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Abstract

We estimated the water demand elasticity through an econometric approach applied
to a large dataset of water demand observations for an irrigation water district in the
Emilia-Romagna region (Italy). Elasticity has been estimated also by considering sub-
samples of crops and irrigation technologies. The results show water demand inelastic
to price, with heterogeneity among crops and irrigation systems. More precisely, we
find higher levels of water demand responsiveness for efficient irrigation systems (drip
and sprinkler) than for traditional irrigation technologies such as furrow systems. In
the paper we provide various potential interpretations to this heterogeneity among
crops and irrigation systems.

Keywords Agricultural water management - Water demand elasticity -
Emilia-Romagna - “Just in case irrigation”

JEL Classification Q12 - Q25

1 Introduction

Water pricing and cost recovery are at the centre of the economic instruments currently
used for water management. The international debate on pricing water as a measure to
cope with water scarcity started in 1992 with the Dublin principles during the United
Nations International Conference on Water and the Environment (United Nations
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1992). The Dublin principles defined water as an economic good with an intrinsic
economic value that should be sustainably managed (Savenije and van der Zaag 2002;
Somanathan and Ravindranath 2006). The EU Water Framework Directive (WFD, Dir
2000/60 CE) also reflects the principle of cost recovery of water services as a critical
measure to achieve sustainability goals.

Water pricing is an economic tool that stimulates farmers to reduce the use of water
and optimise its allocation (Wheeler et al. 2015) by assigning opportunity costs to
water as a productive factor and guiding water allocation in order to obtain the highest
economic return (Ward and Michelsen 2002). Volumetric tariffs could be used to
stimulate farmers to adopt more effective strategies such as crop substitution (Varela-
Ortega et al. 1998) and technological innovation (Pronti et al. 2023). Furthermore,
water tariffs can create revenues for suppliers (Saleth and Dinar 2005) and allow for
cost recovery implementation (Dinar and Mody 2004; Rogers 2002).

Compared to other environmental regulatory instruments, such as command-and-
control methods (e.g., technological standards, water quotas), a water tariff can reduce
the overall cost of implementing and controlling the effectiveness of water conservation
policies (Bjgrner et al. 2021). The reason is that profit-maximising farmers can adjust
their water demand according to their individual policy adaptation costs, which are
different for each and are not directly observable by authorities (Dinar and Mody
2004; Massarutto 2003). Moreover, pricing methods can stimulate lasting incentives
for technological innovation, while command-and-control methods provide incentives
for innovation only until compliance is achieved (Lago et al. 2015).

The effectiveness of water tariffs depends on the characteristics of demand and,
more specifically, on water price elasticity—the measurement of how the quantity
demanded of a product responds to a change in its price (Olmstead et al. 2007)—is
extremely important for policy-making (Somanathan and Ravindranath 2006; Wheeler
etal. 2008). An erroneous assessment of water demand elasticity can lead to water tariff
policy failures due to either overpricing water, thereby lowering farmers’ income due to
high water costs, or underpricing water, thereby assigning excessively low opportunity
costs that incentivise over-irrigationl (Kahil et al. 2015; Molle 2009).

There are multiple examples of irrigation water demand elasticity derived from
econometric analyses, however most of them only rely on cross-sectional data
(Scheierling et al. 2006). Moreover, scarce information exists on water price elasticity
when considering both heterogeneous agricultural production and irrigation systems
(Massarutto 2003). The literature on water demand elasticity in agriculture is discussed
in more detail in Sect. 2.

The objective of this paper is to estimate the demand elasticity for irrigation water,
by considering the heterogeneity of agricultural production and irrigation systems. In
doing this we used a large panel dataset of plot-level observations for an Irrigation
Water District located in Emilia-Romagna region in northern Italy. Feasible general-
ized least squares (FGLS) models and ordinary least squares (OLS) models with a
fixed effect have been used to estimate water demand elasticity for the whole region

1 We consider over-irrigation as providing water in a greater quantity than required by the plant. The water
is thus not fully utilized by the plants, since some of it is "lost’ through percolation or evaporation. In
reality, excess water is never lost because it can feed groundwater, however, it is not used efficiently for
crop irrigation.
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under study. Moreover, elasticity has been estimated for a series of combinations of
subsamples of crops and irrigation systems while controlling for weather conditions
and other heterogeneities between observations. In our view, combining crop subsam-
ples and irrigation technologies is important to understanding the main responses of
water demand to water prices.

This paper focuses on the elasticity of water demand at the intensive margin without
considering crop substitution, since our objective is to estimate the elasticity of water
demand in the short run by considering whether water tariffs can be considered as a tool
to incentivise optimal and efficient water use. Another way of looking at our strategy
is to consider how farmers respond to water tariffs in terms of water use to consider
only the water demand elasticity instead of considering production adjustments that
may occur in the medium or in the long run.

