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1 Introduction

An important and generic property of higher temperature superconductors is the presence

of a strange metal state found just above the superconducting critical temperature. The

transport properties of strange metals are very different from the ones of conventional Fermi

liquid. In particular, the standard quasi-particle picture does not give a useful description

of the physics of the system [1, 2]. An interesting class of models without a quasi-particles

description can be built using the AdS/CFT correspondence. The correspondence maps

a strongly interacting quantum system in the boundary to a classical gravity problem in

the bulk, and so it provides a controlled environment in which to study strongly coupled

systems.

Since Abrikosov’s seminal work [3], the magnetic properties of type II superconductors

have been the subject of many experimental and theoretical studies (see [4] for a review).

In this phase magnetic flux penetrates the superconductor by forming vortices, which are

arranged in lattice geometries. Using several microscopic techniques, these periodic arrays

of vortices have been experimentally studied in the lab both for conventional and for higher

temperature superconductors.

The Ginzburg-Landau (GL) theory is a very useful macroscopic description of super-

conductors (see [5] for a textbook) which can be used to model the Abrikosov vortex lattice

in a quantitative way. Strictly speaking, the GL theory is valid only close to the critical tem-

perature; indeed, it can be derived from the Bardeen-Cooper-Schrieffer (BCS) theory just

in this regime. Given the experimental importance of vortex lattices in higher-temperature

superconductors, it is important to theoretically study vortex lattices also in theoretical

situations where no quasi-particle picture is available. Holographic superconductors [6–9]
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provide a controlled theoretical laboratory to explore situations where the quasi-particle

approximation is not applicable, and so they may give precious hints on the behaviour of

vortex lattices in non-conventional superconductors.

Vortices in holographic superconductors have been studied by many authors. Most of

the early studies [10–16] neglect the gravitational backreaction of the vortex solution. This

is a well justified approximation in the regime where the scalar condensate is small. A

systematic study of gravitational backreaction in the case of a single vortex was performed

in [17]. This analysis allowed to systematically compute thermodynamic properties of the

vortex.

The study of vortex lattices is more complicated because there is no cylindrical symme-

try, and so one needs to solve a partial differential equation with an extra dynamical vari-

able. Without backreaction, a study of the holographic vortex lattice was initiated in [18].

Vortex lattices with backreaction were studied in the AdS2 ×R2 geometry in [19, 20]: this

geometry describes the near horizon limit of extremal magnetic Reissner-Nordstrom black

holes, and so it is relevant for the zero temperature limit of a holographic vortex lattice.

The vortex lattice in a holographic model with SU(2) gauge field was studied in [21]. Vortex

lattices in holographic superfluid were studied in [22, 23].

The problem of constructing the fully backreacted holographic vortex lattice, valid for

all ranges of magnetic fields and temperatures, remains therefore an unsolved problem.

This is not surprising, the problem involves hard numerical computations, with compli-

cated starting ansatze for the metric and matter fields. In this paper we will provide an

approximate solution to this problem using the circular cell method (CCM) [24], which is

a technique already used for vortex lattices in the Landau-Ginzburg framework [25–27].

The CCM approximates the full geometrical lattice solution by replacing each cell of

the lattice with a circular one of the same area (see figure 1). This dramatically simplifies

the problem as one can use a cylindrical symmetry ansatz to simplify the calculation. For

the case of standard Abrikosov lattices, the method is extremely accurate over the whole

range of magnetic fields, with several physical quantities such as critical magnetic field

and magnetization curve differing by percent level between the full geometrical result and

the CCM [25–27]. This remarkable result serves as motivation to use this method in the

holographic context. We will however quantify the validity of the approximation, at least

in the previously mentioned limit of critical fields, where an analytic solution is available.

The paper is organized as follows: in section 2 we provide an introduction to the

theoretical setting with which we will work throughout the paper. In section 3 we will apply

the CCM to the holographic vortex lattice and we will compute the magnetization curve

of the superconductor. In section 3.3 we will compare the circular cell approximation to

the Abrikosov solution in the limit of critical magnetic field H2c. We conclude in section 5.
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CCM

Figure 1. Schematic representation of Circular Cell Method.

