of This Work

The contribution of this research consists of the following:

• A novel, realistic dataset that simulates various types of cyberattacks, mirroring the
complex and imbalanced nature of real-world cybersecurity scenarios;

• Furthermore, a comprehensive application of several data augmentation techniques, in-
cluding SMOTE (Synthetic Minority Over-sampling Technique) and ADASYN (Adap-
tive Synthetic Sampling), is adapted specifically for enhancing the dataset within the
cybersecurity context;

• Additionally, the research includes a systematic evaluation of how different machine
learning models perform following data augmentation, identifying those most effec-
tive in recognizing diverse cyber threats;

• Finally, this exploration enhances the understanding of predictive features and con-
tributes significantly to the models’ transparency and explainability, essential for
operational trust and effective deployment in cybersecurity environments.

The work is organized as per Figure 1. Specifically, Section 2 reviews the related work.
Section 3 provides the background of this work, presenting some of the data augmentation
techniques and machine learning methods used. Section 4 details the experiments run
on a generated dataset, while Section 5 comments on the results. Section 6 draws some
conclusions and provides a few comments on future work. Finally, a list of abbreviations
used and more detailed results are given in Appendix A.

2. Related Work

Supervised learning is widely used in Intrusion Detection Systems (IDSs) due to its
effectiveness in employing labeled datasets to train predictive models.

Apruzzese et al. [1] provide a comprehensive review of the deployment and integra-
tion of ML in cybersecurity. Key contributions include highlighting the benefits of ML
over traditional human-driven detection methods and identifying additional cybersecurity
tasks that can be enhanced by Supervised Learning. The study discusses intrinsic problems
such as concept drift, adversarial settings, and data confidentiality that affect real-world
ML deployments in cybersecurity. Limitations of the approach include the slow pace of
integrating ML into production environments and the need for continuous updates to
handle evolving threats. The article also presents case studies demonstrating industrial
applications of ML in cybersecurity, emphasizing the necessity of collaborative efforts
among stakeholders to advance ML’s role in this field.

Mijwil et al. [2] explain how supervised and unsupervised learning methods, such as
logistic regression and clustering, are utilized for intrusion and anomaly detection, while
DL techniques like convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) effectively identify malware and cyber threats with high accuracy. Despite their
potential, ML and DL face challenges, including the need for large datasets, high false
positive rates, and the continuous evolution of cyber threats, necessitating regular updates
and human oversight. The paper calls for ongoing research, better datasets, and integrated
AI techniques to stay ahead of cybercriminals. Finally, it emphasizes the importance of
further investigations into AI applications in cybersecurity, encouraging collaboration and
the development of advanced techniques to protect digital environments.
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Figure 1. Visual representation of the work’s structure.

A significant study by Bagui et al. [3] analyzed network connection logs using various
supervised learning models, including Logistic Regression, Decision Trees (DTs), Random
Forests (RFs), SVM, Naïve Bayes, and gradient-boosting trees. They introduced a new
dataset, UWF-ZeekData22, which is publicly accessible through the University of West
Florida’s site. This dataset is labeled according to the MITRE ATT&CK framework, although
the labeling process is not clearly documented. It includes 18 attributes, with the top six
features identified based on information gain being the history of connection, transport
layer protocol, application layer protocol, number of payload bytes the originator sent,
destination IP, and number of packets the originator sent. The UWF-ZeekData22 dataset
primarily covers two tactics: reconnaissance and discovery, with a significant imbalance
between the number of observations for each tactic—2087 for discovery and 504,576 for
reconnaissance. The focus of the research is more on classifying adversary tactics rather
than specific techniques of attack. The strengths of the study by Bagui et al. include a
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detailed presentation of a novel approach to preprocessing log data. The methodology
involves binning numerical values (except for originator and destination ports) using a
moving mean approach. Nominal features are converted into numerical labels, IP addresses
are categorized based on the standard network classification of the first octet, and ports are
grouped by ranges. A noted limitation in the study is its reliance on binary classification to
assess model performance. The findings highlight that tree-based methods—specifically
Decision Trees, gradient boosting trees, and Random Forests—excelled, achieving over 99%
accuracy along with high precision, recall, f-measure, and AUROC scores.

Tufan et al. [4] explored a supervised ML model trained and tested on two distinct
datasets. The first dataset consists of real-world private network data collected by the
authors, and the second is the UNSW-NB15 dataset, developed by the Australian Center
for Cyber Security. The data from the organizational environment required significant
preparation, including the conversion of private IP addresses to public ones within captured
packets. A noteworthy feature extraction technique involved analyzing packets with
various TCP headers, such as ICMP, SYN, SYN-ACK, NULL, FIN, XMAS (PSH-URG-
FIN), and FIN-ACK, with measurements taken every two seconds for each source IP.
The preprocessing steps included the removal of redundant columns, those with empty
values, and those with little variation. For categorical features, one-hot encoding was
employed. This approach to handling missing values and detailing the labeling process,
using open-source tools like Snort and Suricata to generate alerts from packet data, marks a
comprehensive method where these alerts serve as labels for training. Tufan et al. utilized
both filter and wrapper methods for feature selection, aiming to effectively refine the
feature set. In contrast, the study by Bagui et al. [3]. performed attribute reduction using
information gain to assess the importance and relevance of features. They compared two
supervised models: an ensemble model consisting of Bayesian classifiers, KNN, Logistic
Regression, and SVMs, against CNNs. A significant finding from their research was that
CNNs outperformed the ensemble model in both datasets, highlighting the effectiveness of
deep learning approaches in handling complex data structures and patterns.

In their study, Ravi et al. [5] introduced a deep-learning ensemble approach to enhance
the performance of IDSs. The effectiveness of the proposed model was evaluated using
several datasets, including SDN-IoT, KDD-Cup-1999, UNSW-NB15, WSN-DS, and CICIDS-
2017, although only samples from the last four were considered. These datasets were
preprocessed to ensure normalization. The models implemented for classification and
feature extraction were RNNs, LSTMs, and Gated Recurrent Units (GRUs). These neural
networks demonstrated a high efficacy in detecting attacks across all datasets. The next
phase of the proposed methodology involved dimensionality reduction using Kernel
Principal Component Analysis (KPCA) to improve the manageability and effectiveness
of the data. During the feature fusion process, features extracted from different models
were concatenated to form a comprehensive feature set. This combined feature set was
then processed by base-level classifiers, specifically SVMs and Random Forests. The
outputs from these classifiers were subsequently analyzed by a meta-level classifier, Logistic
Regression, to finalize the detection process. The performance metrics from this study
highlighted significant success in attack classification, achieving over 98% accuracy on all
datasets, except the KDD-Cup-1999 dataset, which recorded an accuracy of 89%.

Further exploration into unsupervised ML models was conducted by Verkerken et al. [6],
who utilized datasets developed by the Canadian Institute for Cybersecurity. In this
phase, they removed redundant features and eliminated samples with missing or infinite
values, as well as duplicated rows. Notably, unlike in the study by Bagui et al. [3],
previously cited, features such as IP addresses were discarded to avoid overfitting. They
applied a variety of feature scaling techniques, including StandardScaler, RobustScaler,
QuantileTransformer, and MinMaxScaler from the scikit-learn library. These preprocessing
steps were essential for the subsequent application of models such as Principal Component
Analysis (PCA), Isolation Forest, Autoencoder, and One-Class SVM, particularly focusing
on anomaly detection. However, they observed a significant drop in model performance
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on newer data collected in 2018, with the AUROC decreasing by an average of 30.45%, and
a minimum drop of 17.85% for the One-Class SVM. The authors attributed these declines to
changes in the distribution of attack labels between datasets and the inadequacy of model
hyperparameters during validation.

Another innovative approach to data handling was proposed by Hwang et al. [7],
aimed at addressing the challenge of high memory demand typically associated with storing
traffic data. Their method focused on analyzing only the initial bytes of the first few packets
in a flow, significantly reducing data storage requirements. This approach showcases a
practical solution to one of the fundamental issues in network traffic analysis, highlighting
the potential of unsupervised learning techniques in IDSs. Each of these studies contributes
to the evolving landscape of ML applications in cybersecurity, demonstrating various
strategies to enhance the effectiveness and efficiency of IDSs.

In their innovative study, Aamir and Zaidi [8] introduced a semi-supervised approach
based on clustering techniques. The primary objective was to employ various clustering
methods to initially label the dataset, which would then facilitate the training of supervised
algorithms for classification.

A significant limitation of this study was its reliance on synthetic datasets generated
through simulation. Unlike other studies, the feature set used here was relatively small,
comprising variables such as traffic rate, processing delay, and server CPU utilization,
which were deemed sufficient for detecting Distributed Denial of Service (DDoS) attacks.
The dataset’s size was also restricted, containing only 1000 observations, which may not
adequately represent more complex attack scenarios. Nonetheless, the results from this
dataset were compared with a subset of the CICIDS2017 dataset that specifically focused
on DDoS attacks.

After the collection and normalization of the dataset, two clustering techniques
—agglomerative clustering and K-means—were applied. Notably, K-means was enhanced
by principal components obtained from PCA. The subsequent step involved a voting mech-
anism to reconcile the clustering results: if an observation was consistently labeled across
both results, it was assigned a definitive class (benign or DDoS); otherwise, it was tagged as
“Suspicious”. This process was crucial for creating a reliably labeled dataset for subsequent
supervised learning.

Supervised algorithms used included K-nearest neighbor (KNN), Support Vector Ma-
chines (SVMs), and Random Forest, with hyperparameters finely tuned during the training
phase. The classification accuracy on the synthetic dataset was impressive, particularly
for Random Forest, which achieved a 96.66% accuracy rate. This methodology was also
validated on the aforementioned subset of CICIDS2017, achieving over 86% accuracy,
underscoring the effectiveness of this semi-supervised approach.

Concerning data augmentation, Maharana et al. [9] extensively reviewed augmenta-
tion techniques, particularly focusing on their application in ML for image data. Techniques
such as flipping, cropping, rotation, and color space adjustments were explored, detailing
how they help in creating varied datasets from limited data sources. These methods are
critical for reducing model overfitting and improving the robustness of the predictions.

Naik et al. [10] discuss the integration of AI with traditional cybersecurity strategies,
noting how AI can bring a significant improvement in handling cyber threats through
technologies like Big Data, Blockchain, and Behavioral Analytics. In detail, it provides an
in-depth analysis of both “distributed” AI methods (such as Multi-Agent Systems, Artificial
Neural Networks, Artificial Immune Systems, and Genetic Algorithms) and “compact” AI
methods (including ML Systems, Expert Systems, and Fuzzy Logic). These classifications
help differentiate AI techniques based on their application scope and complexity.

