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Abstract: We propose an empirical approach to estimate the impact of climate transition risk on
corporate revenues that specifically accounts for reputational risk. We employ the information on
disclosed Scope 3 emissions to proxy companies’ carbon footprint along the value chain. A threshold
regression is employed to identify the emission level above which reputational risk impacts revenues,
and we link this impact to a climate policy stringency indicator. We estimate the threshold regression
on a sample of companies within the European Union (EU), and find the threshold at around the
70th percentile of the Scope 3 emissions distribution. We find that companies with Scope 3 emissions
beyond the threshold experienced substantially lower revenue growth as climate policies have
become more stringent, compared to other companies.
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1. Introduction

The climate is an influential driver of global economic and social development [1].
Climate change, and a temperature increase above 2° compared to pre-industrial levels in
particular, could have devastating consequences on the environment and biodiversity [2],
human health [3], and migration [4], in addition to increased frequency and severity of
extreme weather events [5]. In 2015, 195 countries signed the Paris Agreement, but progress
on keeping the temperature rise below 2° has been too slow, urging more decisive climate
action to prevent far higher costs in the next decades [6].

Climate action, however, does come at a price. This is undoubtedly the cost of
investment in low-emission and climate-resilient energy infrastructure and reforming
policies to improve resource allocation [7], which is mainly sustained through public
expenditure and adds to the cost of stranded asset replacement and investment in low-
carbon production technologies to be paid for by the private sector. It must be added
that climate policies themselves will be a source of indirect costs for the business sector,
especially for some industries. For instance, transition pathways imply a high carbon price
and high fossil energy prices, translating into higher operative expenses for companies in
carbon-intensive industries.

For this reason, climate risk is commonly understood and assessed referring to its
dual nature: physical and transition risk. Physical risk emerges due to chronic changes
in temperature and precipitation levels that threaten the economy and, in particular, the
agricultural sector [8–15], as well as the increased frequency and intensity of extreme events,
such as flash floods and river floods [16], wildfires [17], and coastal flooding [18] that could
damage production assets. Physical risk exposure is expected to increase significantly in
the absence of actions to limit global warming, but its economic consequences are expected
to become severe in the long run. Transition risk, in contrast, represents the risk resulting
from the implementation of stringent climate policies, which would prevent the long-term
damages of global warming but generate a cost to be paid in the short term [19]. Not
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surprisingly, the trade-off between physical and transition risks has become a key issue
in climate risk assessment, as the evidence on the use of the Network for Greening the
Financial System (NGFS) scenarios [20] seems to suggest.

The extent to which transition risk exposure affects the financial and economic values
of companies has been the object of an increasing number of studies. Many of these studies
focused on the financial effects, trying to understand how such risk is capitalized on in stock
market prices. Among others, ref. [21] provided general evidence that stock markets react
negatively to transition shocks and browner companies are more heavily penalized than
their greener counterparts. One paper [22] looked at the behavior of financial operators in
relation to the Paris Agreement and found that stock markets have rewarded low-carbon
indices and penalized carbon-intensive ones. More specifically, ref. [23] found that carbon-
intensive firms pay a higher stock market premium not explained by other risk factors,
while [24] found that the cost of option protection against downside tail risks is larger for
firms with more carbon-intensive business models. Another paper [25] investigated the
EU stock market and found the presence of a negative green premium, i.e., lower stock
market returns for green and transparent companies, suggesting that investors are willing
to accept lower returns from less climate-risky companies. Another paper [26] looked more
specifically at a sample of companies covered by the EU ETS (European Trading Scheme)
regulation and found more heterogeneous results, yet ones that suggested the pricing of
transition risk in stock markets.

There are three primary drawbacks related to the assessment of transition risk impact
on the financial value of companies. The first is that the risk transmission channel is not
always clear. Transition risk may impact the company’s balance sheet and, as a consequence,
its stock market performance in multiple ways, stemming from the increased cost of
operations to the increased capital expenditure required for decarbonization and lower
returns due to market and reputational risk [27]. The second is that the proxy used for
transition risk exposure is the level of Scope 1 emissions. Hence, only the emissions directly
produced by the company in its operations are considered. This approach inevitably
excludes the transition risk related to the company’s energy mix (Scope 2 emissions) and
its value chain (Scope 3 emissions). The third is that the approaches are backward-looking
because they build the statistical models on past observations. A more stringent climate
policy, instead, implies changes that have not been experienced so far and for which it is
difficult to understand how markets may respond based on past observation.