2 Theoretical setting

We will consider the same model of holographic superconductor in asymptotically AdS4

spacetime as in [17]. The bulk lagrangian is:

SANO =
1

16πGN

∫
d4x
√
−g
[
R+

6

L2
− 1

2
FµνF

µν − 2(Dµφ)(Dµφ)† − 2V (|φ|2)

]
, (2.1)

where L is the AdS radius and

V (|φ|2) = − 2

L2
|φ|2

(
1− 1

2
|φ|2

)
. (2.2)

Fµν = ∂µAν − ∂νAµ, Dµφ = ∂µφ− iqAµφ . (2.3)

Here Dµ denotes the combination of the gravity and U(1) gauge covariant derivatives. We

use slightly unconventional field normalizations: in our units φ and Aµ are both dimension-

less, while q has the same dimension as energy (qL is instead dimensionless). It turns out

that the dimensionless quantity qL indirectly characterizes the ratio between the magnetic

penetration and the coherence length: indeed, as shown in [17], for qL = 1 the vortex is in

the type II regime while for qL = 2 it is type I.

The extrema of the potential (2.2) are

|φ| = 0 , V = 0 , m2
φ = − 2

L2
,

|φ| = 1 , V = − 1

L2
, m2

φ =
4

L2
. (2.4)

We will consider the first of these AdS vacua, whose metric is:

ds2 =
L2

z2
(−dt2 + dz2 + dr2 + r2dθ2) . (2.5)
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Nearby the boundary, the field φ has the following expansion

φ = αz∆1 + βz∆2 + . . . , ∆1 = 1 , ∆2 = 2 . (2.6)

The dimensions ∆i are the solutions of m2
φL

2 = ∆(∆− 3).

In order to allow for a vortex solution, we first need to realize a phase with a non-zero

homogeneous scalar field outside the vortex core. In the original holographic superconduc-

tor model [7, 8] a chemical potential was introduced as a boundary condition of the A0

field, in order for the scalar field φ to condense in the bulk. It turns out that, in order to

achieve the condensation of φ in a holographic model, one does not need to consider the

complication of non-zero background charge density. As explained in [28], the condensa-

tion of φ can be achieved also in a neutral black hole background, using a Robin boundary

condition of the following form:

β = κα , κ < 0 , (2.7)

which is dual to introducing a relevant double-trace deformation in the field theory side of

the holographic duality [29, 30]:

∆V = κO†O . (2.8)

When κ is negative, this term triggers the condensation of the O operator. We choose to

perform our calculations in the double trace deformation because it avoids the necessity to

deal with an extra field profile for A0(z), which reduces the number of equations that we

have to solve.

With zero magnetic field, the critical temperature for condensation [28] is:

Tc =
3

4π

Γ(1/3)3

Γ(−1/3)Γ(2/3)2
κ ≈ −0.62κ . (2.9)

The equations of motion resulting from the action in eq. (2.1) are:

Gµν = 0 , DµF
µν = iq[(Dνφ)φ† − (Dνφ)†φ] = Jµ , gµνDµDνφ− V ′(|φ|2)φ = 0 , (2.10)

where

Gµν =Rµν+
3

L2
gµν−

[
(Dµφ)(Dνφ)† + (Dνφ)(Dµφ)† + gµνV (|φ|2) + F σµFσν −

gµν
4
F ρσFρσ

]
.

(2.11)

For the dual conformal field theory interpretation, it is crucial to specify the boundary

condition for the U(1) at z = 0 [13, 34]. We denote by ~B the four dimensional gauge

curvature tangent to the boundary, so that involves just dxi∧dxj terms, where xi = (t, r, θ).

The ~E components instead involve terms such as dxi ∧ dz, where z is the AdS4 normal

coordinate. If one chooses Dirichlet boundary condition ( ~B = 0), the field theory dual

is a superfluid; instead with a Neumann boundary condition ( ~E = 0) a dynamical gauge

field appears in the boundary, and the field theory dual is a superconductor. The two

choices of boundary condition are related by bulk S duality [34]. The solution that we will

discuss in the next section has cylindrical symmetry, with angular coordinate θ. The only
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non-zero component of the gauge field is Aθ, which has the following expansion nearby the

boundary:

Aθ = aθ + z Jθ +O(z2) , (2.12)

where z is the Fefferman-Graham (FG) coordinate for the asymptotically AdS4 backreacted

metric. In order to impose the Neumann boundary condition, we will set Jθ = 0 in the

boundary condition of the partial differential equation.

2.1 The normal state

In general, the vacuum state of our system with arbitrary temperature and applied magnetic

field must be determined by solving the complicated non-linear system of PDE in eq. (2.10).