Table 1 outlines a comparative review of the methodologies and outcomes from the
discussed studies focused on ML and data augmentation approaches to intrusion detection.
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Table 1. Comparison of related work in IDS using ML and data augmentation techniques.

Paper Year Strengths Limitations

Hwang et al. [7] 2020 Approach used tried to
minimize memory usage. No standard classification.

Verkerken et al. [6] 2021
Multiclass classification.

Comparison between intra-
and inter-dataset evaluations.

No feature selection. No
standard classification.

Aamir and Zaidi [8] 2021

Hyperparameter tuning.
Validation of the approach on

a synthetic dataset and
benchmark dataset.

Synthetic dataset. Focus only
on DDoS attacks. Using a
small number of variables

Tufan et al. [4] 2021

Hyperparameter tuning.
Comparison of the models

trained and tested on private
and publicly

available datasets.
Feature selection.

Focus only on probing.
Designed to work offline.

The institutional dataset was
collected from a specific

environment. No
standard classification.

Bagui et al. [3] 2022

Created a new dataset labeled
according to MITRE

framework.
Unique and detailed

preprocessing strategy.
Feature selection based on

information gain.
Comparison between models

also in terms of using
important features (top 6,

top 9, all 18)

Dataset contains only 2 tactics.
Using binary classification.

Absence of hyperparameter
tuning. Designed to
work offline.
Many duplicates in

the dataset.

Ravi et al. [5] 2022
Multiclass classification. Used

the most common
benchmark datasets.

Proposed approach is
sensitive to imbalanced

datasets. No
standard classification.

Maharana et al. [9] 2022 Methodological diversity,
educational value

Lack of empirical data, focus
on ML

Naik et al. [10] 2022 Comprehensive coverage,
practical applications

Lack of case studies and
evaluation metrics

Apruzzese et al. [1] 2023 Deep discussion on
intrinsic problems None

Mijwil et al. [2] 2023

Analysis of current ML and
DL models applied in IDS, in

terms of advantages
and limitations

None

Agrawal et al. [11] 2024 Synthetic data generated
by GANs Lack of realism

Mohammad et al. [12] 2024 High accuracy in
intrusion detection

Persistent challenge of class
imbalance and the marginal

performance improvements of
complex DL models

In [11], Agrawal et al. explored the application of generative adversarial networks
(GANs) in creating synthetic data for cybersecurity. Key contributions included com-
prehensively examining GANs’ capabilities in generating realistic cyberattack data and
their use in enhancing IDSs (IDS). The study identified challenges such as the efficacy
of GAN-generated data in accurately representing real-world attacks and the need for
further investigation into the robustness of deep learning models trained on synthetic data.



Eng 2024, 5 2177

Limitations included persistent concerns about the quality and realism of the synthetic data
produced by GANs. The paper emphasizes the importance of synthetic data in overcoming
privacy and security concerns associated with real-world data sharing

Mohammed et al. [12] presented a method to improve IDS performance by combining
deep learning architectures with data augmentation techniques. Key contributions included
using four prominent datasets (UNSW-NB15, 5G-NIDD, FLNET2023, and CIC-IDS-2017)
to demonstrate that simple CNN-based models can achieve a high accuracy in intrusion
detection. Limitations highlighted include the persistent challenge of class imbalance
and the marginal performance improvements observed with more complex deep learning
architectures compared to simpler models. The study emphasized the importance of data
quality and augmentation in enhancing detection capabilities.

3. Background
3.1. Introduction

In the rapidly evolving field of cybersecurity, ML plays a crucial role in enhancing
threat detection and mitigation. Effective data augmentation techniques, such as SMOTE
and ADASYN, are essential for addressing class imbalances in cybersecurity datasets.
However, simply balancing datasets and training ML models is insufficient unless these
models can also assign weights to dataset features. Understanding feature importance is
key to identifying which factors most influence the model’s responses, thereby improving
the model’s interpretability and effectiveness. This section explores various data augmen-
tation methods, supervised learning models, and the significance of feature weighting
in the context of cybersecurity, offering insights into optimizing model performance and
decision-making.

3.2. Data Augmentation Techniques

Advanced techniques like synthetic data generation through methods such as SMOTE
(Synthetic Minority Over-sampling Technique [13]) can also be employed to enrich the
dataset without losing valuable information. Given a sample xi from the minority class,
SMOTE identifies its k nearest neighbors in the feature space. Let xnn denote one of these k
nearest neighbors. A synthetic sample xnew is generated by interpolating between xi and
xnn using the equation:

xnew = xi + λ(xnn − xi)

where λ is a random number between 0 and 1. This interpolation step creates a new sample
that is a linear combination of the original sample and its neighbor, thus preserving the
general data distribution while expanding the minority class.

ADASYN (Adaptive Synthetic Sampling, [14]) extends SMOTE by focusing more on
generating synthetic samples next to the minority class samples that are wrongly classified
by a classifier. Mathematically, ADASYN calculates the number of synthetic samples to
generate for each minority class sample xi by using a density distribution:

ri =
γi

∑N
i=1 γi

where γi is the number of majority class samples in the k nearest neighbors of xi. The
number of synthetic samples Gi to generate for each xi is proportional to ri.

In cases where classes overlap significantly, SMOTE and ADASYN can introduce
synthetic samples in regions where the classes are not well-separated. This can lead to in-
creased misclassification, as synthetic samples in overlapping regions may be misclassified,
reducing the overall performance of the model. Moreover, introducing synthetic samples in
overlapping regions can blur the decision boundaries, making it difficult for the classifier
to distinguish between classes.

When synthetic samples introduce noise, both SMOTE and ADASYN can suffer from
decreased performance. In particular, synthetic samples that are not representative of
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the actual data distribution can introduce noise, leading to poor generalization of the
model. Furthermore, the presence of noisy samples can cause the model to overfit the
synthetic data, reducing its ability to perform well on unseen data. Additionally, noise can
adversely affect precision and recall, as the model may produce more false positives and
false negatives.

However, several strategies can be employed to mitigate the issues of overlapping
classes and noise. For example, the data can be preprocessed to remove noise before
applying SMOTE or ADASYN. Secondly, more sophisticated techniques (such as Borderline-
SMOTE or SVM-SMOTE) that focus on generating samples near the decision boundary
can be used. Finally, it is possible to continuously evaluate the performance and tune the
parameters of the over-sampling techniques to minimize the introduction of noise.

Borderline-SMOTE [15] specifically targets minority class samples that are close to
the boundary with the majority class. It uses the same interpolation strategy as SMOTE
but restricts it to those minority samples whose nearest neighbors include majority class
samples. The synthetic sample generation formula remains as per the SMOTE technique.

Tomek-links data augmentation [16] is a technique used primarily to enhance the
performance of classifiers on imbalanced datasets. It involves identifying pairs of instances
that are nearest neighbors but belong to different classes and removing them to increase
the separability of the classes.

A Tomek-link exists between a pair of instances xi and xj from different classes if
there is no instance xk such that d(xi, xk) < d(xi, xj) or d(xj, xk) < d(xj, xi), where d
represents the distance metric used, often the Euclidean distance. Mathematically, it can be
characterized as follows:

Let S be the set of all samples, then a pair (xi, xj) ∈ S × S forms a Tomek-link if

(yi ̸= yj) ∧ (∄xk ∈ S : (d(xi, xk) < d(xi, xj) ∨ d(xj, xk) < d(xj, xi)))

This method is especially effective for binary classification problems and is often
utilized as a data cleaning technique rather than an oversampling technique.

SMOTEENN [17] combines two approaches to address the issue of class imbalance
in machine learning datasets: SMOTE (Synthetic Minority Over-sampling Technique) for
over-sampling the minority class and ENN (Edited Nearest Neighbor) for cleaning the data
by under-sampling both classes.

ENN removes any sample that has a majority of its k nearest neighbors belonging to a
different class. For a given sample xi, it is removed if

1
k

k

∑
j=1

I(yj ̸= yi) > 0.5

where I is an indicator function, yj is the class label of the j-th nearest neighbor, and yi is
the class label of xi.

SMOTEENN applies SMOTE to generate synthetic samples and then uses ENN to
remove any generated or original samples that are misclassified by their nearest neighbors.
This combination helps in refining the class boundaries further than using SMOTE alone.

Finally, SMOTE-Tomek [18] is a hybrid method that combines the SMOTE approach
for over-sampling the minority class with Tomek links for cleaning overlapping samples
between classes. This technique is particularly effective in improving the classification of
imbalanced datasets by both augmenting the minority class and enhancing class separability.
SMOTE-Tomek first applies SMOTE to generate additional synthetic samples to balance the
class distribution. Subsequently, it applies the Tomek links method to remove any Tomek
links identified between the synthetic and original samples. This removal process helps in
reducing noise and making the classes more distinct, which is beneficial for the subsequent
learning process.
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It is interesting to discuss the computational costs of the data augmentation techniques
and their impact on the model. The time complexity of SMOTE is O(T × k × d), where
T is the number of synthetic samples, k is the number of nearest neighbors, and d is
the dimensionality of the data. This results in a moderate increase in training time due
to the need to find nearest neighbors and generate synthetic samples. ADASYN has a
similar time complexity to SMOTE but includes additional computations to determine
the difficulty of instances, resulting in slightly higher computational costs and additional
processing time compared to SMOTE. Borderline SMOTE shares the same time complexity
as SMOTE but with additional steps to identify boundary samples. This leads to higher
computational costs as identifying boundary samples requires extra computations. The
time complexity for Tomek Links is O(n2 × d), where n is the number of samples and d
is the dimensionality. This results in significant preprocessing time due to the need to
compute pairwise distances between samples, thus impacting overall model training time.
SMOTEENN combines the costs of SMOTE and the Edited Nearest Neighbors (ENNs)
technique, typically O(T × k × d) +O(n × k × d). The high computational cost results from
combining synthetic sample generation and nearest neighbor cleaning, leading to a notable
increase in resource usage. SMOTE Tomek combines the costs of SMOTE and Tomek Links,
typically O(T × k × d) + O(n2 × d). This combination results in very high computational
costs due to extensive pairwise distance computations and synthetic sample generation,
significantly impacting training time and resource consumption.

The computational costs of these techniques directly impact model training time and
resource usage. Techniques with higher time complexity, such as SMOTE Tomek and
SMOTEENN, significantly increase preprocessing time and extend overall training time.
High computational costs translate to increased CPU and memory usage, which can be
limiting factors for large datasets or complex models. Techniques with quadratic time
complexity (e.g., Tomek Links) may not scale well with large datasets.

Data augmentation is crucial in cybersecurity for generating more comprehensive
datasets that can help in better training machine learning and deep learning models. The
scientific literature proposes different surveys (see, for example, [1,19–21]) centered around
machine learning models applied in cybersecurity.