Climate scenario analysis (CSA) represents a solution to these drawbacks, and for this
reason, TCFD recommends it, especially to large companies in highly exposed industries,
for their mandatory and voluntary disclosure of climate-related risks and opportunities.
A recent joint report of the Financial Stability Board and the Network for Greening the
Financial System investigated the use of scenario analysis among financial institutions [28]:
quite unsurprisingly, 53 institutions from 36 jurisdictions had already conducted or were
conducting similar exercises, testifying to the relevance that this tool is gaining in the
scientific and institutional communities. More interestingly, the report suggests that the
main reason for conducting CSA is to assess how climate risk could impact financial
stability (the macroprudential reason). Next comes the need to develop climate scenario
analysis capabilities within the organization, showing that the scope of CSA falls not only
in the interest of financial authorities but also financial institutions willing to assess their
counterpart’s exposure to climate-related risks.

The structure of a CSA is rather complex when it comes to measuring asset-level
physical risk exposure and expected damages on assets. Still, it is relatively straightforward
concerning the transition risk. Revenues are directly or indirectly related to the gross
domestic product, whose projections change across scenarios. Operating expenses (OpEx)
are projected to change according to carbon and energy prices. A higher carbon price
resulting from more stringent climate policies in a 1.5/2° scenario will result in higher
OpEx because of the higher cost the company has to pay to guarantee business continuity.
The expected OpEx impact depends on the company’s exposure: the higher the company’s



Sustainability 2023, 15, 5886 3 of 17

greenhouse gas (GHG) emissions, the higher the impact. The mechanism is nearly the same
for the energy prices, but the impact depends on the company’s energy mix. A more balanced
energy mix toward fossil fuels implies higher future OpEx in a Paris-aligned scenario in
which relatively high fossil fuel prices discourage their use. Capital expenditures (CapEx)
are also expected to increase if the company decides to invest in decarbonizing its production
or in changing the energy mix to reduce its balance sheet exposure to transition risk.

Carbon and energy prices, being associated with direct (Scope 1) and indirect (Scope 2)
emissions, respectively, cover a significant share of climate risk exposure for many com-
panies, but do not account for the reputational risk related to changes in consumer pref-
erences [27]. This risk is instead associated with Scope 3 emissions [29–31], since they
are produced along the value chain and hence represent the bulk of corporate emissions.
In a Paris-aligned scenario, companies with higher Scope 3 emissions will be penalized by
consumers with a downshift in demand for carbon-intensive products.

In the CSA application performed by the European Central Bank [30], for instance, a
value added tax (VAT) rate increase is assumed for companies with high Scope 3 emissions.
Although the VAT rate is not a typical climate policy instrument, because it is not going to be
used to influence customers’ decisions in reality, it hypothetically delivers, using standard
econometric methods, the desired effect in the CSA framework: companies with high Scope 3
emissions level will experience a decrease in market share and, hence, revenues. To the best
of the authors’ knowledge, the ECB approach is the first to incorporate reputational risk
in a CSA framework, as similar CSA applications do not include reputational risk among
their transmission channels. For instance, the Bank of England framework considers only
disruptive technological advances and the government’s climate policies among transition
risk channels [32]. The Netherlands Central Bank uses a very similar approach, with a more
pronounced focus on energy transition [33]. Likewise, reputational risk is not considered
in the European Systemic Risk Board framework [34] as well as in the Banque de France
application [35]. Similarly to institutional CSA exercises, academic attention on climate
reputational risk in the context of CSA has also been limited. For instance, the study by [36]
focuses mainly on the implications for companies of technology and policy shocks in response
to climate change. Considerations about reputational risk are not included in the work of [37],
an essential reference in climate scenario analysis. Certainly, the field is evolving rapidly and
much remains to be done to understand climate risk transition channels [38].

However, climate reputational risk has been largely investigated in the scientific
literature. Ref. [39] explore the connection between sustainability reporting and reputational
risk, suggesting the former may serve as a driver for the latter. Even though their analysis
is not strictly related to climate reputational risk, this hypothesis may well explain the
increasing number of companies reporting climate performance, especially after the Paris
Agreement [40]. Studies reporting on empirical evidence about climate transition risk
exposure and impacts on companies use policy and technology change events. For instance,
ref. [41] found evidence of stock value changes of largest polluting companies after climate-
related events that attracted media attention, such as the Paris Agreement and Greta
Thunberg’s speech at the United Nations. Another paper [42] studied the financial impacts
for US companies in the Oil and Gas sector from Trump’s announcement of the Paris
Agreement withdrawal. Both of these studies measure climate reputational risk indirectly,
hence in relation to a climate-relevant event, and do not link the risk to any company-
level measure of climate performance. The paper by [31] is the only empirical study,
to the best of the authors’ knowledge, that attempts to link reputational risk to climate
performance. They employ a standard econometric model and a sample of US firms to
investigate whether sources of carbon emissions are linked to firms’ reputational risk,
as measured by a score provided by RepRisk, an ESG data provider. They find that Scope 3
emissions only (i.e., not other sources of emissions) are positively associated with climate
reputational risk, and interpret this result as investors demanding a higher carbon premium
for their exposure to climate risks associated with increasing Scope 3 emissions. They do
not, however, investigate the effect of climate reputational risk on firms’ revenues.
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Notwithstanding the increasing interest in climate transition risk, extant literature has
not yet produced evidence of the economic and financial impacts of directly measured
reputational risk. We fill this gap, and hence extend the aforementioned literature, by
proposing a novel methodological approach to estimate the relationship between Scope 3
emissions, the most reliable proxy for reputational risk [31], and revenue change, using
historical data. The framework we propose builds on a regression of revenues growth
(target variable) on Scope 3 emissions (explanatory variable), accounting for standard
revenue growth determinants. Our approach departs from the standard linear regression
model, adopted by [30,31], in two ways. First, we assume that the main impact of Scope 3
emissions on revenue shows up after a critical level of Scope 3 only. We believe that this
assumption better reflects reality, where not all firms are effectively at risk, but only those
with the highest carbon footprints. Second, the impact on revenue growth depends on how
stringent climate policies have been and will be in the future.