The main research questions of this paper are:

RQ1 What is the demand elasticity for water irrigation to water tariffs in the area
under study?

RQ2 Are there any heterogeneities between irrigation technologies in terms of water
demand elasticity?

RQ3 Are there any heterogeneities between crops in terms of water demand elasticity?

The paper is structured as follows: in Sect. 2, a brief literature on irrigation water
demand elasticity is presented; in Sect. 3, materials and methods are discussed; in
Sect. 4, the analytical results are shown. Section 5 is a discussion of the main findings;
Sect. 6 discusses the main limitations of the study before providing some conclusions
in Sect. 7.

2 Water Demand Price Elasticity in Agriculture

The main element of uncertainty in the efficacy of water pricing interventions in
agriculture concerns a farmers’ policy response to changes in water prices (Kahil et al.
2015). An accurate measure of water demand elasticity is thus crucial for determining
effective water pricing policies designed to simultaneously alleviate pressure on water
resources and improve fiscal impact (e.g., simultaneously avoiding burdens on farmers’
incomes and increasing water authority revenues) (Iglesias et al. 1998).

In the extant literature, the effect of water price elasticity on water price policies
remains unclear (Balali et al. 2011; Cooper et al. 2014; Dinar and Mody 2004). Results
of empirical analyses are not always consistent; they depend on a variety of local
conditions linked to water systems and on other aspects, such as socioeconomic,
geographical, and institutional factors (Scheierling et al. 2006). Findings are case-
specific and affected by the specific methodological choices. Therefore, in the water
economics literature, there is no general consensus on the effect of price on water
demand; consequently, the impact of tariff policies on farmers’ irrigation decisions
remains uncertain (de Fraiture and Perry 2002; Molle and Berkoff 2007).

Agricultural water demand mainly depends on farmers’ production decisions (e.g.,
the amount of land to irrigate and non-irrigated crop types), irrigation technology,
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physical water productivity, farmers’ characteristics, local environmental conditions,
and the market structure. However, other factors that are not directly observable, such
as technical, environmental, social, institutional, and behavioural factors, can also
influence water demand (Massarutto 2003). These elements vary widely across coun-
tries and regions, depending on the geographical, socioeconomic, financial, political,
and infrastructural conditions, limiting considerations of water demand and elasticity
to case-by-case studies (Dinar and Mody 2004; Molle and Berkoff 2007).

In general, empirical studies on agricultural water management show that water
demand is inelastic to both large and small changes in the price of water and that the
quantity of water demanded is not responsive to pricing policies (Krause et al. 2003;
Molle and Berkoff 2007). Water demand was found to be inelastic in the first major
research studies (Ogg and Gollehon 1989; Nieswiadomy 1985; Zilberman 1984), and
later confirmed in subsequent investigations (Caswell et al. 1990; Moore et al. 1994).
Through a meta-analysis of the studies available at the time, Scheierling et al. (2006)
found an average price elasticity of — 0.48, but with arelatively large standard deviation
of 0.53. The authors found strong heterogeneity between the elasticity levels in each
scientific article analysed (varying between — 0.001 and — 1.97), revealing that the
variability of the estimates is strongly case-dependent. Other seminal studies found that
water demand is completely inelastic (Hendricks and Peterson 2012; Massarutto 2003).
Schoengold et al. (2006) found a slightly stronger elasticity, of — 0.79, compared to
previous studies, nonetheless they also found that increases in water prices led to
limited reductions in water demand. Zuo et al. (2016) confirmed those results using a
stated preference survey on the selling price of water entitlements on the Australian
irrigation market; they estimated a water demand elasticity of — 0.57.

Other studies found that farmers’ water demand is more elastic. For example,
Wheeler et al. (2008) and Bonviller et al. (2020) analysed the Australian water market
and found average elasticities for water demand to price of — 1.51 (elastic) and — 1.05
(unitary elastic),” respectively. Both studies also showed that other factors besides the
price of water can influence water demand, for example drought, product price, sea-
sonal effects, inputs related to irrigation (i.e. type of fuel and electricity prices) and
crop type (de Bonviller et al. 2020; Wheeler et al. 2008).

Other analyses found that water demand elasticity is non-linear with threshold
effects implying that water demand is elastic only after a certain price level (Berbel
et al. 2018; Berbel and Expdsito 2022; de Fraiture and Perry 2002; Expdsito and
Berbel 2017; Gémez-Limén and Riesgo 2004; Varela-Ortega et al. 1998). The authors
found that: (i) for low water price ranges, water demand is inelastic because water
costs are lower than the potential economic risks of losing yields and of water savings
(Berbel and Expésito 2022; Gémez-Limén and Riesgo 2004); (ii) for medium price
ranges, water demand becomes elastic as farmers adapt to increasing costs due to crop
patterns and water saving technologies (Berbel et al. 2018; Expdsito and Berbel 2017);
and (iii) for high price ranges, water demand is again inelastic since only high value

2 Wheeler et al. (2008) considered Australian water markets and a time series of total water market alloca-
tions for the short term (— 0.52) and the long term (— 0.89). They also highlighted large fluctuations within
the irrigation season (— 1.71 to — 4.14). The study by de Bonviller et al. (2020) was based on Australian
groundwater markets, which could explain why, differently from Wheeler et al. (2008), they found a unitary
elasticity of — 1.05.
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crops are irrigated at steep water prices when profit margins continue to be positive,
while cultivation is halted when excessive water prices make irrigation unprofitable>
(de Fraiture and Perry 2007; Gémez-Limén and Riesgo 2004).