3.3. Supervised Learning Models

This work considers some of the supervised learning models such as Naive Bayes,
KNN, XGBoost (XGB), Gradient Boosting Machine (GBM), Logistic Regression, and Ran-
dom Forest, as well as deep learning models like RNNs and LSTMs on cyberattack datasets.

Naive Bayes is a probabilistic classifier based on Bayes’ theorem with the assumption
of independence between features. Its strengths include being fast and efficient, especially
with large datasets, and performing well with small amounts of training data. However, it
assumes independence between features, which is rarely true in real-world data, and is
not suitable for datasets with highly correlated features. KNN is a simple, non-parametric
algorithm that classifies a sample based on the majority class among its k-nearest neighbors.
KNN is simple to implement and understand, and it is effective for small datasets with
well-defined classes. Its limitations are that it is computationally intensive with large
datasets and its performance can degrade with high-dimensional data. XGB is an optimized
distributed gradient boosting library designed to be highly efficient and flexible. XGB offers
high performance and accuracy, and it handles missing values and large datasets well.
However, it requires careful tuning of hyperparameters and can be prone to overfitting if
not properly regularized. GBM builds an additive model in a forward stage-wise manner,
optimizing differentiable loss functions. GBM is known for its high accuracy and robustness,
and it is effective for both regression and classification tasks. The main limitations are that
it is computationally intensive and slow to train, and it can be prone to overfitting without
proper tuning. Logistic Regression is a linear model used for binary classification that
predicts the probability of a categorical dependent variable. It is simple and interpretable,
and it is efficient for binary and multinomial classification. However, it assumes a linear
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relationship between the features and the log-odds of the outcome, and it is not suitable
for complex datasets with non-linear relationships. The Random Forest Classifier is an
ensemble learning method that constructs multiple decision trees and merges them to obtain
a more accurate and stable prediction. Random Forest handles large datasets with higher
dimensionality well and is robust to overfitting due to its ensemble nature. However, it is
computationally intensive, especially with a large number of trees, and less interpretable
than single decision trees.

RNNs are a class of neural networks where connections between nodes form a directed
graph along a temporal sequence, allowing them to exhibit temporal dynamic behavior.
RNNs are effective for sequence prediction problems and can handle time-series data
and sequential data well. However, they are prone to the vanishing gradient problem,
making training difficult, and require significant computational resources. Finally, LSTMs
are a special kind of RNN capable of learning long-term dependencies and mitigating
the vanishing gradient problem. LSTMs are capable of learning long-term dependencies
and are effective for time-series and sequential data. However, they are computationally
expensive and slower to train, and they require extensive hyperparameter tuning.

3.4. Metrics

Accuracy is a widely used metric that reflects the overall correctness of a model’s
predictions. It is calculated as the proportion of correctly predicted instances relative to the
total number of instances within the dataset as follows:

Accuracy =
Number of Correct Predictions

Total Number of Predictions

While offering a general sense of model performance, accuracy can be misleading in
scenarios with imbalanced datasets.

Precision, on the other hand, focuses on the proportion of true positive predictions
among all predicted positives. It essentially measures the model’s ability to accurately
identify positive instances:

Precision =
True Positives

True Positives + False Positives

A high precision value indicates a low false positive rate, signifying the model’s
proficiency in distinguishing between positive and negative cases.

Recall, alternatively referred to as sensitivity or true positive rate, measures the model’s
capacity to identify all relevant positive instances. It is calculated as the ratio of correctly
predicted positive observations to the total actual positive observations within the dataset:

Recall =
True Positives

True Positives + False Negatives

A high recall value signifies a low false negative rate, implying the model’s effective-
ness in capturing all pertinent positive cases.

The F1-score addresses the potential shortcomings of relying solely on precision or
recall by providing a harmonic mean of both metrics. This consolidated metric offers a
balanced assessment, particularly valuable in situations with imbalanced class distributions.
The F1-score is calculated as follows:

F1-Score = 2 × Precision × Recall
Precision + Recall

The F1-score ranges from 0 to 1, with a value of 1 signifying the ideal scenario where
both precision and recall are perfect.

Finally, support refers to the total number of actual occurrences for each class within
the dataset. While not a direct measure of model performance, support provides crucial
context for interpreting the other metrics. By understanding the class distribution and the
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number of data points per class (support), we can more effectively evaluate the significance
of the calculated precision, recall, and F1-score values.

3.5. Features’ Weights

CatBoost [22] is a machine learning algorithm developed by Yandex, which is part
of the family of gradient boosting algorithms. The term “CatBoost” reflects its capability
to handle categorical features effectively and its nature as a boosting algorithm. It is
specifically designed to offer high performance with a focus on speed and accuracy, which
is particularly advantageous when dealing with categorical data. This model optimizes
the gradient boosting process through the use of symmetric trees and Oblivious Trees,
enhancing both speed and accuracy while mitigating overfitting. This makes the model
particularly robust and suitable for large datasets, with an implementation that supports
GPU acceleration and multi-core processing.

A key feature of CatBoost is its capability to provide insights into the importance of
features in the model. Within the domain of cybersecurity, the process of assigning weights
to variables during data analysis holds paramount importance for several compelling
reasons. Firstly, cybersecurity necessitates the examination of vast datasets to identify
anomalies, potential threats, and existing vulnerabilities. Assigning weights to variables
allows for the discernment of the most impactful factors contributing to potential security
breaches. This acquired knowledge empowers cybersecurity professionals to prioritize
their efforts on the most critical aspects, ultimately enhancing the efficacy of threat detection
and mitigation strategies.

Secondly, the ever-evolving nature of cybersecurity threats presents a constant chal-
lenge. Attackers continuously develop novel techniques to exploit system vulnerabilities.
Through the assessment of variable weights, security models can be dynamically adapted
and updated to reflect the evolving threat landscape. This dynamic approach ensures the
continued relevance and robustness of security measures in the face of emerging threats.

Finally, the assessment of variable weights also facilitates the explainability and inter-
pretability of machine learning models. In the context of cybersecurity, comprehending the
rationale behind a specific alert generation is crucial. This transparency not only fosters
trust-building with stakeholders but also aids in forensic investigations to trace the origins
and methodologies employed in cyberattacks.

4. Experiments
4.1. Methodology

The methodology employed in this study was aimed to address the challenges posed
by imbalanced datasets in cyberattack detection. Initially, a realistic dataset was constructed
to simulate various types of cyberattacks, reflecting the imbalances typically observed in
real-world cybersecurity threats. This dataset serves as the foundation for evaluating the
effectiveness of different data augmentation techniques.

To correct the skewed class distribution, the study applied several data augmentation
techniques, notably SMOTE (Synthetic Minority Over-sampling Technique) and ADASYN
(Adaptive Synthetic Sampling). These techniques generate synthetic samples to balance the
dataset, thereby providing a more equitable distribution of classes for training supervised
machine learning models.

Following the augmentation, various supervised machine learning models were
trained and evaluated on the balanced dataset. The performance of these models was
assessed using standard metrics such as accuracy, precision, recall, and F1-score to deter-
mine the improvements brought by the data augmentation techniques (see Appendix A for
more details).

Additionally, the study analyzed feature importance to identify which attributes
most significantly influence the predictive outcomes of the models. This analysis not only
enhances the interpretability of the models but also provides valuable insights for refining
feature engineering and selection processes, thereby optimizing model performance.



Eng 2024, 5 2182

4.2. The Environment

The laboratory environment used VMware vSphere version 8.0.2.00300 for creating
and managing virtual networks. This setup is crucial for developing and testing network
security solutions effectively. The Security Onion server, version 2.4.60, was configured
with two network interfaces. One interface was connected to the internal network, and
the other was used for Docker container communications. The server was equipped with
12 CPUs, 24 GB of RAM, and a 250 GB hard disk configured as Thick Provision Lazy Zeroed.
A Windows Server 2022 Standard Evaluation version (21H2) was set up with 2 CPUs, 12 GB
of RAM, and a 90 GB hard disk.

The Windows 10 Pro client (Version 22H2) operated with 2 CPUs, 4 GB of RAM, and
a 48 GB hard disk. Its network interface was connected to the same internal network,
facilitating various network security experiments. An Ubuntu 22.04.4 LTS client was part
of the network. Each system was configured with 2 CPUs, 3 GB of RAM, and a 25 GB hard
disk. These clients interacted with other network components to simulate real-world traffic
and attack scenarios. The main web server (APACHE01) and the reverse proxy server both
ran on Ubuntu 22.04.4 LTS with similar hardware configurations as the Ubuntu clients.
They play critical roles in hosting and securing web applications.

To simulate realistic network traffic, several generators were implemented. These
include a generator for creating traffic from the internal network to the Internet based on
the “noisy” project. This project involves collecting and visiting links from specified root
URLs recursively until no more links are available or a timeout is reached.

APACHE01 is protected by a reverse proxy server (APACHE-REVERSE-PROXY),
which is exposed to the Internet through a firewall, enhancing the security of hosted
applications. Additionally, traffic and activities are monitored using tools like Security
Onion to provide insights into network traffic and potential security threats.

4.3. The Dataset

The dataset features and their meaning are depicted in Table 2.

Table 2. Description of variables in the cyberattack dataframe.

Variable Name Description

resp_pkts Number of packets sent by the responder during the connection.

service The type of service being accessed (e.g., HTTP, FTP).

local_resp Indicates whether the responder is local to the network.

protocol Network protocol used in the connection (e.g., TCP, UDP).

duration Duration of the connection in seconds.

conn_state State of the connection (e.g., established, closed).

orig_pkts Number of packets sent by the originator during the connection.

dest_port Destination port number of the connection.

orig_bytes Number of bytes sent by the originator during the connection.

local_orig Indicates whether the originator is local to the network.

resp_bytes Number of bytes sent by the responder during the connection.

src_port Source port number of the connection.

techniques_mitre MITRE ATTACK technique(s) associated with the cyberattack.

Initially, the dataset consisted of 436,404 rows, which were reduced to 307,658 after
validation (many observations were duplicated, and the features {duration, orig_bytes,
resp_bytes} included 98,844 NaN values) and normalization. This preprocessing brought
the total number of rows in the dataset to 208,735.

Notably, the techniques_mitre variable takes the following values:
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• network_service_discovery;
• benign;
• reconnaissance_vulnerability_scanning;
• reconnaissance_wordlist_scanning;
• remote_system_discovery;
• domain_trust_discovery;
• account_discovery_domain;
• reconnaissance_scan_ip_blocks.

Network service discovery refers to the process of identifying and characterizing ser-
vices running on networked devices. Adversaries employ techniques such as port scanning
and service enumeration to identify open ports, listening services, and their corresponding
software versions. This information aids in pinpointing potential vulnerabilities within the
network and constructing a comprehensive network topology map.