To deliver this non-linear effect, our proposed methodology leverages the threshold
regression model, with interaction terms, as seen in [43]. This model is used to estimate
the level of Scope 3 emissions above which the main negative effect on revenues shows up.
The advantage of [43]’s approach is that it allows the threshold parameter to be estimated
from the data alongside the other model parameters, avoiding subjective assumptions
about the threshold level, which may be informed by external information. The interaction
term allows the estimated effect to vary with the policy stringency parameter which, in our
case, is the carbon price, as measured by the European Trading Scheme (ETS) price. In short,
the ETS mechanism, based on cap-and-trade, defines the rule for the emission allowances
(cap) to be distributed across industries and firms, and lets companies exchange the allow-
ances in excess (trade). The cap (the number of allowances) is periodically redefined and
diminished to make the traded part progressively more relevant while reducing overall
emissions. As the price is directly related to the overall number of allowances (the climate
policy instrument), it indirectly reflects the climate policy stringency.

The threshold regression model is estimated on an unbalanced panel of companies
within the EU, using economic, financial, and Scope 3 data from the Refinitiv, Organisa-
tion for Economic Co-operation and Development (OECD), and European Commission
databases. The overall sample includes 693 companies observed for 10 years, for a total of
3320 data points. The sample is limited only to those companies for which Scope 3 data are
available, which is a small number, admittedly. This is a clear limitation, because it is quite
possible that we are picking the highest polluting companies, and the interpretation of the
results and the scope of conclusions should be limited accordingly. However, the sample
selection involves the explanatory and not the target variable, and this allows us to exclude
estimation bias due to sample selection [44].

This paper contributes to two strands of empirical literature. On the one hand, it
provides novel evidence of the economic and financial impact of transition risk for compan-
ies, suggesting that Scope 3 emissions are a good predictor of revenue growth. We deem
this contribution relevant because many existing works so far focused on Scope 1 or Scope 2
(or both) emissions, and neglected Scope 3. While this choice was arguably justified by the
sample size reduction due to the little information on Scope 3 (as Scope 1 and Scope 2 data
are relatively more available), we show that it is relevant as well, and should be considered
in empirical analyses. On the other hand, our paper contributes to the growing number of
institutional works relying on CSA, by providing a novel framework for the consideration
of companies’ reputational risk.

The paper is structured as follows. Section 2 describes in detail the threshold regression
model and the data used for its estimation. Section 3 discusses the results of the empirical
analysis, and Section 4 concludes the paper.

2. Econometric Methodology and Data Description

This section starts by illustrating the form, variables, and estimation method of the
econometric model used to capture companies’ exposure to climate reputational risk. We
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then conduct a data exploration analysis, which anticipates the estimation results discussed
in the next section.

2.1. A Threshold Regression Approach to Model Climate Reputational Risk

The impact of climate reputational risk on corporate revenues is investigated by means
of econometric techniques. Specifically, we employ a threshold regression model which
takes the following form

%∆Revenuei,t = β0 + β1%∆Revenuei,t−1 + β2%∆TotalAssetsi,t

+ β3 log(PriceEUAtScope3i,t) + β4Di,t + β5Di,t log(PriceEUAtScope3i,t)

+ β6Countryi + β7Sizei + β8 Industryi + β9VATi,t + β10t + εi,t,

(1)

for i = 1, . . . , n and t = 1, . . . , T, and where i and t are index firms and years, respectively.
We are in the case T < n, and the first time lag of the dependent variable is among the
regressors. Hence, we are dealing with a dynamic threshold regression model for panel
data. We assume no individual effects in the error term εi,t, as we believe these are mostly
captured by the categorical regressors included in the model (Country, Size, and Industry).
We further assume cross-sectionally independent observations, and εi,t to have mean zero
and to be normally distributed, homoskedastic, and mean independent of all regressors
(which is a type of exogeneity assumption on these).