The principal causes of the different levels of elasticity can be identified in the alter-
natives for substituting water as an input in the production process (i.e. the higher the
level of water substitutability, the higher the elasticity). The main strategies that farm-
ers can adopt to cope with an increase in water prices, in addition to water consumption
reduction, are crop substitution (technical factors) and technology substitution (struc-
tural factors).

In a recent study focused on south of Italy, Mirra et al. (2023) found great hetero-
geneity in demand slopes and water demand elasticities by farm types. They suggest
that to optimize the effectiveness of water tariff policies in presence of heterogeneity
in elasticity, price discrimination strategies may allow for a better allocation of water
resources among farmers. This may lead to an increase in overall water use efficiency
at the macro level. In fact, famers who are more willing to pay for water (i.e., farms
with lower elasticity) will be the ones who will continue to use water even in presence
of price increases, because they will be less able to adapt their irrigation strategies
(e.g., long-term investments such costly irrigation structures or crop specialization
with low level of adaptability such as orchards). Conversely, farmers with higher lev-
els of adaptability, due to various structural and technical factors, will reduce water
demand.

In empirical works, water demand elasticity is derived by using a variety of methods,
which are basically divided into two categories: mathematical programming (MP)
and econometric analysis. The lack of observations which cover a broad range of
prices has encouraged scholars to use MP methods (linear, quadratic, and stochastic
approaches) to derive water demand elasticity by simulating optimisation models
(Bontemps and Couture 2002). The main approach for assessing elasticity measures
with MP is through the derivative of the dual solutions, which are interpreted as water
shadow prices (Elbakidze et al. 2017; Howitt et al. 1980). MP has many advantages
especially for predicting the agent’s response to policy or environmental changes, but
this methodology relies on strong assumptions (e.g., a focus on profit maximisation, the
agent’s access to perfect information and strong constraints on irrigation technology)
(Mieno and Brozovic, 2017).

Econometric regression is rarely applied to the analysis of water demand elasticity,
the measurement of water in agriculture is poorly implemented (Lika et al. 2017) and
data regarding water tariff is scarce. Despite this, some empirical analyses based on
econometric applications have been used in the literature to estimate the elasticity of
water demand (Scheierling et al. 2006). However, most of the econometric analyses
conducted so far are cross-sectional, which may reduce the accuracy of the estimated

3 When prices are low, the threshold effects depend on technical substitution (changing irrigation technology
and/or switching to less water intensive crops), which reflect changes in the input composition of the
farmers’ production function. The changes determine the elasticity of the demand curve—which represents
the substitution of water with capital and labour as a strategy adopted (based on irrigation technology and/or
type of crop) by farmers to cope with the increasing price of water (Renzetti 2002). At certain price levels,
the demand curve becomes inelastic due to the end of input substitution possibilities and the increasing
disadvantages in agricultural production due to the excessively high opportunity cost of water (Berbel and
Goémez-Limén 2000; de Fraiture and Perry 2007; Exp6sito and Berbel 2017).
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elasticities, mainly due to endogeneity problems arising from unobserved and time-
invariant heterogeneity (Bontemps and Couture 2002; Havranek et al. 2018; Mieno and
Brozovi¢, 2017) which can be partially solved by using panel data (Wooldridge 2010).
To the best of our knowledge, econometric analysis using panel data to estimate the
elasticity of irrigation water demand has only been used by Schoengold et al. (2006)
for surface water and by Hendricks and Peterson (2012) for groundwater.

3 Materials and Methods
3.1 Case Study and Data Description

The Emilia-Romagna region (ERR) accounts for the largest share of irrigated land in
Italy. Its agricultural sector is one of the biggest in the country (Pérez-Blanco et al.
2016). Although, water endowments in the area can be considered relatively abundant
compared to other Mediterranean areas, in recent years, the regional irrigation system
has been put under considerable strain due to severe droughts and thus increased
pressure on its water resources (Pérez-Blanco et al. 2016; Vezzoli et al. 2015). The
ERR government has boosted its water conservation policy interventions through
Irrigation Water Districts* in its region by incentivizing improvements in irrigation
efficiency by introducing pricing instruments for irrigation (E1 Chami et al. 2011).