It is vital to distinguish between benign activities and malicious network reconnais-
sance. Benign activities encompass actions inherent to normal system operations, including
legitimate software updates, routine maintenance procedures, and standard user behav-
ior. In contrast, malicious network reconnaissance, as detailed in the subsequent sections,
involves deliberate attempts to exploit vulnerabilities and compromise system security.

Reconnaissance vulnerability scanning involves the systematic interrogation of target
systems to identify exploitable weaknesses. Adversaries leverage this technique to detect
outdated software, misconfigurations, and other security gaps. The primary objective
is to amass information that can be later utilized to gain unauthorized access or execute
malicious actions.

This technique involves leveraging pre-defined lists of words or phrases (wordlists) to
systematically probe potential points of interest within a target environment. Adversaries
utilize wordlists to conduct brute-force attacks or attempt to guess critical information such
as usernames, passwords, URLs, and other sensitive data. Reconnaissance wordlist scan-
ning frequently complements other reconnaissance activities to enhance attack efficiency
and accuracy.

Remote system discovery is the process of gathering information about remote systems
on a network. This can involve identifying active hosts, network shares, and accessible re-
sources. Techniques used for remote system discovery include ping sweeps, port scanning,
and querying network services. The ultimate objective is to map the network layout and
pinpoint potential targets for subsequent exploitation attempts.

Within domain environments, adversaries utilize domain trust discovery to compre-
hend the trust relationships established between various domains. Understanding these
trust relationships can provide adversaries with pathways for lateral movement and privi-
lege escalation. This may involve identifying trusted domains, domain controllers, and any
cross-domain policies that govern access control.

Account discovery (domain) is a technique employed by adversaries to enumerate user
accounts within a domain environment. This involves discovering usernames, associated
user groups, and corresponding permissions. The information gleaned can be utilized to
plan attacks that involve credential theft, privilege escalation, and lateral movement within
the compromised domain. Common methods for account discovery include querying
Active Directory and leveraging built-in domain commands.

Reconnaissance scan IP blocks involve systematically scanning large ranges of IP
addresses to identify active devices and services. Adversaries utilize this technique to map
the target network infrastructure and pinpoint potential targets for further exploitation.
This type of scanning can reveal critical information such as the number of active hosts,
operating systems in use, and network devices present within the target environment.

Finally, Group Policy Discovery refers to the process of identifying and analyzing
Group Policy Objects (GPOs) within a Windows domain environment. Adversaries examine
GPOs to gain insights into security configurations, administrative templates, and user
policies. This information can be used to identify misconfigurations, understand the
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deployed security controls, and pinpoint potential weaknesses that can be exploited to
achieve their malicious goals.

As per Table 3, the dataset appears to be imbalanced due to a significant dispro-
portion in the occurrences of different features, specifically within the “techniques_mitre
distribution”. Imbalanced datasets are commonly encountered in machine learning and
statistical analysis and can lead to biased models that inadequately represent the minority
classes. The feature “network_service_discovery” exhibits an overwhelming dominance
with 144,279 occurrences, which is nearly 2.4 times that of the next most frequent category,
“benign”, which has 60,997 occurrences. This dominant feature may lead predictive models
to exhibit a strong bias towards predicting this category, potentially at the expense of
accuracy in other less frequent categories.

Table 3. Distribution of techniques_mitre.

Techniques_Mitre Distribution Occurrences

network_service_discovery 144,279
benign 60,997

reconnaissance_vulnerability_scanning 1581
reconnaissance_wordlist_scanning 715

remote_system_discovery 554
domain_trust_discovery 411

account_discovery_domain 84
reconnaissance_scan_ip_blocks 80

group_policy_discovery 34

Moreover, categories such as “group_policy_discovery”, “reconnaissance_scan_ip_blocks”,
and “account_discovery_domain” are extremely underrepresented with only 34, 80, and 84 oc-
currences, respectively. This sparse representation complicates the learning process for statistical
models, as there are insufficient data to achieve a good generalization performance on new or
unseen data falling into these categories. The vast range in feature distribution, from the most
to the least frequent (144,279 occurrences vs. 34 occurrences), highlights the stark imbalance,
indicating not only a skew towards certain features but also a significant under-representation
of others.

Machine learning algorithms generally perform better when the numbers of instances
for each class are approximately equal. An imbalanced dataset can result in models that are
biased towards classes with more instances, increasing the likelihood of misclassification
of minority class instances. This can severely affect the model’s accuracy, particularly its
ability to detect less frequent but potentially important categories.

4.4. Data Augmentation

Addressing this imbalance might involve employing techniques such as oversampling
the minority classes, undersampling the majority classes, or using approaches like SMOTE,
ADASYN, Borderline-SMOTE, Tomel-Links, SMOTEENN, and SMOTE Temek.

Table 4 offers a comprehensive comparison of various data augmentation techniques
applied to an imbalanced dataset categorized under “techniques_mitre”. These techniques
include SMOTE, ADASYN, Borderline-SMOTE, Tomek Links, SMOTEENN, and a combi-
nation of SMOTE and Tomek Links, each tailored to modify the distribution of minority
and majority classes through synthetic data generation or data cleaning.

The application of these augmentation methods aimed to normalize the occurrence
rates across categories to a target number, approximately 115,474, for most methods,
indicative of the level set to achieve class balance.
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Table 4. Comparison of data augmentation techniques.

TechniquesTechniquesTechniques OriginalOriginalOriginal SMOTESMOTESMOTE ADASYNADASYNADASYN Borderline-Borderline-Borderline- Tomek-Tomek-Tomek- SMOTEENNSMOTEENNSMOTEENN SMOTESMOTESMOTE
_MITRE_MITRE_MITRE SMOTESMOTESMOTE LinksLinksLinks TomekTomekTomek

Benign 144,279 115,474 115,870 115,474 48,353 107,187 114,001

Account Discovery Domain 60,997 115,474 115,480 115,474 40 114,351 115,334

Domain Trust Discovery 1581 115,474 115,533 115,474 238 113,080 115,030

Group Policy Discovery 715 115,474 115,473 115,474 25 114,503 115,258

Network Service Discovery 554 115,474 115,474 115,474 115,467 115,405 115,470

Reconnaissance Scan IP Blocks 411 115,474 115,478 115,474 62 115,357 115,473

Reconnaissance Vulnerability Scanning 84 115,474 115,751 115,474 1004 111,585 114,734

Reconnaissance Wordlist Scanning 80 115,474 115,475 115,474 577 115,474 115,474

Remote System Discovery 34 115,474 115,475 115,474 431 113,998 115,324

4.5. Machine Learning Models

Machine learning models like Naïve Bayes, K-nearest neighbor (KNN), XGBoost (XGB),
Gradient Boosting Machine (GBM), Logistic Regression, and Random Forest Classifier are
often preferred in predictive analytics due to their diverse strengths and applicability across
a wide range of problems. Each model brings a unique set of capabilities that makes it
suitable for different types of data and predictive tasks. The preference for these models in
various analytical scenarios stems from their ability to balance accuracy and computational
efficiency while providing solutions that are easy to interpret and implement in real-world
applications.

Table 5 reveals insightful trends regarding the behavior of these models under test
conditions.

Table 5. Accuracy values for different classifiers and data augmentation methods.

Classifier SMOTE ADASYN Borderline
SMOTE

Tomek
Links

SMOTEENN SMOTE
Tomek

Naïve
Bayes 0.497 0.453 0.602 0.718 0.668 0.659

KNN 0.824 0.978 0.981 0.992 0.993 0.990
XGB 0.838 0.925 0.942 0.993 0.981 0.977
GBM 0.842 0.940 0.953 0.989 0.989 0.984

RF 0.833 0.985 0.985 0.994 0.998 0.996
Logistic 0.738 0.741 0.847 0.807 0.860 0.851

RNN 0.759 0.823 0.888 0.979 0.647 0.797
LSTM 0.819 0.875 0.916 0.982 0.945 0.944

Naïve Bayes, traditionally valued for its simplicity and efficiency in handling large
datasets, shows moderate accuracy. This is expected given its assumption of feature inde-
pendence, which might not always hold true in real-world datasets. KNN’s performance is
generally better, reflecting its capability to adapt its classification strategy based on the local
data structure. However, KNN’s reliance on feature scaling and the curse of dimensionality
can sometimes affect its performance adversely.

XGB and GBM, both boosting models, exhibit high accuracy, underscoring their
strength in dealing with complex datasets that involve non-linear relationships among
features. These models build upon the errors of previous trees and, hence, can adaptively
improve their predictions. The high performance is indicative of their robustness, but it
also brings to light the need for careful parameter tuning to avoid fitting excessively to the
training data.
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Logistic Regression provides a reasonable accuracy that is useful in scenarios requiring
probability estimation for binary outcomes. Its performance is generally less competitive
compared to ensemble methods but offers valuable insights due to its interpretability.

Random Forest typically shows excellent accuracy due to its ability to reduce overfit-
ting through averaging multiple decision trees. This model is effective in handling various
types of data, including unbalanced datasets.

While the results suggest that ensemble methods like XGB, GBM, and Random Forest
tend to provide higher accuracy, this must be balanced with the understanding that high
accuracy can sometimes be a result of overfitting. Although overfitting is not the primary
focus of this discussion, it is implicitly relevant when interpreting the high accuracy of
complex models.

Finally, a CatBoost model was applied to the augmented dataset (“tomek_links.csv”)
obtained using the Tomek links approach. The result is shown in Figure 2.
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Figure 2. Features importance

4.6. Model Parameters

Table 6 shows the parameters employed by each model.
For GBM, key hyperparameters include the number of estimators, learning rate, and

maximum depth. Tuning these involves the following:

• n_estimators: A higher number typically increases model complexity. Cross-validation
helps find the optimal balance to avoid overfitting;

• learning_rate: Controls the contribution of each tree. Lower values typically require
more trees;

• max_depth: Limits the depth of individual trees to control overfitting.

For KNN, the primary hyperparameter is the number of neighbors:

• _neighbors: A small number may lead to noisy predictions, while a large number
can smooth out the prediction but may ignore local nuances. Grid search with cross-
validation is commonly used to identify the optimal value.
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Table 6. Models and their parameters.

Model Parameters

GBM n_estimators = 100, learning_rate = 0.1, max_depth = 3
KNN n_neighbors = 5
Logistic Regression max_iter = 10,000, class_weight = ’balanced’
LSTM optimizer = ’adam’, loss = ’categorical_crossentropy’, metrics = [’accuracy’]
GaussianNB none
Random Forest n_estimators = 100
RNN optimizer = ’adam’, loss = ’categorical_crossentropy’, metrics = [’accuracy’]
XGB n_estimators = 100, learning_rate = 0.1, max_depth = 3,

eval_metric = ’mlogloss’

Key hyperparameters include the maximum number of iterations and class weights:

• max_iter: Ensures convergence. Higher values allow the solver more iterations to
converge, which is especially useful for complex datasets;

• class_weight: Balances the dataset by adjusting weights inversely proportional to class
frequencies. It is particularly important in imbalanced datasets.