We define the yearly percentage changes of revenues and total assets as %∆Revenuei,t =
Revenuei,t−Revenuei,t−1

Revenuei,t−1
100 and %∆TotalAssetsi,t =

TotalAssetsi,t−TotalAssetsi,t−1
TotalAssetsi,t−1

100, respectively.
The choice of regressors is partly inspired by [30], who perform a climate stress-

test exercise to evaluate the impact of climate-related risks on firms’ main balance sheet
indicators, including revenues. The covariates proposed by [30] are discussed in what
follows. The first lag of the dependent variable, as well as a linear and deterministic time
trend t, are both supposed to capture time-related features of the dependent variable (serial
correlation and trending behavior, respectively). The percentage changes of total assets
%∆TotalAssetsi,t, are assumed to drive %∆Revenuesi,t in their same direction. For example,
a decrease in total assets due to the loss of a tangible asset comports with a reduction also
in revenues. The VAT rate (VAT), which varies little across countries and (for some of
those) also little over time, is included in the equation since tax increments could decrease
firms’ revenues, due to a drop in the demand for products subject to a higher taxation.
The categorical regressors, already mentioned above, are defined as follows. The variable
Country represents the country of headquarters of a firm, and varies across the 27 EU
Member States. The size of a company is determined by the number of its employees.
According to the guidelines drawn by [45], we distinguish four size categories:

• Micro, with ≤10 employees
• Small, with <50 employees
• Medium, with <250 employees
• Large, with ≥250 employees.

Contrary to the number of employees, Size is a variable that does not change over time,
as shown by the indeces in Equation (1). We, therefore, assume that the size of a company is
equal, through time, to its latest observed category.(There were no companies that changed
country or headquarters, in our sample.) Finally, the industry sectors correspond to level 2
of the Nomenclature of Economic Activities (NACE) Rev. 2 classification, which is made of
88 divisions identified by two-digit numerical codes, from 01 to 99 [46].

Going beyond [30], we also include log(PriceEUAtScope3i,t) among the regressors of
model (1), for the purpose of capturing climate reputational risk. Scope 3 emissions are all
indirect GHG emissions that occur along the value chain of a company, and are measured
in tonnes. They represent a company’s carbon footprint and are by far the majority of
firms’ total emissions, especially for large companies [30,47]. For this reason, they are of
high concern when it comes to climate change, and we employ them, instead of Scope 1 or
Scope 2 emissions, for modelling climate reputational risk.
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The variable PriceEUAt represents the price of the European Emission Allowances
(EUAs) of the EU ETS. The EU ETS is a cap-and-trade program that sets a limit, or “cap”,
to the amount of GHGs that can be emitted each year by power plants, industrial factories,
and the aviation sector covered by the system [48]. These entities receive or buy emission
allowances, which they can trade with one another as needed. Each allowance gives the
holder the right to emit one ton of carbon dioxide (CO2) equivalent. The cap decreases
every year, ensuring a fall in total emissions. The price of the EUAs, PriceEUAt, is common
among all EU Member States (thus, it is not characterized by a cross-sectional variation)
and it is measured in EUR/ton of CO2. Although it is related only to direct emissions of the
entities covered by the EU ETS, and not all firms in our sample are among them, we treat
it as a proxy for the carbon price. Consequently, by multiplying PriceEUAt by Scope3i,t
we obtain a proxy for time and firm-specific cost for Scope 3 emissions, which can be
interpreted as a climate policy stringency indicator on carbon-intensive goods: the higher
log(PriceEUAtScope3i,t), the greater a firm’s exposure to this climate policy indicator.

A summary of the definition of all variables discussed above is provided in Table A1.
There is, at last, another covariate which enters Equation (1): the dummy variable

Di,t =

{
1 if Scope3i,t ≥ γ

0 otherwise,

whose role is to create a discontinuity in the intercept and the effect of log(PriceEUAtScope3i,t)
on %∆Revenuei,t at Scope3i,t = γ, which is called the threshold parameter, i.e., for those
firm-year observations with Scope3i,t < γ, the binary variable Di,t is “switched off” and thus
the intercept of model (1) is represented by β0, and the impact of log(PriceEUAtScope3i,t)
on %∆Revenuei,t only by β3. However, for the remaining firm-year observations, Di,t “turns
on”, yielding a new constant for Equation (1), represented by β0 + β4, and a new regression
parameter for log(PriceEUAtScope3i,t): β3 + β5. Hence, β4 and β5 capture the difference
in the intercept and the effect of log(PriceEUAtScope3i,t) on %∆Revenuei,t, respectively,
between those firm-year observations whose levels of Scope 3 emissions are “high” (above
the threshold parameter) and those with “low” levels of Scope 3 emissions (below the
threshold parameter).