In the regime above the upper applied critical magnetic H2c for which superconductivity

is lost, the φ condensate is zero and the magnetic field ~B is spatially uniform. The system

then is described by the magnetic Reissner-Nordstrom (RN) black brane solution:

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+ d~x2

)
, (2.13)

where

f(z) = 1−
(

1 +
z4
hB

2

2L2

)(
z

zh

)3

+
z4
hB

2

2L2

(
z

zh

)4

, A = B dx ∧ dy , (2.14)

and zh is the position of the horizon. The Hawking temperature T is

T =
1

4πzh

(
3−

z4
hB

2

2L2

)
. (2.15)

In order to find zh as a function of B, T , one has to solve a quartic equation:

z4
h + zh

(
8πTL2

B2

)
− 6L2

B2
= 0 . (2.16)

The solution to eq. (2.16) can be written in compact form in two different limits:for
√

B
L � T zh = 3

4πT ,

for
√

B
L � T , zh = 61/4

√
L
B .

(2.17)

The T → 0 limit corresponds to the extremal limit: in this case the near horizon metric is

described by and AdS2 ×R2 metric.

The magnetization of the holographic dual system to the magnetic RN black brane in

eq. (2.13) is [31–33]:

MRS = −∂f̂RS
∂B

= − zhB

8πGN
, (2.18)

where f̂RS is the free energy density of the magnetic RS black brane. Evaluation of (2.18)

gives: for
√

B
L � T MRS = − 3

32π2GN

B
T ,

for
√

B
L � T , MRS = − 61/4

8πGN

√
LB .

(2.19)
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3 The vortex lattice

In this section we dedicate our study to the range of applied magnetic fields in type II

superconductors between the lower critical magnetic field Hc1, where the magnetic field

start to penetrate inside the superconductor, and the upper critical field Hc2, where su-

perconductivity is completely destroyed. In this regime the superconductor is pierced by a

lattice of flux vortices.

The numerical solution of the backreacted holographic vortex lattice is in general a

rather hard problem, because there is no cylindrical symmetry and one should solve a

system of partial differential equations involving gravity in three dimensions.

In order to determine the critical magnetic fields and the magnetization curve in the

GL model, it turns out that the CCM gives an excellent approximation [25–27]. In this

section we apply the CCM to the an holographic vortex lattice with backreaction.

3.1 Metric ansatz

We denote by R the radius of the circular cell in the boundary. The vortex cell area then

is: Acell = πR2. In our units R is dimensionless, since all scales in the model are set by L

and κ. We consider the following ansatz for the cylindrical symmetric metric in the bulk:

ds2 =
L2

y2

{
−Q1y

2
+(1− y3)dt2 +

Q2

1− y3
dy2

+y2
+Q4

(
Rdx+

Rx

(1 +Rx)2
y2Q3dy

)2

+ y2
+Q5R

2x2dθ2

}
, (3.1)

where Q1,2,3,4,5 are function of the AdS normal coordinate y and of the vortex radial

coordinate x. The boundary radial cylindrical coordinate is r = Rx, in such a way that

x ∈ [0, 1]. This is very similar to the ansatz introduced in [17] for the single vortex case.

The main difference is that the x̂ coordinate used in [17] for the single vortex case is

different from the x coordinate used here. The relation is as follows:

x =
1

R

x̂

1− x̂
, x̂ ∈ [0, 1] . (3.2)

Here y ∈ [0, 1], with y = 0 being the conformal boundary and y = 1 the black hole

horizon. Without loss of generality, we can set at the horizon Q1(x, 1) = Q2(x, 1). With

this choice of conventions, the Hawking temperature is:

T =
3y+

4π
. (3.3)

Note that the metric (3.1) is not in the Fefferman-Graham form, i.e.

ds2
FG =

L2

z2
dz2 + γMNdw

MdwM , (3.4)

where the capital latin letter denote the boundary coordinates wM = (t, x̃, θ) and y ≈ y+z.

The FG metric is useful to extract the expectation value of boundary quantities; the

– 6 –
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form (3.1) instead is more convenient to numerically solve the equations of motion (2.10).

The change of variables which brings the metric (3.1) in FG form can be expanded as

follows nearby the boundary

y = y+z +

∞∑
i=2

ai(x̃)zi , x = x̃+

∞∑
i=1

bi(x̃)zi , (3.5)

where some of the lowest order coefficients (ai, bi) can be found in appendix A of [36].