Critical hyperparameters for LSTM include the optimizer, loss function, and metrics:

• optimizer: “Adam” is commonly used for its adaptive learning rate capabilities;
• loss: “categorical_crossentropy” is used for multi-class classification problems;
• metrics: “accuracy” is a standard metric for evaluating classification performance.

GaussianNB typically requires no hyperparameter tuning as it is a straightforward
probabilistic model. In contrast, important hyperparameters include the number of estimators:

• n_estimators: The number of trees in the forest. More trees generally improve perfor-
mance but increase computation time.

Similar to LSTM, important hyperparameters include the optimizer, loss function,
and metrics:

• optimizer: “Adam” is preferred for its efficiency and performance;
• loss: “categorical_crossentropy” for multi-class classification;
• metrics: “accuracy” for performance evaluation.

Finally, for XGBoost, key hyperparameters include the number of estimators, learning
rate, maximum depth, and evaluation metric:

• n_estimators: Determines the number of boosting rounds;
• learning_rate: Lower rates require more boosting rounds;
• max_depth: Controls the depth of each tree to prevent overfitting;
• eval_metric: “mlogloss” is used for multi-class classification.

5. Discussion
5.1. Data Augmentation

The application of SMOTE and ADASYN was particularly effective in raising the
number of instances in the minority classes to those in the majority classes, highlighting
their capability to enhance intra-class variance through the generation of synthetic samples
based on feature space similarities between existing minority samples. Similarly, Borderline-
SMOTE, focusing on samples near the class borders, uniformly increased minority class
counts, potentially aiding model accuracy in borderline cases.

The method involving Tomek Links, which removes pairs of closely situated opposite
class samples, showed a substantial reduction in categories like “Benign”, suggesting its
efficacy in reducing major class sizes, thus deprioritizing the majority bias in data. SMO-
TEENN, which combines SMOTE’s over-sampling with ENN’s noise cleaning, appeared to
both augment and cleanse the dataset by adding to the minorities and removing outliers or
noise, respectively.
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Combining SMOTE with Tomek Links resulted in a similar effect to SMOTE but with
a slight reduction, indicating a cleaning effect on synthetic samples. These augmentation
techniques signify a robust effort to address dataset imbalances, aiming to enhance the
fairness and efficacy of predictive models.

5.2. Models

KNN achieved a high accuracy across all augmentation methods, with the highest
accuracy of 0.993 using SMOTEENN. This model benefits from data augmentation, particu-
larly with techniques like SMOTEENN and Tomek Links, which help in addressing class
imbalance effectively. The accuracy of XGB also remained high across all augmentation
methods, peaking at 0.993 with Tomek Links. XGB’s robustness and ability to handle
various types of augmented data contributed to its consistently high performance.

GBM showed a similar trend to XGB, with the highest accuracy of 0.989 using Tomek
Links and SMOTEENN. The boosting approach in GBM makes it resilient to overfitting,
even when augmented data are used. Random Forest (RF) achieved the highest accuracy
of all models, with a maximum of 0.998 using SMOTEENN. The ensemble nature of RF
allows it to generalize well across different augmented datasets.

Logistic Regressor displayed moderate performance, with the highest accuracy of
0.860 using SMOTEENN. The linear nature of this model might limit its ability to fully
leverage the complex patterns introduced by some augmentation methods. RNN showed
variable performance, with a peak accuracy of 0.979 using Tomek Links. The sequential
nature of RNNs may benefit from Tomek Links’ ability to clean noisy samples. LSTM,
like RNN, showed improved performance with Tomek Links (0.982) and also benefited
from other methods like SMOTEENN and SMOTETomek. LSTM’s capability to capture
long-term dependencies aids in leveraging augmented data effectively.

The choice of data augmentation technique has a significant impact on the performance
of machine learning models. Techniques like SMOTEENN and Tomek Links generally yield
higher accuracies, especially for models such as KNN, XGB, GBM, and RF. These findings
highlight the importance of selecting appropriate data augmentation methods based on the
machine learning model’s characteristics and the dataset’s nature.

Addressing the computational costs and efficiency of the data augmentation tech-
niques and models involves several considerations. While data augmentation techniques
can significantly improve the balance of the dataset and enhance model performance,
they also introduce additional computational overhead. This overhead stems from the
need to generate synthetic samples, which can be resource-intensive, especially for large
datasets. To mitigate these costs, this study explored optimization strategies that stream-
line the augmentation process without compromising the quality of the generated data.
This involves selecting appropriate parameters for each technique to balance the trade-off
between computational efficiency and the effectiveness of the augmentation. For instance,
optimizing the number of nearest neighbors in SMOTE or adjusting the density distribution
in ADASYN can reduce unnecessary computations.

5.3. Features Importance

Regarding the various features commonly involved in network traffic data, which are
crucial for identifying potentially malicious activities, the CatBoost model provided the
following ranked features by importance:

• orig_bytes : This feature, representing the number of bytes that originated from the
source, is identified as the most significant predictor. The high importance of this
feature suggests that the volume of data sent from the source is a critical indicator of
anomalous behavior.

• src_port and dest_port: The source and destination ports also play vital roles, indi-
cating that particular ports may be more susceptible to exploitation or are commonly
used by attackers.
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• duration: The duration of the connection is another key feature, with longer connec-
tions possibly being indicative of data exfiltration activities.

• resp_bytes and resp_pkts: These features represent the response bytes and packets, re-
spectively, highlighting the importance of the response size and frequency in detecting
unusual responses that could signify a breach.

Regarding typical attack patterns, large orig_bytes values combined with extended
duration are typical indicators. Effective detection rules should flag high data volume trans-
fers, especially if they occur during off-hours or from unexpected sources. Unusual src_port
and dest_port activity can signify reconnaissance efforts. Detection rules should monitor
for spikes in port activity or access attempts to ports not typically used by legitimate appli-
cations within the organization. Moreover, long duration sessions should be scrutinized,
especially if coupled with high resp_bytes. This pattern can indicate persistent attackers
attempting to maintain access or exfiltrate data over extended periods. Based on these
observations, different strategies can be considered to develop more effective detection
rules. For example, it is recommended to establish thresholds for orig_bytes and duration
that, when exceeded, trigger alerts. Specifically, a rule might flag any outgoing connec-
tion exceeding a certain data volume within a specific timeframe. Rules can also identify
unusual port usage patterns, such as multiple access attempts to non-standard ports or a
high frequency of connection attempts within a short period. This would help detect port
scanning and early stages of attacks. ML models can be trained to learn normal patterns
of src_port, dest_port, orig_bytes, and resp_pkts. Any significant deviations from these
learned patterns can be flagged as potential threats. More sophisticated attack patterns can
be detected by combining multiple features. For instance, a rule could flag connections
with high orig_bytes and a long duration originating from an uncommon src_port and
targeting an uncommon dest_port. Finally, user and system behaviors over time should be
monitored. Sudden changes in data transfer volumes or connection durations that deviate
from established behavior profiles can indicate compromised accounts or systems.

Updating models in response to evolving cyber threats requires a dynamic and con-
tinuous approach to ensure that detection systems remain effective against new and so-
phisticated attack patterns. One potential strategy is the implementation of a continuous
learning framework. In this framework, the model is periodically retrained using recent
data, which helps incorporate the latest threat patterns and anomalies observed in the
network traffic. Another strategy involves the use of ensemble learning techniques. By
combining multiple models, each trained on different aspects or time frames of the data,
the system can achieve greater robustness against varying attack strategies. Ensemble
methods can also incorporate new models trained on recent data, allowing the system to
integrate fresh insights without completely discarding the knowledge from older models.
Moreover, implementing a feedback loop from the security operations center (SOC) can be
highly beneficial. When a potential threat is detected, the SOC can provide feedback on
whether it was a true positive or a false positive. This feedback can be used to fine-tune
the model, improving its accuracy over time. Data augmentation techniques play a crucial
role in updating models. By continuously generating synthetic data that reflect the latest
attack patterns and scenarios, the training dataset can be expanded and diversified. This
approach helps in maintaining the model’s effectiveness against a wide range of threats,
including those that may not be prevalent in the historical data. Anomaly detection can be
enhanced by integrating unsupervised learning methods alongside supervised ones. While
supervised models are trained on labeled data, unsupervised models can identify new and
unusual patterns without prior knowledge. By combining these approaches, the detection
system can adapt to novel attack methods that deviate from known patterns.

6. Conclusions and Future Work

The adoption of advanced data augmentation techniques within supervised learning
models significantly enhances the robustness and efficacy of cyberattack detection systems.
This research demonstrates that by integrating SMOTE, ADASYN, and Tomek links, not
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only can the predictive accuracy be improved, but the generalizability of the models across
diverse and evolving cyber threat landscapes can also be substantially enhanced.

Furthermore, our findings underscore the importance of leveraging a hybrid approach
to data augmentation, which meticulously addresses the challenges of imbalanced datasets
prevalent in cybersecurity applications. By employing these techniques, we successfully
minimized the overfitting potential and improved the detection rates of cyberattacks.

As cybersecurity threats continue to evolve in complexity and subtlety, the ability of
detection systems to adapt and respond with nuanced understanding becomes increasingly
critical. The techniques developed and tested in this study support more sophisticated,
adaptive responses to cyber threats, empowering security professionals with tools that are
both reactive and preemptively adaptive.

Future work will explore the impact of the computational cost and efficiency of the
augmentation methods, providing deeper insights into their practical applications. Further
analysis on tailored cost-sensitive learning strategies will be pursued, where the cost of
misclassifying minority classes is set higher than that of the majority classes to compel the
model to pay more attention to the underrepresented classes. These measures are crucial for
building robust models that perform well across all categories and are not biased toward
the majority. Finally, more complex mechanisms of explanation exploiting consolidated
techniques, such as LIME (Local Interpretable Model-Agnostic Explanations) and SHAP
(SHapley Additive exPlanations), will be included to acquire a deeper understanding
of cyberattacks.
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SVM Support Vector Machines
XGB eXtreme Gradient Boost

Appendix A

Appendix A.1. Additional Details

This section details the precision achieved when predicting the values of the tech-
niques_mitre distribution.