The dataset employed in this study includes the water tariffs and the volume of
water distributed by the Central Emilia Irrigation Water District (CEWD) (Consorzio
di Bonifica dell’ Emilia Centrale in Italian) in two ERR provinces: Reggio-Emilia and
Modena. The area served by the CEWD has the highest regional production value
(ERR 2019a), and many of the famous high-value certified agri-food products are
produced there (such as Parmigiano-Reggiano cheese, balsamic vinegar from Modena,
Lambrusco wine, and crops with protected geographical indications) (ERR 2019b).

The ERR’s most important agricultural products include field crops (alfalfa, maize,
meadows), vineyards, and orchards (mainly pears and to a lesser degree apples,
peaches, and other fruits). Other crops like soybeans, sugar beets, tomatoes, and water-
melons are also grown. The average irrigated area, volume of water used, and water
tariffs per type of crop and irrigation system are reported in Table 1. The farmers served
by the CEWD do not possess large farms, and the plots tend to be small on average;
the typical farm size is 4.9 ha (standard deviation is 6.41 ha). The descriptive statistics
of the variables used in this study are shown in Table 2; they show that for the same
crop, the average volume of water used typically increases from drip to sprinkler, and
from sprinkler to furrow systems.

Over the years, the CEWD experimented with different types of tariff schemes,
from flat to volumetric, up to 2015. The different tariffs schemes applied over the years
impacted the cost of water, ranging from 0 to 0.0489 euro per m> (see a summary of
all the tariffs in Appendix, Sect. 1). We highlight that the objective of the paper is to

4 Irrigation Water Districts are the lowest institutional level of public authority in agricultural water man-
agement under Italian law and they are responsible for implementing the EU Water Framework Directive
(WFD) at the local level (Bazzani et al. 2005; Dono et al. 2019; Gazzetta Ufficiale della Repubblica Italiana
2006).
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Table 1 Mean irrigated areas and water tariff per crop and irrigation system

Crop Irrigation Average Water volume Water tariff (€  No. of obs.

system irrigated (m3 per ha) per m)

area (ha)

Alfalfa Drip 3.61 776 0.0238 10
Alfalfa Furrow 3.53 1225 0.0253 235
Alfalfa Sprinkler 4.74 1023 0.0226 3339
Maize Drip 1.82 1184 0.0204 49
Maize Furrow 2.53 3575 0.0321 99
Maize Sprinkler 3.60 1298 0.0230 3947
Meadows Drip 5.18 1687 0.0222 1
Meadows Furrow 4.92 1278 0.0245 5895
Meadows Sprinkler 6.48 1199 0.0244 150
Pears Drip 2.40 7695 0.0000 817
Pears Furrow 2.70 4605 0.0258 225
Pears Sprinkler 2.82 2235 0.0220 1511
Soybeans Drip 3.67 1469 0.0284 2
Soybeans Furrow 1.96 2854 0.0289 18
Soybeans Sprinkler 2.96 1977 0.0278 405
Sugar beets Drip 1.73 889 0.0248 2
Sugar beets Furrow 5.14 1430 0.0236 20
Sugar beets Sprinkler 5.36 1010 0.0253 796
Tomatoes Drip 2.65 334 0.0274 80
Tomatoes Furrow 6.20 996 0.0273 5
Tomatoes Sprinkler 5.63 849 0.0260 486
Vineyards Drip 6.25 341 0.0251 1578
Vineyards Furrow 3.74 1259 0.0238 3031
Vineyards Sprinkler 5.85 847 0.0261 6178
Watermelons Drip 8.30 1505 0.0249 236
Watermelons Furrow 4.65 4189 0.0249 3
Watermelons Sprinkler 6.64 1887 0.0246 73

Note: Average irrigated area is considered across time and plots. Water tariffs vary among crops and
irrigation technologies (for further details see Appendix 1—Sect. 1)

assess the price elasticity of water demand, therefore we focus not only on the use of
a volumetric tariff, but on the variation of water prices that is related to the diversity
of water tariffs charged in the CEWD during the timeframe considered.

The CEWD was created in 2009 by the merger of two former local Irrigation
Districts—the Consorzio di Bonifica Parmigiana Moglia Secchia and Bentivoglio-
Enza Reclamation Consortium—that applied two tariff schemes. Until 2015, water
users used their previous tariffs (flat and two-part). In 2016, in compliance with the
WFD, the CEWD implemented a new water tariff scheme for all water users based on
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Table 2 Descriptive statistics of variables with variations