The discontinuity design implies that model (1) is linear in the β coefficients but
nonlinear in γ, i.e., if a value for γ were known, under the above-mentioned assumptions,
the β parameters of regression (1) could be consistently estimated by pooled ordinary least
squares (POLS), which is an estimation method for linear econometric models (in a panel
data setting). However, the threshold parameter is, as such, unknown and also needs to
be estimated from the data. For this reason, we need a nonlinear least squares (NLLS)
type of estimation approach, called concentrated least-squares. It works as follows ([43]
and [49] (Chapter 23)):

1. Consider a grid of values for γ which spans most of the range of Scope 3 emissions’
observations. These values can therefore be equally spaced between the 10th and 90th
quantiles of Scope3i,t.

2. For a gridvalue of γ, Equation (1) becomes linear and its β coefficients can be estimated
by POLS. The corresponding concentrated sum of squared residuals S(γ), which is a
measure of fit, can be calculated.

3. Step 2 is repeated for all grid values of γ. The NLLS estimator γ̂ is the gridvalue of γ
minimizing S(γ), and hence yielding the best fit of model (1).

One paper, [50], shows that under a correct model specification, as well as a consistent
estimation of γ, the POLS estimators of the β parameters have conventional asymptotic
distributions, and usual standard errors can therefore be used for inference. Moreover,
ref. [43] derives a Likelihood-Ratio (LR) test statistic for γ̂, which can be used to test for a
threshold. Under the assumptions on the error term discussed above, the LR test is built as
LR(γ) = N(S(γ)−S(γ̂))

S(γ̂)) , with N being the number of firm-year observations, and which is
calculated for every gridvalue of γ. Its asymptotic critical values are provided by [43].
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In practice, we expect β5 < 0, and such that Di,t = 1 comports with an overall
reduction of %∆Revenuei,t following a rise in log(PriceEUAtScope3i,t), i.e., compared to
low Scope 3 emitters, companies with high (above the estimated threshold parameter)
levels of Scope 3 emissions are subject to falls in revenues, if they become more exposed to
the policy stringency indicator (due to a rise in Scope 3 emissions and/or EUAs price). Such
a result would reflect the impact of climate reputational risk on corporate revenues: a firm
with a bad reputation because of its high levels of Scope 3 emissions is more exposed to
revenue losses if its carbon footprint becomes even higher, or if the climate policy becomes
more stringent. The reputation of firms that do not pollute much along their value chain
is instead assumed to be less, if ever, at stake. This implies that the impact of the climate
policy stringency should, for these firms, be insignificant with respect to (or weaker than)
the impact endured by high Scope 3 emitters. The threshold regression model allows us to
exactly model (and test for) this difference in climate reputational risk exposure between
high and non-high Scope 3 emitters. The definition of “high” will be given by the estimate
of the threshold parameter, γ̂.

2.2. Sample and Data Exploration

Data about all variables of model (1), except VATi,t, have been downloaded from the
Refinitiv (aka Thomson Reuters) database. Quantitative information about the VAT rate is
instead provided by the OECD and the European Commission. Our original sample con-
sisted of public and private firms whose headquarters are located in one of the 27 countries
of the EU, and time-varying variables are observed at a yearly frequency for the period
2011–2020 (T = 10). We did not consider firms located in other countries, because the ETS
market of the EU, set up in 2005, is the oldest compared to all other ETS markets, such as
those in New Zealand and South Korea. The longevity of the EU ETS market implies that
we have enough time series observations for PriceEUAt to be able to detect a relationship
between this variable and corporate revenues, in the time frame we consider.

This original sample underwent the following data cleaning process: negative values
for revenues and total assets were set to “not available”; only unique firms, based on the
International Securities Identification Number (ISIN), were kept in the sample; firm-year
observations with missing values for any of the variables in Equation (1) were removed from
the dataset; in order to obtain approximately Gaussian distributions for yearly percentage
change of revenues, displayed in Figure 1a, we removed those firm-year observations
above the 96th percentile of %∆Revenuei,t. Our final sample is made of 693 companies,
for a total of 3320 firm-year observations.

Figure 1b–d show the firm-average, over time, of %∆Revenuei,t, log(Scope3)i,t and
priceEUAt, respectively. We notice that revenue growth and the EUAs price have mostly
followed an upward trend over the past decade. Scope 3 emissions have, instead, fluctuated
around a rather constant level. The main deviation from these tendencies was observed
in 2020, which, due to the containment measures due to the COVID-19 pandemic, is
characterized by the deepest fall in both revenues growth and Scope 3 emissions, and by a
halt in the rise of the EUAs price.