The matter field profiles are taken as follows [17]:

φ = yeinθ
(

Rx

1 +Rx

)n
Q6(x, y), Aθ = L

(
Rx

1 +Rx

)2

Q7(x, y). (3.6)

For the purposes of this paper we are only interested in winding n = 1 vortices, therefore we

restrict to this value from here on. We will impose the boundary condition ∂yQ7(x, 0) = 0

in order to describe a superconductor and not a superfluid, see eqs. (2.12) and (3.5).

The equations of motion (2.10) lead to a complicated set of coupled non-linear partial

differential equations for the Qi(x, y) which must be solved subject to specific boundary

conditions which we discuss below.

The equations cannot be solved by standard numerical procedures in their current

form. To make the equations elliptic, the DeTurck method is adopted. This is explained

in detail in [35] and we will not review it here. For our case the reference metric for the

DeTurck procedure is chosen to be the same line element as in eq. (3.1) with

Q1 = Q4 = Q5 = 1 , Q3 = 0 , Q2 = 1− α̃y(1− y) , (3.7)

where the DeTurck parameter is fixed to α̃ = 16κ/9, in order to avoid logarithmic tails

in the near boundary Fefferman-Graham expansion of the metric. As a final note, it is

crucial that the solutions found must satisfy the vanishing of the DeTurck vector ξaξa = 0,

otherwise they are known as Ricci solitons. We have checked that this is the case for all

the numerical solutions presented in this paper.

3.2 Boundary conditions and solutions

The main idea of the CCM is to use a cylindrical symmetry ansatz (see figure 1) to approx-

imate an triangular or square Wigner-Seitz cell. In the GL model, the following conditions

are imposed in order to reproduce the physical vortex lattice [24]:

• the flux of the magnetic field in each cell is the same as the flux of an elementary

vortex

• the radial derivative of the scalar condensate and of the magnetic field vanishes at

the boundary of the cell.

The coordinate x = 1 corresponds to the boundary of our cell, therefore this is where

we have to pay special attention to this boundary condition. The geometry of the cell array

– 7 –
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has to match together in a smooth way. This gives the following boundary conditions for

the metric:

∂xQ1(1, y) = ∂xQ2(1, y) = ∂xQ4(1, y) = ∂xQ5(1, y) = 0 , Q3(1, y) = 0 . (3.8)

The boundary conditions the gauge fields come from the physical requirement that the

total magnetic flux inside a cell is 1/q, which from Stokes’ theorem is equivalent to Aθ(x =

1) = 1/q, i.e.

Q7(1, y) =
(1 +R)2

qLR2
, (3.9)

Eq. (3.9) is also equivalent to the condition that the current

Jµ = iq(φ†Dµφ− φDµφ
†) (3.10)

vanishes at the boundary of a cell. The circular cell method implies that we have to impose

the condition Dxφ = 0, i.e.

∂xQ6(1, y) = − 1

1 +R
Q6(1, y) . (3.11)

Note that the original boundary condition for the circular cell method involved setting

the derivative of the magnetic field to zero at the boundary of the cell. The condition

∂x(FµνFµν) = 0 at the boundary of the cell follows from eqs. (3.8), (3.9).

The other boundary conditions are chosen as in [17]:

• y = 0. At the conformal boundary we require the metric to tend to the black brane

solution, therefore

Q1 = Q2 = Q4 = Q5 = 1, Q3 = 0. (3.12)

The boundary condition on the scalar field is the Robin condition previously men-

tioned:

∂yQ6(x, 0) =
κ1

y+
Q6(x, 0), (3.13)

where κ1 is related to κ and to the α̃ parameter as follows:

κ1 =
α̃y+

4
. (3.14)

The boundary condition on the gauge field is the one which corresponds to the holo-

graphic dual of a superconductor, i.e. ∂yQ7(x, 0) = 0.

• x = 0. These conditions in the vortex core are derived in the appendix of [17],

∂xQ1(0, y) = ∂xQ2(0, y) = ∂xQ4(0, y) = ∂xQ5(0, y) = 0, Q4(0, y) = Q5(0, y),

∂xQ3(0, y) = 2R Q3(0, y), ∂xQ6(0, y) = R Q6(0, y) ∂xQ7(0, y) = 2R Q7(0, y).

• y = 1. At the horizon, the only condition that one must satisfy is that Q1(x, 1) =

Q2(x, 1).

– 8 –
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(a) B (blue) and scalar field profiles.

0.5 1.0 1.5 2.0 2.5
R

-0.05

0.05
0.10
0.15
0.20
0.25

R
˜

(b) Induced Ricci scalar at the horizon.