Appendix A.1.1. GBM
SMOTE

Table A1. Accuracy: 0.8420.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.68 0.71 0.69 23,003
benign 0.55 0.47 0.51 23,309
domain_trust_discovery 0.54 0.54 0.54 23,141
group_policy_discovery 0.97 0.96 0.96 23,008
network_service_discovery 0.95 0.97 0.96 23,029
reconnaissance_scan_ip_blocks 0.98 0.98 0.98 23,036
reconnaissance_vulnerability_scanning 0.90 0.98 0.94 22,971
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 0.99 0.99 0.99 23,156

ADASYN

Table A2. Accuracy: 0.9402.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.96 0.99 0.98 23,170
benign 0.93 0.55 0.69 23,287
domain_trust_discovery 0.93 0.97 0.95 23,051
group_policy_discovery 0.97 0.99 0.98 22,987
network_service_discovery 1.00 1.00 1.00 22,985
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,138
reconnaissance_vulnerability_scanning 0.75 0.97 0.85 23,251
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,209
remote_system_discovery 0.97 0.99 0.98 22,924

Borderline SMOTE

Table A3. Accuracy: 0.9539.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.99 1.00 1.00 23,067
benign 0.96 0.62 0.75 23,253
domain_trust_discovery 0.90 0.99 0.94 22,971
group_policy_discovery 1.00 1.00 1.00 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,023
reconnaissance_vulnerability_scanning 0.79 0.98 0.87 22,968
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 1.00 1.00 1.00 23,163



Eng 2024, 5 2192

Tomek Links

Table A4. Accuracy: 0.9895.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.40 0.29 0.33 7
benign 0.97 0.99 0.98 9535
domain_trust_discovery 0.00 0.00 0.00 58
group_policy_discovery 1.00 0.25 0.40 4
network_service_discovery 1.00 1.00 1.00 23,225
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 16
reconnaissance_vulnerability_scanning 0.59 0.43 0.50 192
reconnaissance_wordlist_scanning 1.00 1.00 1.00 115
remote_system_discovery 0.00 0.00 0.00 88

SMOTEENN

Table A5. Accuracy: 0.9892.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.98 1.00 0.99 22,784
benign 0.98 0.93 0.96 21,615
domain_trust_discovery 1.00 0.99 0.99 22,536
group_policy_discovery 0.99 0.99 0.99 23,026
network_service_discovery 1.00 1.00 1.00 22,956
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,013
reconnaissance_vulnerability_scanning 0.96 1.00 0.98 22,359
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,256
remote_system_discovery 1.00 1.00 1.00 22,643

SMOTETomek

Table A6. Accuracy: 0.9842.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.97 1.00 0.98 23,164
benign 0.98 0.90 0.94 22,718
domain_trust_discovery 1.00 0.98 0.99 22,862
group_policy_discovery 0.99 0.99 0.99 23,048
network_service_discovery 1.00 1.00 1.00 23,213
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,065
reconnaissance_vulnerability_scanning 0.94 1.00 0.97 22,871
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 1.00 0.99 0.99 23,077

Appendix A.1.2. KNN
SMOTE

Table A7. Accuracy: 0.8245.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.59 0.64 0.61 23,003
benign 0.46 0.39 0.42 23,309
domain_trust_discovery 0.50 0.51 0.50 23,141
group_policy_discovery 0.97 0.97 0.97 23,008
network_service_discovery 0.97 0.98 0.97 23,029
reconnaissance_scan_ip_blocks 0.98 0.98 0.98 23,036
reconnaissance_vulnerability_scanning 0.95 0.97 0.96 22,971
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Table A7. Cont.

Techniques_Mitre Precision Recall F1-Score Support

reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 0.99 0.99 0.99 23,156

ADASYN

Table A8. Accuracy: 0.9782.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.98 1.00 0.99 23,170
benign 0.96 0.85 0.90 23,287
domain_trust_discovery 0.94 0.99 0.96 23,051
group_policy_discovery 1.00 1.00 1.00 22,987
network_service_discovery 1.00 1.00 1.00 22,985
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,138
reconnaissance_vulnerability_scanning 0.94 0.98 0.96 23,251
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,209
remote_system_discovery 0.99 1.00 1.00 22,924

Borderline SMOTE

Table A9. Accuracy: 0.9812.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.99 1.00 1.00 23,067
benign 0.95 0.88 0.91 23,253
domain_trust_discovery 0.92 0.98 0.95 22,971
group_policy_discovery 1.00 1.00 1.00 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,023
reconnaissance_vulnerability_scanning 0.97 0.98 0.98 22,968
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 1.00 1.00 1.00 23,163

Tomek Links

Table A10. Accuracy: 0.9925.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.75 0.43 0.55 7
benign 0.99 0.99 0.99 9535
domain_trust_discovery 0.69 0.84 0.76 58
group_policy_discovery 0.33 0.25 0.29 4
network_service_discovery 1.00 1.00 1.00 23,225
reconnaissance_scan_ip_blocks 0.93 0.88 0.90 16
reconnaissance_vulnerability_scanning 0.59 0.45 0.51 192
reconnaissance_wordlist_scanning 1.00 0.99 1.00 115
remote_system_discovery 0.75 0.92 0.83 88

SMOTEENN

Table A11. Accuracy: 0.9938.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.98 1.00 0.99 22,784
benign 0.99 0.96 0.97 21,615
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Table A11. Cont.

Techniques_Mitre Precision Recall F1-Score Support

domain_trust_discovery 1.00 0.99 1.00 22,536
group_policy_discovery 0.99 1.00 1.00 23,026
network_service_discovery 1.00 1.00 1.00 22,956
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,013
reconnaissance_vulnerability_scanning 0.99 1.00 0.99 22,359
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,256
remote_system_discovery 0.99 1.00 1.00 22,643

SMOTETomek

Table A12. Accuracy: 0.9902.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.97 0.99 0.98 23,164
benign 0.98 0.94 0.96 22,718
domain_trust_discovery 0.99 0.99 0.99 22,862
group_policy_discovery 0.99 1.00 1.00 23,048
network_service_discovery 1.00 1.00 1.00 23,213
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,065
reconnaissance_vulnerability_scanning 0.98 1.00 0.99 22,871
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 0.99 1.00 0.99 23,077

Appendix A.1.3. Logistic Regressor
SMOTE

Table A13. Accuracy: 0.7380.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.63 0.72 0.67 23,003
benign 0.35 0.12 0.18 23,309
domain_trust_discovery 0.47 0.17 0.25 23,141
group_policy_discovery 0.92 0.90 0.91 23,008
network_service_discovery 0.62 0.89 0.73 23,029
reconnaissance_scan_ip_blocks 0.88 0.96 0.92 23,036
reconnaissance_vulnerability_scanning 0.89 0.91 0.90 22,971
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 0.61 0.97 0.75 23,156

ADASYN

Table A14. Accuracy: 0.7414.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.64 0.47 0.54 23,170
benign 0.74 0.16 0.26 23,287
domain_trust_discovery 0.88 0.85 0.87 23,051
group_policy_discovery 0.54 0.63 0.58 22,987
network_service_discovery 1.00 1.00 1.00 22,985
reconnaissance_scan_ip_blocks 0.90 0.98 0.94 23,138
reconnaissance_vulnerability_scanning 0.72 0.96 0.82 23,251
reconnaissance_wordlist_scanning 0.99 1.00 0.99 23,209
remote_system_discovery 0.42 0.64 0.51 22,924
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Borderline SMOTE

Table A15. Accuracy: 0.8470.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.84 0.69 0.76 23,067
benign 0.84 0.23 0.36 23,253
domain_trust_discovery 0.84 0.94 0.89 22,971
group_policy_discovery 0.84 0.92 0.88 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 0.96 1.00 0.98 23,023
reconnaissance_vulnerability_scanning 0.75 0.96 0.84 22,968
reconnaissance_wordlist_scanning 0.99 1.00 1.00 23,202
remote_system_discovery 0.65 0.88 0.75 23,163

Tomek Links

Table A16. Accuracy: 0.8070.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.02 0.43 0.03 7
benign 0.99 0.34 0.50 9535
domain_trust_discovery 0.20 0.86 0.32 58
group_policy_discovery 0.00 0.50 0.00 4
network_service_discovery 1.00 1.00 1.00 23,225
reconnaissance_scan_ip_blocks 0.01 1.00 0.03 16
reconnaissance_vulnerability_scanning 0.15 0.96 0.25 192
reconnaissance_wordlist_scanning 0.98 0.99 0.99 115
remote_system_discovery 0.03 0.97 0.06 88

SMOTEENN

Table A17. Accuracy: 0.8609.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.84 0.58 0.69 22,784
benign 0.76 0.46 0.57 21,615
domain_trust_discovery 0.96 0.93 0.95 22,536
group_policy_discovery 0.75 0.83 0.79 23,026
network_service_discovery 1.00 1.00 1.00 22,956
reconnaissance_scan_ip_blocks 0.93 0.99 0.96 23,013
reconnaissance_vulnerability_scanning 0.94 0.96 0.95 22,359
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,256
remote_system_discovery 0.64 0.98 0.78 22,643

SMOTETomek

Table A18. Accuracy: 0.8512.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.84 0.57 0.67 23,164
benign 0.74 0.42 0.54 22,718
domain_trust_discovery 0.95 0.93 0.94 22,862
group_policy_discovery 0.73 0.83 0.78 23,048
network_service_discovery 1.00 1.00 1.00 23,213
reconnaissance_scan_ip_blocks 0.92 0.99 0.95 23,065
reconnaissance_vulnerability_scanning 0.92 0.95 0.94 22,871
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 0.64 0.98 0.77 23,077
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Appendix A.1.4. LSTM
SMOTE

Table A19. Accuracy: 0.8194.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.68 0.70 0.69 23,003
benign 0.51 0.42 0.46 23,309
domain_trust_discovery 0.52 0.46 0.49 23,141
group_policy_discovery 0.95 0.93 0.94 23,008
network_service_discovery 0.91 0.96 0.93 23,029
reconnaissance_scan_ip_blocks 0.97 0.98 0.97 23,036
reconnaissance_vulnerability_scanning 0.90 0.98 0.94 22,971
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 0.85 0.97 0.90 23,156

ADASYN

Table A20. Accuracy: 0.8754.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.88 0.77 0.82 23,170
benign 0.93 0.37 0.53 23,287
domain_trust_discovery 0.91 0.92 0.92 23,051
group_policy_discovery 0.92 0.93 0.92 22,987
network_service_discovery 1.00 1.00 1.00 22,985
reconnaissance_scan_ip_blocks 0.97 1.00 0.99 23,138
reconnaissance_vulnerability_scanning 0.71 0.99 0.83 23,251
reconnaissance_wordlist_scanning 1.00 0.98 0.99 23,209
remote_system_discovery 0.70 0.94 0.80 22,924

Borderline SMOTE

Table A21. Accuracy: 0.9166.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.97 0.87 0.92 23,067
benign 0.81 0.45 0.58 23,253
domain_trust_discovery 0.86 0.98 0.92 22,971
group_policy_discovery 0.97 1.00 0.98 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 0.98 0.99 0.99 23,023
reconnaissance_vulnerability_scanning 0.75 0.99 0.85 22,968
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,202
remote_system_discovery 0.93 0.99 0.96 23,163

Tomek Links

Table A22. Accuracy: 0.9825.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.00 0.00 0.00 7
benign 0.95 0.99 0.97 9535
domain_trust_discovery 0.00 0.00 0.00 58
group_policy_discovery 0.00 0.00 0.00 4
network_service_discovery 1.00 0.99 1.00 23,225
reconnaissance_scan_ip_blocks 0.00 0.00 0.00 16
reconnaissance_vulnerability_scanning 0.00 0.00 0.00 192
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Table A22. Cont.