The frequency of firm-year observations by country, size category, and NACE industry
sector, are illustrated in Figures A1, A2 and A4, Appendix A, respectively. As expected,
and with only a few exceptions, the majority of observations tend to be located in the largest
national economies of the EU. As such, these countries are indeed abounding in companies.

When it comes to firms’ size, it is evident that almost the totality of observations in
our sample refers to large companies. This massive concentration of one size category
can be explained mostly by firms’ attitude to disclosing their Scope 3 emissions. Such
information is usually shared by large companies, probably because their value chain tends
to be more polluting, and they are thus under higher pressure to be transparent about their
environmental impact. Moreover, they might have more resources to estimate their Scope 3
emissions—a process which is widely known to be challenging [51]. For the latter reason,
data about Scope 3 emissions are generally characterized by several missing values, which
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pose a problem for quantitative analyses. In our case, the non-disclosing companies tend
to be of smaller size, and are those who belong to the EU countries and NACE industry
sectors are not shown in Figures A1 and A4.

(a) (b)

(c) (d)
Figure 1. Descriptive plots of the variables of main interest. (a) Histogram of %∆Revenuei,t; (b) Firm-
average of %∆Revenuei,t; (c) Firm-average of log(Scope3)i,t; (d) Time series of priceEUAt.

The latter figure is self-explanatory but also rather involved. Therefore, we comple-
ment and summarize it by displaying, in Figure A3, the frequency of firm-year observations
in the economic sectors resulting from the Climate Policy Relevant Sectors (CPRS) classific-
ation of [37]. This is an aggregation of the NACE categories according to their relevance to
climate mitigation policies (which we use only in this data exploration section, not for the
estimation of model (1).

3. Empirical Results and Discussion

The discussion of the empirical results starts by investigating which value of Scope3i,t
creates the coefficients’ disruption in Equation (1). Figure 2a displays the concentrated
least-squares criterion S(γ), for quantiles of Scope 3 emissions within their interdecile
range. The criterion is minimized at the 71st quantile of Scope3i,t, which is equivalent to
γ̂ = 619, 628.4 tonnes of emissions per year. Therefore, in our analysis we may deem “high”
emitters along their value chain, those companies whose Scope 3 emissions are equal to or
above 619,628.4 tonnes per year.

Figure 2b shows the Likelihood-Ratio test LR(γ), for the same quantiles of Scope 3
emissions. Notice that LR(γ) and S(γ) follow the same pattern (which is implied by
the expression for LR(γ)) but their scales (reported on the respective vertical axis) are
different. In the same figure, we draw (with a dashed horizontal line) the 90% asymptotic
critical value of LR(γ), provided by [43], which can be used to test for the presence of a
threshold. Quantiles of Scope 3 emissions corresponding to levels of LR(γ) below the 90%
asymptotic critical value are candidates for being the value of the threshold parameter.
Hence, although LR(γ̂) (i.e., LR(γ) at the 71st quantile of Scope3i,t) seems fairly distant
from the other values of LR(γ), our estimate of the threshold parameter γ̂, is subject
to quite some uncertainty. Most of the other candidates are anyways gathered around
the 70th quantile of Scope3i,t, but there are also a few located near the 60th and 85th
quantiles. Despite the uncertainty surrounding γ̂, which could already be improved if more
observations for Scope 3 emissions were available, this result highlights that the coefficient
disruption most likely occurs for values in the top half of the Scope3i,t distribution. This is
in line with the expectation that climate reputational risk mainly affects companies whose
value chain is already highly polluting.
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(a)

(b)
Figure 2. Plots of the concentrated least-squares criterion and the Likelihood-Ratio test. (a) Con-
centrated least-squares criterion S(γ) (solid line) for quantiles of Scope3i,t. The dashed line repres-
ents the 71st quantile of Scope 3 emissions, which corresponds to γ̂ = 619, 628.4 tonnes per year;
(b) Likelihood-Ratio test LR(γ), for a threshold parameter (solid line). The horizontal axis reports the
quantiles of Scope3i,t. The dashed line represents the 90% asymptotic critical value of LR(γ).

Tabel 1 reports the estimation results for model (1). Based on the sign and the signific-
ance of the coefficient estimates, we first conclude that %∆Revenuei,t is positively related
to its previous value, %∆TotalAssetsi,t and the VAT rate. (The latter result is in contrast
with the above-discussed hypothesis of [30]. However, the empirical literature is unclear
about the relationship between VAT and economic growth [52].) The negative impact of
the linear time trend on revenue growth, which seems to be in contrast to what is observed
in Figure 1b, can partly be explained by the presence of 2020 in our sample, and partly
because the coefficient estimate at hand represents the effect of a “residual” time trend
(which is left after projecting the dependent variable on the other regressors).