Variable Mean Std. dev. Min Max Observations
Water demand per ha (m3/ha) 2004.04 2363.50 0.00 49,356.00 30,443
Log of water demand per Ha 7.16 0.93 —6.40 10.81 30,443
Water tariff (m3/Ha) 0.03 0.01 0.00 0.05 30,443
Log (water tariff) (m3/Ha) —3.82 0.80 —6.42 —3.02 30,443
Irrigated area (Ha) 3.69 4.02 1.00 83.00 30,443
Log of irrigated area 0.99 0.73 0.00 442 30,443
Aridity Index JFM (unitless) 1.90 0.77 0.67 3.16 30,443
Aridity Index AMJ (unitless) 0.62 0.19 0.33 1.00 30,443
Aridity Index JAS (unitless) 0.53 0.16 0.38 0.86 30,443
Aridity Index OND (unitless) 1.86 0.45 1.21 2.57 30,443
Alfalfa (dummy) 0.12 0.32 0.00 1.00 30,443
Forage (dummy) 0.02 0.14 0.00 1.00 30,443
Maize (dummy) 0.13 0.34 0.00 1.00 30,443
Meadows (dummy) 0.20 0.40 0.00 1.00 30,443
Pears (dummy) 0.07 0.25 0.00 1.00 30,443
Soya (dummy) 0.01 0.12 0.00 1.00 30,443
Sugar beets (dummy) 0.03 0.16 0.00 1.00 30,443
Tomatoes (dummy) 0.02 0.14 0.00 1.00 30,443
Vineyards (dummy) 0.35 0.48 0.00 1.00 30,443
Watermelons (dummy) 0.01 0.10 0.00 1.00 30,443
Year 2014 (dummy) 0.14 0.34 0.00 1.00 30,443
Year 2015 (dummy) 0.17 0.38 0.00 1.00 30,443
Year 2016 (dummy) 0.17 0.37 0.00 1.00 30,443
Year 2017 (dummy) 0.20 0.40 0.00 1.00 30,443
Year 2018 (dummy) 0.13 0.34 0.00 1.00 30,443
Drip irrigation (dummy) 0.09 0.29 0.00 1.00 30,443
Furrow irrigation (dummy) 0.32 0.47 0.00 1.00 30,443
Sprinkler irrigation (dummy) 0.59 0.49 0.00 1.00 30,443
Water Basin 1 "Enza Cerezzola" 0.04 0.18 0.00 1.00 30,443
(Dummy)
Water Basin 2 "Enza Gattatico" 0.00 0.06 0.00 1.00 30,443
(Dummy)
Water Basin 3 "River Po" 0.68 0.46 0.00 1.00 30,443
(Dummy)
Water Basin 4 "River Secchia" 0.09 0.29 0.00 1.00 30,443
(Dummy)
Water Basin 5 "Po Boretto" 0.18 0.38 0.00 1.00 30,443
(Dummy)
Water Basin 6 "Po Cavazzoli" 0.00 0.06 0.00 1.00 30,443
(Dummy)

Note: Table A1 in Sect. 1 of the Appendix describes the variables with variations (overall, between, within)
used in the econometric models
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a two-part tariff scheme that uses a cost recovery approach with the goal of increasing
water efficiency use and recovering operational and maintenance costs. The new two-
part tariff scheme has a fixed fee that covers the CEWD’s basic service costs and
a variable fee, based on the volumetric component, that increases in price based on
specific coefficients that consider different types of service costs, crop water intensity,
and rivalry for water sources (see Appendix, Sect. 1 for further details).

The water tariff is set at the beginning of each irrigation season and communicated
to users. Payment for irrigation service due from the irrigators is required at the end
of the irrigation season and is mandatory to be served by CEWD in the following
irrigation season.

Direct water metering is impossible because water is served mainly through a
network of open canals. Therefore, the volume of water for each supply is measured
indirectly by considering the canal flow rate, the capacity of the water structure, and
the water delivery duration® (CEWD 2017).

The statistical observations of the CEWD dataset comprise the statistical universe.
They represent the total water demand managed by the CEWD in the area considered
(the Reggio-Emilia province and part of the Modena province) for surface irriga-
tion. Water requests are aggregated yearly by considering the total amount of water
demanded for plots, and water tariffs are calculated as the average tariff paid during the
year. This is done since the implementation of volumetric taritfs (as of 2016), different
water prices, can be charged depending on the time of year of the water demand (in-
or out-of-season).

The final dataset is a yearly unbalanced panel at plot farm level that covers the period
from 2013 to 2018; it includes a total of 28,738 observations and 9097 different plots.
The CEWD dataset includes information on water demand, irrigated land, irrigation
systems and water tariffs at the plot level. The same dataset was used by Pronti and
Berbel (2023) to analyse the impact of the introduction of the volumetric water tariff
on farmers who were previously not subject to such tariff scheme, using a natural
experiment (difference-in-differences). Although the dataset is the same, they focused
on a different research question considering a specific subset of the dataset, whereas
in this analysis we use all available observations (vs. a subset) focusing on irrigation
water elasticity by using a log—log model. The two analyses do not overlap and are
complementary.

In this case study, water tariffs are very low and farm water costs are negligible.
It should be noted that the water tariffs considered in our case study refer only to the
cost of accessing the irrigation canal, without considering cost of pumping (i.e. users
must pump water themselves from the open canal, which is an expensive activity for
the farmer).