Techniques_Mitre Precision Recall F1-Score Support

reconnaissance_wordlist_scanning 0.90 0.99 0.94 115
remote_system_discovery 0.00 0.00 0.00 88

SMOTEENN

Table A23. Accuracy: 0.9459.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.89 0.85 0.87 22,784
benign 0.95 0.80 0.87 21,615
domain_trust_discovery 0.99 0.95 0.97 22,536
group_policy_discovery 0.94 0.95 0.95 23,026
network_service_discovery 1.00 1.00 1.00 22,956
reconnaissance_scan_ip_blocks 0.99 0.99 0.99 23,013
reconnaissance_vulnerability_scanning 0.95 0.99 0.97 22,359
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,256
remote_system_discovery 0.83 0.98 0.90 22,643

SMOTETomek

Table A24. Accuracy: 0.9447.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.93 0.81 0.87 23,164
benign 0.90 0.81 0.85 22,718
domain_trust_discovery 0.98 0.96 0.97 22,862
group_policy_discovery 0.95 0.96 0.96 23,048
network_service_discovery 1.00 1.00 1.00 23,213
reconnaissance_scan_ip_blocks 0.98 1.00 0.99 23,065
reconnaissance_vulnerability_scanning 0.93 0.99 0.96 22,871
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 0.84 0.98 0.90 23,077

Appendix A.1.5. Naïve Bayes
SMOTE

Table A25. Accuracy: 0.4979.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.06 0.00 0.00 23,003
benign 0.14 0.00 0.00 23,309
domain_trust_discovery 0.23 0.02 0.03 23,141
group_policy_discovery 0.68 0.87 0.77 23,008
network_service_discovery 0.19 0.22 0.20 23,029
reconnaissance_scan_ip_blocks 0.73 0.48 0.57 23,036
reconnaissance_vulnerability_scanning 0.35 0.96 0.51 22,971
reconnaissance_wordlist_scanning 0.97 0.99 0.98 23,201
remote_system_discovery 0.46 0.94 0.62 23,156
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ADASYN

Table A26. Accuracy: 0.4532.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.35 0.11 0.17 23,170
benign 0.31 0.04 0.07 23,287
domain_trust_discovery 0.85 0.87 0.86 23,051
group_policy_discovery 0.54 0.06 0.11 22,987
network_service_discovery 0.98 1.00 0.99 22,985
reconnaissance_scan_ip_blocks 0.21 0.95 0.35 23,138
reconnaissance_vulnerability_scanning 0.69 0.23 0.34 23,251
reconnaissance_wordlist_scanning 0.73 0.61 0.66 23,209
remote_system_discovery 0.29 0.22 0.25 22,924

Borderline SMOTE

Table A27. Accuracy: 0.6020.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.60 0.17 0.26 23,067
benign 0.28 0.04 0.07 23,253
domain_trust_discovery 0.86 0.93 0.89 22,971
group_policy_discovery 0.98 0.16 0.28 23,220
network_service_discovery 0.98 1.00 0.99 22,987
reconnaissance_scan_ip_blocks 0.32 1.00 0.49 23,023
reconnaissance_vulnerability_scanning 0.71 0.70 0.71 22,968
reconnaissance_wordlist_scanning 0.86 0.76 0.81 23,202
remote_system_discovery 0.49 0.66 0.56 23,163

Tomek Links

Table A28. Accuracy: 0.7185.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.00 0.14 0.00 7
benign 0.98 0.03 0.06 9535
domain_trust_discovery 0.12 0.86 0.21 58
group_policy_discovery 0.06 0.25 0.10 4
network_service_discovery 0.99 1.00 0.99 23,225
reconnaissance_scan_ip_blocks 0.00 0.81 0.01 16
reconnaissance_vulnerability_scanning 0.04 0.97 0.07 192
reconnaissance_wordlist_scanning 0.93 0.99 0.96 115
remote_system_discovery 0.34 0.94 0.50 88

SMOTEENN

Table A29. Accuracy: 0.6688.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.40 0.35 0.37 22,784
benign 0.34 0.03 0.06 21,615
domain_trust_discovery 0.90 0.90 0.90 22,536
group_policy_discovery 0.81 0.07 0.13 23,026
network_service_discovery 0.99 1.00 0.99 22,956
reconnaissance_scan_ip_blocks 0.36 0.92 0.51 23,013
reconnaissance_vulnerability_scanning 0.70 0.74 0.72 22,359
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,256
remote_system_discovery 0.79 0.98 0.88 22,643
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SMOTETomek

Table A30. Accuracy: 0.6599.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.40 0.35 0.37 23,164
benign 0.33 0.03 0.05 22,718
domain_trust_discovery 0.88 0.90 0.89 22,862
group_policy_discovery 0.81 0.08 0.14 23,048
network_service_discovery 0.99 1.00 0.99 23,213
reconnaissance_scan_ip_blocks 0.34 0.91 0.50 23,065
reconnaissance_vulnerability_scanning 0.68 0.74 0.71 22,871
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,202
remote_system_discovery 0.80 0.94 0.87 23,077

Appendix A.1.6. Random Forest
SMOTE

Table A31. Accuracy: 0.8338.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.62 0.62 0.62 23,003
benign 0.45 0.42 0.43 23,309
domain_trust_discovery 0.58 0.61 0.59 23,141
group_policy_discovery 0.97 0.97 0.97 23,008
network_service_discovery 0.97 0.96 0.97 23,029
reconnaissance_scan_ip_blocks 0.97 0.97 0.97 23,036
reconnaissance_vulnerability_scanning 0.94 0.98 0.96 22,971
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 1.00 1.00 1.00 23,156

ADASYN

Table A32. Accuracy: 0.9856.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 1.00 1.00 1.00 23,170
benign 0.97 0.90 0.93 23,287
domain_trust_discovery 0.94 0.98 0.96 23,051
group_policy_discovery 1.00 1.00 1.00 22,987
network_service_discovery 1.00 1.00 1.00 22,985
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,138
reconnaissance_vulnerability_scanning 0.96 0.99 0.98 23,251
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,209
remote_system_discovery 1.00 1.00 1.00 22,924

Borderline SMOTE

Table A33. Accuracy: 0.9856.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 1.00 1.00 1.00 23,067
benign 0.98 0.89 0.93 23,253
domain_trust_discovery 0.91 0.98 0.95 22,971
group_policy_discovery 1.00 1.00 1.00 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,023
reconnaissance_vulnerability_scanning 0.98 1.00 0.99 22,968
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Table A33. Cont.

Techniques_Mitre Precision Recall F1-Score Support

reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 1.00 1.00 1.00 23,163

Tomek Links

Table A34. Accuracy: 0.9947.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.75 0.43 0.55 7
benign 0.99 0.99 0.99 9535
domain_trust_discovery 0.74 0.74 0.74 58
group_policy_discovery 1.00 0.25 0.40 4
network_service_discovery 1.00 1.00 1.00 23,225
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 16
reconnaissance_vulnerability_scanning 0.72 0.52 0.61 192
reconnaissance_wordlist_scanning 1.00 1.00 1.00 115
remote_system_discovery 1.00 0.98 0.99 88

SMOTEENN

Table A35. Accuracy: 0.9981.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 1.00 1.00 1.00 22,784
benign 1.00 0.98 0.99 21,615
domain_trust_discovery 1.00 1.00 1.00 22,536
group_policy_discovery 1.00 1.00 1.00 23,026
network_service_discovery 1.00 1.00 1.00 22,956
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,013
reconnaissance_vulnerability_scanning 0.99 1.00 0.99 22,359
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,256
remote_system_discovery 1.00 1.00 1.00 22,643

SMOTETomek

Table A36. Accuracy: 0.9966.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 1.00 1.00 1.00 23,164
benign 1.00 0.97 0.98 22,718
domain_trust_discovery 1.00 1.00 1.00 22,862
group_policy_discovery 1.00 1.00 1.00 23,048
network_service_discovery 1.00 1.00 1.00 23,213
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,065
reconnaissance_vulnerability_scanning 0.98 1.00 0.99 22,871
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 1.00 1.00 1.00 23,077



Eng 2024, 5 2201

Appendix A.1.7. RNN
SMOTE

Table A37. Accuracy: 0.7594.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.69 0.68 0.69 23,003
benign 0.48 0.08 0.14 23,309
domain_trust_discovery 0.47 0.50 0.48 23,141
group_policy_discovery 0.96 0.87 0.92 23,008
network_service_discovery 0.71 0.91 0.80 23,029
reconnaissance_scan_ip_blocks 0.96 0.86 0.91 23,036
reconnaissance_vulnerability_scanning 0.80 0.97 0.88 22,971
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 0.66 0.97 0.79 23,156

ADASYN

Table A38. Accuracy: 0.8231.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.80 0.68 0.74 23,170
benign 0.92 0.29 0.44 23,287
domain_trust_discovery 0.91 0.89 0.90 23,051
group_policy_discovery 0.78 0.93 0.85 22,987
network_service_discovery 1.00 0.99 0.99 22,985
reconnaissance_scan_ip_blocks 0.96 0.85 0.90 23,138
reconnaissance_vulnerability_scanning 0.69 0.95 0.80 23,251
reconnaissance_wordlist_scanning 0.94 1.00 0.97 23,209
remote_system_discovery 0.62 0.83 0.71 22,924

Borderline SMOTE

Table A39. Accuracy: 0.8881.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.95 0.77 0.85 23,067
benign 0.93 0.34 0.50 23,253
domain_trust_discovery 0.86 0.96 0.91 22,971
group_policy_discovery 0.97 0.98 0.97 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 0.90 0.99 0.94 23,023
reconnaissance_vulnerability_scanning 0.74 0.99 0.84 22,968
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,202
remote_system_discovery 0.78 0.99 0.87 23,163

Tomek Links

Table A40. Accuracy: 0.9790.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.00 0.00 0.00 7
benign 0.95 0.98 0.97 9535
domain_trust_discovery 0.00 0.00 0.00 58
group_policy_discovery 0.00 0.00 0.00 4
network_service_discovery 0.99 0.99 0.99 23,225
reconnaissance_scan_ip_blocks 0.00 0.00 0.00 16
reconnaissance_vulnerability_scanning 0.00 0.00 0.00 192
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Table A40. Cont.