Figure 2. Some representative solutions of the superconductor case for R = 2.5 and q = 1, κ = −1,

y+ = 1, GN = 1, L = 1. The solutions show the field profiles (scalar field in red and magnetic field

in blue on the left, Ricci scalar on the right) in one cell of size R.

Some representative solutions are shown in figure 2, showing the profiles for the mag-

netic field, the scalar field and the induced horizon Ricci scalar in the vortex cell.

We have also checked that the induced Ricci scalar R̃ on the horizon is smooth (∂xR̃ =

0) at x = 1, and that there are therefore no gravitational singularities at the borders of the

cell. Before proceeding to calculate the magnetization in the full magnetic field regime, we

first make, in the next subsection, an important check on the accuracy of the circular cell

approximation.

3.3 The critical magnetic field limit H2c

In the limit where the magnetic field approaches from below the upper critical field H2c,

the scalar condensate is small and the authors of [18] derived an analytic solution for the

holographic vortex lattice for a non-backreacting model. This solution was based on a

different holographic model, namely one containing a chemical potential and no quartic

potential. However, since the solution is separable in the bulk and spatial coordinates, we

can use the spatial part of the solution as the spatial part of the solution to our model

in this limit. This fact allows us to compare the full analytic result to our circular cell

approximations taken close to the upper critical magnetic field limit.

The main idea is that nearby the critical magnetic field H2c the AdS bulk equations are

separable. The spatial part of the scalar condensate equation then reproduces the profiles

found by Abrikosov [3].

This solution is of the form

φ(x1, y2, y) =
ρ0(y)

L

l=∞∑
l=−∞

cle
iplx2γ0(x1; pl) , (3.15)

where (x1, x2) denote the two spatial directions and

γ0(x1; pl) = exp

(
−1

2

(
x1

r0
− pr0

)2
)
, pl =

2πl

a1r0
, cl = exp

(
−iπa2

a2
1

l2
)
, (3.16)
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0.2 0.4 0.6 0.8 1.0 1.2
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(a) Square.

0.2 0.4 0.6 0.8 1.0 1.2

0.05

0.10

0.15

(b) Triangular.

Figure 3. Comparison of circular cell method with square and triangular analytic lattice for

Hc2 −B ≈ 0.01. The plot shows the scalar field profile φ. Red line in between the other blue lines

is the circular cell result. The other two correspond to the analytic solution in the x1 (lower) and

x2 (higher) directions.

for constant p and r0. ρ0(u) here denotes the profile of the solution on the AdS bulk

direction. The parameters ai control the geometry of the lattice solution. For square

lattices, we simply have a1 = a2, while for triangular lattices the relation is

a2

a1
=
a1

2
= 3−1/4√π. (3.17)

In other words, for our model ρ0(y) will be different, but the rest of the solution is the

same. The comparison of the spatial profiles at the boundary is independent of ρ0(y).

With this solution in hand, we performed an explicit check of the accuracy of our

circular approximation by comparing vortex profiles in both x1 and x2 directions in this

limit of our solution. There is a remarkable agreement between the two, see figure 3,

especially with the triangular case.

4 Free energy and magnetization

The free energy of the cell is defined by

F = E − TS, (4.1)

where E is the energy of our solution, T is the temperature and S is its entropy.

The energy can be computed by performing holographic renormalization in FG coor-

dinates, see [17, 36] for details. The result for E is:

E =
−y2

+

G
R2

∫ 1

0
xdx

(
3

48
y+Q

(3)
1 (x) +

17y+α+ 160κ1

256

(
Rx

1 +Rx

)2

Q6(x)2

)
, (4.2)

where Q
(k)
i are the series expansion of the functions Qi in powers of y around y = 0:

Qi =

∞∑
k=0

Q
(k)
i yk . (4.3)
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The entropy can be computed from the area of the horizon, see [17]:

S =
π

2
y2

+R
2

∫ 1

0
xdx

√
Q4(x, 1)Q5(x, 1). (4.4)

The final expression for the averaged free energy density is therefore

f̄ = 2πF/(πR2) =
2(E − TS)

R2
(4.5)

where we included angular factors in the integration and divided by the cell area πR2. We

denote by B̄ the averaged magnetic field in the cell:

B̄ =
1

q

2

R2
. (4.6)

With these results in hand we can now proceed to calculate the magnetization for the

holographic superconductor vortex array. This is the main advantage of using the circular

cell method, as the calculation for the magnetization would otherwise involve solving the

full three dimensional vortex array system, or resorting to magnetic field limits in which the

system is tractable analytically. With this method, which as we saw is extremely accurate

at least for the case of magnetic fields close to the upper critical value, we can extend the

calculation to the whole range of magnetic field values.