Water tariffs can be considered as exogenous since we control for all the forms of
potential endogeneity due to simultaneity and omitted variables related to the water
tariff components (i.e. crop type, irrigation technology, water basin). In addition, we
provide a set of robustness checks on potential endogeneity of the tariff variable in

5 Unfortunately, we do not have access to the actual calculations made by the CEWD for providing water.
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Sect. 4.2. In panel data econometrics, attrition® can be a possible cause of bias (Chadi
2021; Cheng and Trivedi 2015; Wooldridge 2010). We also tested attrition by using
the approaches proposed by Diggle (1989) and Ridout and Diggle (1991) and found
that attrition patterns in our datasets can be considered as random and unremarkable.
The attrition tests are in Sect. 2 of the Appendix.

Unfortunately, data on costs, energy consumption, income and productivity of farms
are not available. For general information and with the aim of providing an adequate
picture of the level of water cost on local farms, we report in Table 2 some water
cost indices considering the crops included in the CEWD dataset (FADN 2022). To
overcome the lack of economic data, we used data from the National Agricultural
Accountancy Data Network (FADN) (FADN 2022). In Table 2 are shown the cost
of water per irrigated area, the water cost ratio of total variable cost and the water
cost ratio of the value of the total sellable production per type of crop using the FADN
sample for the whole of Italy, Northern Italy, ERR and the Modena and Reggio-Emilia
provinces (MORE).

Water cost represents a small part of the total variable costs of farms, ranging
between 0.7 and 5.2% for ERR and between 0.4 and 6.5% for MORE. These values
are below the national and Northern Italy averages (6.3-23.1% and 3-19.3%, respec-
tively). Yet, there are water cost differences between crops. Meadows, orchards, and
vineyards have the highest ratio of water cost to total water cost, whereas water costs
are relatively low for watermelons and tomatoes. Finally, water cost represents on
average 1.4 and 1.2% of the total production value for ERR and MORE, respectively
(Table 3).

We merged our dataset with the seasonal aridity index (AI) for each plot.” The
Al is the ratio of the accumulated precipitation and the reference evapotranspiration
(Steduto et al. 2012); it is used to assess the relative contribution of rain to the potential
water needs. The spatial resolution we use refers to the municipality in which each plot
is located and is used only for merging the weather variables with our main dataset.

3.2 Methodological Approach

The price elasticity of demand is a well-known concept in economics used for mea-
suring the relative change in the quantity demanded following a unitary change in
price (Chiang and Wainwright 2013). Various model specifications and econometric
methods have been used to estimate water demand elasticity in agriculture using obser-
vational data. Some specifications imply constant elasticities along the curve (such as
the log—log functional form), others do not (log-linear, quadratic and translog models)

6 Attrition is the process of dropout from a panel study, it happens specially in surveys when some respon-
dents do not participate to all the waves of the survey. Attrition if systematic can lead to bias in the estimations
using panel data (Lugtig 2014).

7 We used the ERA-Interim dataset of the European Centre for Medium-Range Weather Forecasts
(ECMWF) with 25 km? grid cell spatial resolution; the external climatic data were merged by consid-
ering the georeferenced data of the municipalities where each plot was located. Multiple weather variables
were included to account for seasonal variations (maximum and minimum temperatures, accumulated pre-
cipitation, and reference evapotranspiration) (ECMWF 2020).
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A. Pronti, J. Berbel

(Espey et al. 1997; Kim 1992; Oum 1989). The most common model specification
used to estimate water demand functions is the log—log.

Our baseline model is a log—log regression model with fixed effects at plot level
(Eq. 1). The use of a panel at plot level can avoid macrogeographical aggregation
issues by observing directly at the micro level the demand for water without averaging
the data at a higher spatial level (Mieno and Brozovi¢ 2017). Additionally, the use of
fixed effects models can reduce endogeneity problems due to unobserved heterogene-
ity (Wooldridge 2005). Moreover, we included year fixed effects to capture exogenous
effects which can alter the model estimations (e.g., extreme weather conditions and
climate anomalies, specific macroeconomic circumstances, and yearly market condi-
tions, such as international trade and crop prices).

We decided to consider plot observations since we are interested in focusing mainly
on the effects of water tariff on water demand and, in our opinion, plots are the most
suited level of observation. We emphasise again that our study focuses on the elasticity
of water demand at the intensive margin, focusing on farmers’ reactions in water
demand to water tariffs in the short term and not considering farmers’ adaptation
strategies (i.e., extensive margin) such as land use change or changes in irrigation
technologies. This could have been done using farm-level or basin-level observations,
the interest could shift to adaptation strategies to rising tariffs, but that is not the aim of
this paper; furthermore, the length of the observation period (5 years) and the limited
geographical area (two provinces) considered does not allow for strong cross-sectional
variations to study farms adaptation strategies. That type of an assessment could be
better obtained in a national or supranational study. Nonetheless, we believe our study
is representative of many other cases in Italy and in Europe since it shares numerous
similarities with other European agricultural regions.