Moving on to the covariates of main interest, we notice that log(PriceEUAtScope3i,t) is
not significantly related to %∆Revenuei,t, indicating that corporate revenues are not affected
by the policy stringency, and hence climate reputational risk, for companies not having
a high carbon footprint. On the contrary, the coefficient of Di,tlog(PriceEUAtScope3i,t) is
negative and significant at the 10% critical level. That is, for high Scope 3 emitters, a one
percent increase in PriceEUAtScope3i,t (the climate policy stringency indicator) is expected
to decrease Revenuei,t by 0.0092 (=0.0029 + 0.0063) percentage points (ceteris paribus), due
to climate reputational risk.

The parameter of Di,t is positive and significant at the 5% critical level, yielding an
upward shift in the regression intercept. The coefficients disruption is illustrated in Figure 3.
The solid line represents the marginal effect of log(PriceEUAtScope3i,t) on %∆Revenuei,t,
ceteris paribus. We clearly see the intercept change, as well as a more pronounced down-
ward slope, as Scope 3 emissions exceed the estimated threshold parameter. (Notice that,



Sustainability 2023, 15, 5886 10 of 17

for the purpose of illustrating the coefficients disruption at Scope3i,t = γ̂, Figure 3 reports
%∆Revenuei,t on the vertical axis and the quantiles of Scope3i,t on the horizontal axis. How-
ever, the solid line represents the relationship not between these two variables, but between
%∆Revenuei,t and log(PriceEUAtScope3i,t), which explains why it is called “marginal effect
of log(PriceEUAtScope3i,t) on %∆Revenuei,t”.)

Figure 3. Marginal effect of log(PriceEUAtScope3i,t), ceteris paribus, when Scope 3 emissions fall
below (left-hand solid line) and above (right-hand solid line) their 71st quantile. The horizontal axis
reports the quantiles of Scope3i,t. The dashed line represents the 71st quantile of Scope 3 emissions,
which corresponds to γ̂ = 619,628.4 tonnes per year.

In line with our expectations outlined in Section 2, the threshold regression model
allowed us to identify a difference in climate reputational risk exposure between high and
non-high Scope 3 emitters. Namely, companies that are not highly polluting along their
value chain are not exposed to climate reputational risk. Conversely, high Scope 3 emitters
are subject to revenue losses, because of the same risk. Through the estimation of the model,
we found that we can target as “high” emitters those companies who produce at least
619,628.4 tonnes of Scope 3 emissions per year. However, this estimate is indicative as it is
subject to some uncertainty, and should therefore be taken with caution. That is, firms with
levels of Scope 3 emissions not far below this value are likely also to be subject to climate
reputational risk.

The difference between the sample sizes reported in Table 1 and in Section 2.2 is due
to the discarding of some observations, for the regression estimation, when lagging the
dependent variable.

Table 1. Estimation results for regression (1). The sample size is made of n = 561 companies and a
total of 2504 firm-year observations. The coefficient estimates of the categorical regressors are omitted
for the sake of simplicity. * p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.

Coefficient Estimate Std. Error t Statistic p-Value

Intercept 5.82 12.39 0.47 0.64
%∆Revenuei,t−1 0.07 0.02 3.64 2.8 × 10−9 ***
%∆TotalAssetsi,t 0.21 0.01 16.07 2.2 × 10−16 ***
log(PriceEUAtScope3i,t) −0.29 0.18 −1.62 0.11
Di,t 13.43 5.85 2.29 0.02 **
Di,t log(PriceEUAtScope3i,t) −0.63 0.34 −1.87 0.06 *
VATi,t 1.14 0.55 2.09 0.04 **
t −0.64 0.11 −5.92 3.7 × 10−9 ***

γ 619,628.4
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We conclude this section by analyzing which economic sectors are at higher cli-
mate reputational risk. Figures 4 and 5 display the frequency of firm-year observations
with Scope3i,t ≥ γ̂, by NACE and CPRS industry sectors, respectively. Compared to
Figures A3 and A4, we clearly notice that the most polluting sectors (in terms of Scope 3
emissions) have climbed the ranks. The manufacturing, energy intensive, transportation,
utility, and fossil fuel sectors now occupy the highest positions, while leaving the last place
for the finance business, and no more room for the scientific R&D and agricultural sectors.

Figure 4. Frequency of firm-year observations with Scope3i,t ≥ γ̂, by NACE industry sector.
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Figure 5. Frequency of firm-year observations with Scope3i,t ≥ γ̂, by CPRS industry sector.