Our superconducting boundary condition on Q7 means the dual current Jφ = 0 and

corresponds to infinite boundary gauge coupling g → ∞. The finite value of the magne-

tization M , which is proportional to g and Jφ then arises from a zero times infinity limit

which is difficult to compute directly; it is more straightforward to use the definition of

magnetization using free energy.

The applied magnetic field can be defined as the source to which the magnetic field is

coupled and it can be extracted from the derivative of the free energy density with respect

to B̄:

H =
∂f̄

∂B̄
= −qR

3

4

∂f̄

∂R
. (4.7)

This should be compared with a region of space where no superconductor is present, which

is described by the Reissner-Nordstrom (RS) solution. We denote by HRS the applied

magnetic field of the RS black brane with the same temperature and magnetic field B = B̄:

HRS =
∂f̂RS
∂B

= −MRS , (4.8)

see eq. (2.18). The magnetization can be expressed as the difference between the RS

magnetic field and the applied magnetic field in the presence of the superconductor:

M = HRS −H . (4.9)

Numerical plots of this results, for varying values of q, are shown in figure 4. These values

are all chosen inside the type II parameter space. The type II/type I transition is close to

qL = 2.

– 11 –
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Figure 4. Magnetization plot for several values of q including values of Hc1 (vertical lines). We

set y+ = 1, κ = −1, L = 1, GN = 1.

We can calculate the value of Hc1 for different values of q from the single vortex limit.

Using the free energy functional for the single vortex, we have that [13],

Hc1 =
q

2π
(F1 − F0), (4.10)

where Fn (defined in equation (4.1)) denotes the free energy of the state with n vortices.

The results of these calculations are shown as the vertical lines (one for each q) in figure 4

and they are in good agreement with the magnetization curve.

5 Discussion

In this paper we studied holographic vortex lattices in a holographic superconductor model

in asymptotically AdS4 spacetime, using the circular cell approximation. We computed the

magnetization curves and we found a qualitative agreement with the ones computed for

a Ginzburg-Landau superconductor (see e.g. [27]). In the limit nearby the upper critical

magnetic field, we showed that the circular cell method gives a good approximation of the

Abrikosov solution.

In general, there are two limits in which the backreaction of the scalar field on the

metric is small:

• The upper critical magnetic field regime, i.e. H ≈ H2c with H < H2c. We checked

that the spatial profiles found by Abrikosov are reproduced (see section 3.3).

• The T ≈ Tc limit, where Tc is the critical temperature for the condensation of φ

in eq. (2.9). Above Tc the scalar field φ is zero, and so the condensate is small

approaching this temperature from below. In this limit we expect that the Landau-

Ginzburg theory provides a good effective description of the physics, including the

vortex lattice.

– 12 –
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In the numerical example discussed in figure 4 we use the numerical values y+ = 1,

κ = −1. From eqs. (3.3) and (2.9), these values correspond to T ≈ 0.24 and Tc ≈ 0.62,

and so to Tc/T ≈ 2.6. This should be quite far away from the small field limit. Still we get

magnetization curves rather similar to the ones computed in [27] for a Ginzburg-Landau

superconductor.

In the regime T � Tc (or equivalently T � |κ|), we expect that the backreaction of the

scalar field φ is increasingly important. Unfortunately, our numerical calculations become

challenging in this regime. It would be interesting to further study this limit to check if

some interesting behaviour appears in the magnetization curve.

A more accurate numerical study using a square and triangular lattice ansatz is desider-

able. In the case of the GL superconductor, the triangular lattice is energetically preferred,

with a smaller (at the per cent level) energy per unit of magnetic flux. It would be inter-

esting to check if the triangular lattice is preferred also for holographic superconductors.

Moreover, this numerical study would allow to compare the distribution of the magnetic

field and the magnetization for each lattice symmetry and to compute the flux-line lattice

elastic shear modulus.

Another promising direction is to extend these studies to the case of non-abelian vortex

strings [37–40]. The force between two non-BPS non-abelian vortex strings1 depends on

the relative orientation of the internal degrees of freedom localised on the vortex [44, 45].

A rich structure of vortex lattice phase transitions may be realisable in these case. Vortex

lattices in a weakly coupled model of non-abelian vortices were studied in [46]. It would

be interesting to perform similar studies for holographic non-abelian vortices [16, 36].
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