The logarithm of the total yearly water demand at the plot level is used as the
dependent variable, and the logarithm of the yearly average tariff of water paid per
cubic meter (m®) by farmers at the plot level is used as the independent variable of
interest. Several controls have been added. Our baseline model is shown in reduced
form in Eq. (1), while the extended model is shown in Eq. (2).

Log(y);; =a+BLog(x); ;+vZ;; +pBy +7 +68; +u, (1)

where y; ; is the total volume of water demanded per hectare for each plot i in year
t. Irrigation demand is made directly by farmers to the CEWD, which calculates the
total amount of water needed to serve the plots based on an irrigation plan compiled
annually by its water users which includes details on the type of irrigation system used
and the crop plan. This means that the total amount of water demanded is not decided
directly by the farmer; instead, it is optimised by the CEWD.

xi,; is the yearly average water tariff per m? of water used for plot i in year . The
average tariff of water demanded in the econometric model is the average of the tariff
paid for each cubic metre delivered for each water request made by farmers during
the irrigation season (year ¢). The tariff does not depend on the total quantity of water
received; it is calculated considering other factors; therefore, problems of simultaneity
bias are not present. See Appendix, Sect. 1 for more details.
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Z; ; 1s a set of control variables: (i) the size of the plot; (ii) the irrigation system
used (dummy) for plot i in year ¢; (iii) the seasonal Al for plot i at time #; and (iv)
the type of crop cultivated (dummy) on plot i in year +. We use crop dummies to
capture the specificity of each type of crop production which can be related also to
economic, marketing, and production aspects (e.g., fertilizer and pesticide costs, labour
intensity) which are not directly observable in our data (e.g., production costs, water
needs, productivity, type of selling markets). Furthermore, the use of irrigation system
dummies can help overcome the problem of non-observed economic and production
aspects (e.g., energy costs).

Moreover, we use dummy variables to control for the water basin in which the plot
is located, as the CEWD has different subzones® B,,. By using water basin dummies as
control variables, we take into account geographical and institutional heterogeneities
at the sub-regional level within the CEWD, which includes past water pricing policies
adopted in mixed form within the different subzones before 2016. t; is a year dummy;
d; is the plot fixed effect for taking into account unobserved plot heterogeneity (such as
the unobserved characteristics of farmers including their experience, and soil quality
of the plot), which could cause bias and inconsistent estimates (Wooldridge 2010,
2005). « is the constant term, u; ; is the idiosyncratic error with zero mean, and Uuz is
the variance (Wooldridge 2010). In Eq. (2), the baseline model is in extended form.

Log(Water demand per Ha); , = a + BLog(Water price); ,
+yiLog(Irrigated area); , + y2Furrow; ,

4 c-1
+y3Drip; ,+6; Y Alsi;+wi Y Crop,;,
s=1 c=1
M—1
+ pi Z Water Basing + 1, +68; +u; ,

m=1

@

where s, ¢ and m are the subscript for the seasonal Al, the number of crop types and
the number of water basins, respectively.

The Al is used as a synthetic dimension of several weather variables, as in Koundouri
et al. (2006), and it is calculated following the Consultative Group for International
Agricultural Research (CGIAR) (2019). Quarterly Als are employed for different
seasons’ as climatic control variables and are computed as the ratio of the value of the
accumulated precipitation (measured in mm) of a specific season and the accumulated
reference evapotranspiration (measured in mm) for each season (Allen and FAO 1998;
Villalobos et al. 2016). This method of computation results in a unitless proxy measure

8 There are six in total: Enza Cerezzola, Enza Gattatico, Po, Secchia, Po Boretto, and Po Cavazzoli.

9 The Als are calculated for each season as follows: Al season = AccumPricip/ETO0. The seasons are divided
into Winter (January, February, March), Spring (April, May, June), Summer (July, August, September), and
Autumn (October, November, December).
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of a crop’s water requirement satisfied by seasonal rainfall'® (Allen and FAO 1998;
CGIAR 2019).

The data include the following crop types: alfalfa, maize, meadows, pears, soy-
beans, sugar beets, tomatoes, vineyards, and watermelons. Other crops with low and
negligible observations or with generic definitions that cover various crops (e.g., “or-
chards”, “forage” and “vegetables”) are omitted.!! Irrigation systems are divided into
the macro irrigation categories such as drip, sprinkler, and furrow. Both the crops and
irrigation technologies for the crops are fixed for one year but may change from year
to year.