4. Conclusions

With climate policies becoming increasingly stringent to ensure an emission trajectory
compliant with the Paris Agreement goals, it is essential to understand the economic
and financial impact of climate transition risk on companies’ economic and financial
performances. The financial impact of transition risk, in particular, has so far been the main
object of academic studies. The empirical models used, in fact, are backwards-looking and
consider only emissions produced directly (Scope 1) and via energy consumption (Scope 2),
hence neglecting the emissions along the value chain (Scope 3) that determine the product
carbon footprint, which are certainly a significant source of market and reputational risk.

Understanding transition risk in the context of climate policy uncertainty requires
new approaches that are forward-looking, consider all types of emissions and risk sources,
and relate risk to the companies’ economics. Climate scenario analysis (CSA), used largely
by financial and banking authorities to monitor the systemic exposure to transition risk
and progressively being also adopted by financial institutions, is now becoming the new
paradigm for measuring climate risk impacts at the company level.

While measuring the economic impacts of transition risk related to Scope 1 and Scope 2
emissions is relatively straightforward, being the impact related to carbon and energy prices
increase, respectively, measuring the impact is more complex in the case of Scope 3. This
paper adopts an empirical approach suitable to measure the impact of Scope 3 emissions on
corporate revenues, accounting for non-linear impacts due to threshold effects and climate
policy stringency.

Based on our empirical results, we conclude that high Scope 3 emitters are exposed
to climate reputational risk, resulting in significantly increasing revenue losses as climate
policies become more stringent. This implies that a climate policy stringency not only tends
to reduce GHG emissions, but also affects the market through reputational risk. Moreover,
we find, as expected, that the firms most exposed to climate reputational risk belong to
those industry sectors with the most polluting value chain, such as the manufacturing one.

From an operational point of view, our findings reveal that firms’ reputations might be
at stake not only because of their Scope 1 and 2 emissions, but also because of the emissions
produced along their value chain. Companies can use our results to understand whether
they are at (potential) risk of reputational damage because of their carbon footprint, and
in that case, to indicatively quantify the impact of such risk exposure on their business per-
formance. Additionally, by adopting a methodology that links corporate Scope 3 emissions
to a climate policy stringency, our work calls on firms to be forward-looking by defining
a decarbonization plan for their value chain. This would allow them to mitigate climate
reputational risk, and thus avoid more severe economic damage in the future. However, we
also caution companies to take the uncertainty surrounding our results into account when
defining action plans based on the latter.

Our paper is uniquely located at the intersection of the literature on climate scenario
analysis (CSA) and climate reputational risk. As such, it has the limitation of having results
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that are not easily comparable to related research. Similarly to us, [30] modeled the impact
of climate reputational risk on corporate revenues through a pre-defined value added tax
(VAT) rate increase for companies with high Scope 3 emissions. We instead provide a
methodology to estimate the same impact from the data, and to condition it with a typical
climate policy instrument (instead of the VAT). Additionally, the statistical significance of
our results confirms the finding of [31] that climate reputational risk is associated with
Scope 3 emissions.
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Appendix A

Figure A1. Frequency of firm-year observations by country.
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Figure A2. Frequency of firm-year observations by size category.

Table A1. Variable definitions. Most of the descriptions correspond to the ones provided by the
corresponding data sources.

Variable Description Unit of Measure Source

%∆Revenuei,t

Yearly percentage change of the total revenue of
a company. Total revenue includes: revenue
from goods and services; revenue from
financing-related operations; revenue from
business-related activities.

% Refinitiv

%∆TotalAssetsi,t
Yearly percentage change of total assets
reported by a company. % Refinitiv

PriceEUAt
Price of the European Emission Allowances of
the EU Emissions Trading System €/ton of CO2 Refinitiv

Scope3i,t

Emissions from contractor-owned vehicles,
employee business travel (by rail or air), waste
disposal, outsourced activities, emissions from
product use by customers, emission from the
production of purchased materials, emissions
from electricity purchased for resale.

Tonnes Refinitiv

VATi,t

Value Added Tax rate. The VAT is a
consumption tax that is applied to nearly all
goods and services that are bought and sold for
use or consumption in the EU.

%
OECD &
European
Commission

Countryi
Country of Headquarters, also known as
Country of Domicile. Refinitiv

Sizei

The size of a company is determined (as
described in Section 2.1) by the number of
full-time employees, as reported, as of the fiscal
period end date (we download data about
firms’ number of full-time employees).

Refinitiv

Industryi

NACE (for the French term “Nomenclature
statistique des Activités Economiques dans la
Communauté Européenne”), is the industry
standard classification system used in the
European Union.

Refinitiv

Figure A3. Frequency of firm-year observations by CPRS industry sector.
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Figure A4. Frequency of firm-year observations by NACE industry sector.
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