Techniques_Mitre Precision Recall F1-Score Support

reconnaissance_wordlist_scanning 0.80 0.98 0.88 115
remote_system_discovery 0.00 0.00 0.00 88

SMOTEENN

Table A41. Accuracy: 0.6472.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.79 0.31 0.45 22,784
benign 0.25 0.65 0.36 21,615
domain_trust_discovery 0.89 0.94 0.91 22,536
group_policy_discovery 0.88 0.58 0.70 23,026
network_service_discovery 1.00 0.96 0.98 22,956
reconnaissance_scan_ip_blocks 0.47 0.92 0.62 23,013
reconnaissance_vulnerability_scanning 0.98 0.46 0.62 22,359
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,256
remote_system_discovery 0.00 0.00 0.00 22,643

SMOTETomek

Table A42. Accuracy: 0.7977.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.69 0.34 0.45 23,164
benign 0.57 0.61 0.59 22,718
domain_trust_discovery 0.99 0.93 0.96 22,862
group_policy_discovery 0.84 0.59 0.69 23,048
network_service_discovery 1.00 0.99 0.99 23,213
reconnaissance_scan_ip_blocks 0.85 0.89 0.87 23,065
reconnaissance_vulnerability_scanning 0.89 0.86 0.87 22,871
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,202
remote_system_discovery 0.55 0.98 0.70 23,077

Appendix A.1.8. XGB
SMOTE

Table A43. Accuracy: 0.8387.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.69 0.69 0.69 23,003
benign 0.55 0.49 0.51 23,309
domain_trust_discovery 0.53 0.53 0.53 23,141
group_policy_discovery 0.96 0.95 0.95 23,008
network_service_discovery 0.93 0.97 0.95 23,029
reconnaissance_scan_ip_blocks 0.98 0.98 0.98 23,036
reconnaissance_vulnerability_scanning 0.90 0.98 0.94 22,971
reconnaissance_wordlist_scanning 0.99 0.99 0.99 23,201
remote_system_discovery 0.99 0.98 0.98 23,156
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ADASYN

Table A44. Accuracy: 0.9254.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.93 0.98 0.96 23,170
benign 0.96 0.45 0.61 23,287
domain_trust_discovery 0.92 0.95 0.93 23,051
group_policy_discovery 0.96 0.98 0.97 22,987
network_service_discovery 1.00 1.00 1.00 22,985
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,138
reconnaissance_vulnerability_scanning 0.72 0.99 0.84 23,251
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,209
remote_system_discovery 0.94 0.98 0.96 22,924

Borderline SMOTE

Table A45. Accuracy: 0.9427.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.98 1.00 0.99 23,067
benign 0.96 0.51 0.67 23,253
domain_trust_discovery 0.87 0.99 0.92 22,971
group_policy_discovery 1.00 1.00 1.00 23,220
network_service_discovery 1.00 1.00 1.00 22,987
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,023
reconnaissance_vulnerability_scanning 0.75 1.00 0.86 22,968
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 1.00 1.00 1.00 23,163

Tomek Links

Table A46. Accuracy: 0.9932.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 1.00 0.29 0.44 7
benign 0.98 0.99 0.99 9535
domain_trust_discovery 0.64 0.88 0.74 58
group_policy_discovery 0.00 0.00 0.00 4
network_service_discovery 1.00 1.00 1.00 23,225
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 16
reconnaissance_vulnerability_scanning 0.63 0.33 0.44 192
reconnaissance_wordlist_scanning 1.00 1.00 1.00 115
remote_system_discovery 0.99 0.97 0.98 88

SMOTEENN

Table A47. Accuracy: 0.9819.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.97 0.98 0.98 22,784
benign 0.96 0.90 0.93 21,615
domain_trust_discovery 1.00 0.97 0.98 22,536
group_policy_discovery 0.97 0.99 0.98 23,026
network_service_discovery 1.00 1.00 1.00 22,956
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,013
reconnaissance_vulnerability_scanning 0.95 1.00 0.97 22,359
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,256
remote_system_discovery 0.99 0.99 0.99 22,643
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SMOTETomek

Table A48. Accuracy: 0.9771.

Techniques_Mitre Precision Recall F1-Score Support

account_discovery_domain 0.95 0.99 0.97 23,164
benign 0.96 0.87 0.91 22,718
domain_trust_discovery 0.99 0.97 0.98 22,862
group_policy_discovery 0.97 0.98 0.98 23,048
network_service_discovery 1.00 1.00 1.00 23,213
reconnaissance_scan_ip_blocks 1.00 1.00 1.00 23,065
reconnaissance_vulnerability_scanning 0.93 1.00 0.96 22,871
reconnaissance_wordlist_scanning 1.00 1.00 1.00 23,202
remote_system_discovery 0.99 0.99 0.99 23,077

References
1. Apruzzese, G.; Laskov, P.; Montes de Oca, E.; Mallouli, W.; Brdalo Rapa, L.; Grammatopoulos, A.V.; Di Franco, F. The role of

machine learning in cybersecurity. Digit. Threat. Res. Pract. 2023, 4, 1–38. [CrossRef]
2. Mijwil, M.; Salem, I.E.; Ismaeel, M.M. The significance of machine learning and deep learning techniques in cybersecurity: A

comprehensive review. Iraqi J. Comput. Sci. Math. 2023, 4, 87–101.
3. Bagui, S.; Mink, D.; Bagui, S.; Ghosh, T.; McElroy, T.; Paredes, E.; Khasnavis, N.; Plenkers, R. Detecting reconnaissance and

discovery tactics from the MITRE ATT&CK framework in Zeek conn logs using spark’s machine learning in the big data
framework. Sensors 2022, 22, 7999. [CrossRef] [PubMed]

4. Tufan, E.; Tezcan, C.; Acartürk, C. Anomaly-based intrusion detection by machine learning: A case study on probing attacks to
an institutional network. IEEE Access 2021, 9, 50078–50092. [CrossRef]

5. Ravi, V.; Chaganti, R.; Alazab, M. Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent
network intrusion detection system. Comput. Electr. Eng. 2022, 102, 108156. [CrossRef]

6. Verkerken, M.; D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Towards model generalization for intrusion detection:
Unsupervised machine learning techniques. J. Netw. Syst. Manag. 2022, 30, 1–25. [CrossRef]

7. Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An unsupervised deep learning model for early network traffic
anomaly detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]

8. Aamir, M.; Zaidi, S.M.A. Clustering based semi-supervised machine learning for DDoS attack classification. J. King Saud-Univ.-
Comput. Inf. Sci. 2021, 33, 436–446. [CrossRef]

9. Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transitions Proc.
2022, 3, 91–99. [CrossRef]

10. Naik, B.; Mehta, A.; Yagnik, H.; Shah, M. The impacts of artificial intelligence techniques in augmentation of cybersecurity: A
comprehensive review. Complex Intell. Syst. 2022, 8, 1763–1780. [CrossRef]

11. Agrawal, G.; Kaur, A.; Myneni, S. A review of generative models in generating synthetic attack data for cybersecurity. Electronics
2024, 13, 322. [CrossRef]

12. Mohammad, R.; Saeed, F.; Almazroi, A.A.; Alsubaei, F.S.; Almazroi, A.A. Enhancing Intrusion Detection Systems Using a Deep
Learning and Data Augmentation Approach. Systems 2024, 12, 79. [CrossRef]

13. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking
the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]

14. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings
of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–8 June 2008; IEEE: Piscataway Township, NJ, USA, 2008; pp. 1322–1328.

15. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Proceed-
ings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 878–887.

16. Swana, E.F.; Doorsamy, W.; Bokoro, P. Tomek link and SMOTE approaches for machine fault classification with an imbalanced
dataset. Sensors 2022, 22, 3246. [CrossRef] [PubMed]

17. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
18. Yang, H.; Li, M. Software Defect Prediction Based on SMOTE-Tomek and XGBoost. In Bio-Inspired Computing: Theories and

Applications; Pan, L., Cui, Z., Cai, J., Li, L., Eds.; Springer: Singapore, 2022; pp. 12–31.
19. Handa, A.; Sharma, A.; Shukla, S.K. Machine learning in cybersecurity: A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.

2019, 9, e1306. [CrossRef]
20. Dasgupta, D.; Akhtar, Z.; Sen, S. Machine learning in cybersecurity: A comprehensive survey. J. Def. Model. Simul. 2022,

19, 57–106. [CrossRef]

http://doi.org/10.1145/3545574
http://dx.doi.org/10.3390/s22207999
http://www.ncbi.nlm.nih.gov/pubmed/36298351
http://dx.doi.org/10.1109/ACCESS.2021.3068961
http://dx.doi.org/10.1016/j.compeleceng.2022.108156
http://dx.doi.org/10.1007/s10922-021-09615-7
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.1016/j.jksuci.2019.02.003
http://dx.doi.org/10.1016/j.gltp.2022.04.020
http://dx.doi.org/10.1007/s40747-021-00494-8
http://dx.doi.org/10.3390/electronics13020322
http://dx.doi.org/10.3390/systems12030079
http://dx.doi.org/10.1613/jair.1.11192
http://dx.doi.org/10.3390/s22093246
http://www.ncbi.nlm.nih.gov/pubmed/35590937
http://dx.doi.org/10.1002/widm.1306
http://dx.doi.org/10.1177/1548512920951275


Eng 2024, 5 2205

21. Martínez Torres, J.; Iglesias Comesaña, C.; García-Nieto, P.J. Machine learning techniques applied to cybersecurity. Int. J. Mach.
Learn. Cybern. 2019, 10, 2823–2836. [CrossRef]

22. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv.
Neural Inf. Process. Syst. 2018, 31, 6639–6649.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13042-018-00906-1

	Introduction
	Aims of the Research
	Contribution of This Work

	Related Work
	Background
	Introduction
	Data Augmentation Techniques
	Supervised Learning Models
	Metrics
	Features' Weights

	Experiments
	Methodology
	The Environment
	The Dataset
	Data Augmentation
	Machine Learning Models
	Model Parameters

	Discussion
	Data Augmentation
	Models
	Features Importance

	Conclusions and Future Work
	Appendix A
	Additional Details
	GBM
	KNN
	Logistic Regressor
	LSTM
	Naïve Bayes
	Random Forest
	RNN
	XGB


	References