As expected, all correlations among crops and irrigation technologies are statisti-
cally significant at the 0.01 level. The correlations are especially strong for meadows
with furrow irrigation systems (0.70) and sprinkler systems (— 0.57). For the other
categories, the correlations seem to be small and acceptable for our analysis (between
— 0.25 and 0.30 for all the other categories). The correlation between crops and irri-
gation systems indicates that these factors are strictly connected. The only crop type
that has a strong correlation with the irrigation technology used is meadows; it has
a positive correlation with furrow irrigation, and a strongly negative correlation with
sprinkler irrigation. Other crops also have a correlation with irrigation technology, but
it is less strong. A correlation matrix of crops and irrigation technologies is available
in Appendix Sect. 2 (Table A7).

We test for the heteroscedasticity and autocorrelation by using the White test and the
Wooldridge test, both of which indicate that the data are heteroscedastic and serially
correlated, respectively (Wooldridge 2010). Thus, we employed clustered standard
errors at plot level to obtain robust estimates as was done in other similar studies
(Bertrand et al. 2004; Gehrsitz 2017; Mieno and Brozovié, 2017). Doing so relaxes
the assumption of homoscedasticity and allows for cross-sectional changes in the
individual variance and for correlation within individual groups (Hansen 2007a), which
leads to consistent estimations when the dimension of the panel is large and there are
a sufficient number of clusters (Hansen 2007b). Moreover, to verify robustness, the
model is run using a FGLS regression with fixed effects. This method relies on first-
order autoregressive disturbance terms, producing an unbiased, robust, and consistent
estimation in the presence of autocorrelation (Hansen 2007a). In the Sect. 3 of the
Appendix, we offer a sensitivity analysis of the clustering structure by changing the
variable used to cluster standard errors. The results are found to be robust.'?

Both econometric approaches (OLS and FGLS) are applied to the whole sample
and then to various split-sample analyses of irrigation technologies and crops, both

10" AT values lower than 1 indicate that the precipitation in the considered period fails to satisfy the water
requirement of the crop, while values greater than 1 indicate that the accumulated rainfall for the period is
higher than the accumulated reference evapotranspiration (CGIAR 2019). Al levels lower than 0.65 indicate
arid areas (CGIAR 2019). The data used are from the ERA-Interim dataset of the ECMWE, with a definition
at the cell level of 25 km? spatial resolution (ECMWF 2020).

' We removed these macro classes of crops since they were not a specifically identifiable crop type,
but merely a generic group of crops. Moreover, those observations were a negligible part of the dataset
(observation delated as percentages of total observations: Forage 1.96%, Other Arable Crops 1.07%; Other
Orchards 1.49%; Vegetables 1.08%).

12 We use the plot, year, plot and year, farm, farm and year, water basin, and water basin and year.
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individually and combined,'3 to consider the potential heterogeneities of elasticities
among different production systems and irrigation technologies. The analysis of elas-
ticity by individual crop and irrigation technology is important to understand if there
are heterogeneities in water demand responses to tariffs.

To retain information on the whole demand curve and prevent data truncation and
deletion, water tariffs with zero values, occurring when flat tariffs were applied for
certain plots, are transformed since the logarithm of zero is not defined (Weninger
2003). To reduce bias, the transformation follows other empirical studies dealing with
logarithmic functions by adding a very small quantity to the zero values'# (Friedlaender
et al. 1983; Gilligan and Smirlock 1984; Kim 1987). In Sect. 3 of the Appendix, we
conduct a sensitivity analysis in which we compare different transformations of zeros
to avoid the truncation of our dataset.'”

4 Results
4.1 Main Findings

We find in general that water demand is inelastic to price (the values of the estimated
coefficients in absolute terms are all below one) indicating that the demand for water
is not proportionally responsive to changes in the tariff of water. By considering the
whole sample (without splitting the sample in groups of crops or technologies), a 1%
change in the tariff of water induces an average reduction of — 0.27% (with confidence
interval (CI) — 0.29; — 0.25) in the water demanded at the plot level (Table 4 Column
1). This result is consistent with previous studies indicating inelastic water demand
in agriculture, such as the meta-analysis by Scheierling et al. (2006), who find an
average price elasticity of — 0.48. Table 4 provides the results for the full sample
and the irrigation technology models. Table 5 presents the results of the crop models,
and Table 6 shows the results of crops combined with irrigation technologies. In each
table, the estimations of the elasticities are highlighted for all the econometric models
(simple log—log, the FGLS regression). The results of the estimations are very similar
among all the econometric models, indicating that our econometric estimations are

13 We take into account the irrigation technology and crop combinations with higher frequency in our
CEWD dataset, using as a rule of thumb a frequency of at least 100 observations.

14 Such studies suggest adding a value in the order of 0.001 or 10% of the sample mean to avoid altering
the distribution and, consequently, the logarithmic transformation (Bellégo and Pape 2019). The zero values
in our datasets represent 8.5% of the total, and although they constitute a residual part of the data, they
are transformed to avoid truncating our sample. Since our analysis deals with tariffs close to 0, we check
the effect of the transf