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To Valentina 
 

É isso aí, como a gente (não) achou que ia ser 
a vida tão simples é boa, quase sempre 

É isso aí, os passos vão pelas ruas 
ninguém reparou na lua, a vida sempre continua 

Eu não sei parar de te olhar 
Não vou parar de te olhar 
Eu não me canso de olhar 

Não sei parar 
De te olhar 
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In species in which artificial insemination is widely used, such as dairy cattle, males 

contribute more than females to the genetic make up of the next generations. 

Accurate estimation of the genetic value of sires is therefore essential to maximize 

genetic progress. Currently, dairy cattle breeding relies on modelling of phenotypic 

and pedigree information to estimate the genetic value of animals, and so to obtain 

the Best Linear Unbiased Prediction (BLUP) of a bull genetic merit. The BLUP 

method enables the disentangling of the genetic and non-genetic components of the 

phenotypic values (Henderson, 1975). Since in dairy cattle many traits included in 

the selection index are sex-limited (i.e. milk yield and quality traits) and can only be 

recorded on cows, phenotypes are recorded on the daughters of bulls under 

evaluation. This selection scheme, called Progeny Test (PT), is designed to increase 

genetic progress by optimizing the accuracy of selection and the generation interval 

(Figure 1) and is implemented in dairy cattle breeding in most  countries. Its main 

limitation is the long time required (~5/7 years) to collect sufficient information to 

obtain a sufficiently accurate (first) estimation of bulls’ genetic merit. Long generation 

intervals imply both reduced potential genetic progress and  high costs related to PT. 

Unable to intervene on generation intervals without heavily penalising accuracies, 

dairy cattle geneticists worldwide focused on obtaining more accurate predictions by 

improving the model used for the estimation of BV. The “sire” model, that included 

only the genetic effects of fathers to explain the phenotypes of daughters, was 

followed by the “sire maternal grandsire” model, that considers also the genetic 

effects of the mothers through the maternal grandsires, hence correcting sires 

genetic value estimates for preferential crossing. Later on a model was developed for 

the joint evaluation of both male and female animals in a population (animal model; 

Henderson, 1984; Mrode, 2005). Progress in computational technologies and 



advances in animal breeding theory also allowed a change in the type of phenotypic 

data used in the genetic evaluations for longitudinal data. The introduction of the 

fixed and random regression test day model enabled the use of multiple records 

during the lactation (test days) as phenotypic records, instead of a single lactation 

record. This model represents a change of paradigm, because single measurements 

are considered as correlated traits. This implies that different genes may control the 

traits during different phases of the lactation and across different lactations.   

 
Figure 1. Example of the selection scheme adopted in Italy for the Holstein-Friesian 
breed, based on a progeny test (ANAFI, 2010).  

 
 

 

 

In the last 20 years, the exchange of genetics has become an international business 

and has fostered the exchange of information across countries to improve the 

accuracy of (national) genetic evaluations (Powell et al., 2000). This international 

network of estimated breeding values (EBVs) is managed by an international 



  Introduction 

5 
	
  

organization (Interbull centre), which provides an across-country measure of the 

genetic value of the animals. International EBVs are useful for the improvement of 

the accuracy of national evaluations, and valuable for countries interested in the 

importation of foreign bulls (i.e. bull’ semen). These accurate predictions of bulls’ 

genetic merit (as confirmed by Powell et al., 2004 and Brochard et al., 2006 in the 

USA and France, respectively) allow a greater exchange of bull semen across 

countries, boosting, as a consequence, genetic progress worldwide. 

The success obtained by this “traditional” selection in the last decades is reflected in 

the remarkable genetic progress achieved over the years, mainly in traits with 

medium-high heritability (i.e. yield traits). However, traditional selection is less 

efficient in improving traits with low heritability (i.e. fertility), traits with phenotypes 

which are difficult or expensive to collect.  

In traditional selection, genetic merit of animals is estimated considering the genome 

as a “black box”, hence ignoring the number, location and relative effect of genes 

controlling the traits under selection. The collection of molecular information is a first 

fundamental step towards the understanding of this black box. For example, high 

density genetic marker panels offer the opportunity of identifying genomic regions 

having relevant effects on complex traits. In this scenario, the integration of 

molecular data into breeding can help to reduce (or to solve) present inefficiencies 

and, as a consequence, to increase genetic gain 

The idea of using molecular information in breeding is not new. Neiman-Sorensen 

and Robertson (1961) showed an association between blood groups and production 

traits in three Danish dairy cattle breeds, and proposed a large-scale use of this 

information. In the following years, technological and scientific progress permitted the 

use of more informative genetic markers like: Amplified Fragment Length 



Polymorphism (AFLP), Restricted Fragment Length Polymorphism (RFLP), micro- 

and mini-satellite and Single Nucleotide Polymorphisms (SNP). Using these 

technologies, many efforts were addressed to detect quantitative trait loci (QTL) 

controlling the expression of traits under selection in most important breeds and 

different species (e.g. Wimmers et al., 2002; Khatkar et al., 2004; Sharma et al., 

2006; Milanesi et al., 2008).  

However, even if many QTLs (Animal genome web-site, 2010) and few causative 

mutations have been identified (Grisart et al.,2002, Cohen-Zinder et al., 2005, Varvio 

et al., 2008), the impact of the use of this type of molecular information in breeding 

(e.g. Marked and Gene Assisted Selection, MAS and GAS) has been almost 

negligible until recently. Several reasons explain why this highly valuable information 

has found only limited application in breeding. Low density marker maps and the 

investigation of segregating populations fosters the identification of markers that 

often are rather distant from the causative mutation(s) causing the QTL effects. This 

means that the association phase between marker and QTL alleles may vary in 

different families and is not consistent across the population. In addition, the (high) 

physical distance between molecular markers results in phases that can be reversed 

in very few generations (i.e. low linkage disequilibrium) even in the same family. In 

these conditions marker-QTL phase is to be verified across generations, to avoid the 

risk of selecting in favour of an undesired QTL. This increases the cost of MAS, and 

reduces its potential impact on genetic progress of the entire population. 

Furthermore, the low power of QTL detection with sparse marker maps permits the 

identification of only a few QTL with major effects, whereas several studies have 

demonstrated that most QTL have moderate to small effects. In this scenario, QTL 

effects tend to be overestimated, possibly introducing bias in genetic evaluations 
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(Beavis, 1998). To validate QTL effects, these are to be investigated in independent 

samples of the same population or in independent populations, resulting in further 

increase of costs and possible loss of information (as some of the QTL can fail 

validation). Finally, costs involved in QTL detection and routine genotyping of 

animals were to be added to the already expensive PT. In MAS, molecular 

information was intended as additional information to augment accuracy of EBV, but 

not as a substitute of traditional selection.  

Because of all these reasons, only France and Germany introduced the systematic 

use of this type of molecular information in their breeding programs (Druet et al., 

2005, Liu et al., 2004). 

In the last few years, next-generation technologies and highly parallel SNP 

genotyping offered new options for the use of molecular data into breeding. These 

are changing livestock selection as we presently know it. Meuwissen et al. (2001) 

theorized on the possibility of using dense genome-wide genetic markers to select 

animals based only on genotypic information. This method was named “genomic 

selection” (GS). Briefly, GS uses dense marker panels to estimate direct genomic 

breeding values (DGV) in a training population in which both phenotypes1 and 

genotypes are known. The DGV of young animals can the be predicted before their 

(daughter) phenotypic information is available, avoiding PT. This theory was initially 

developed and tested on a simulated dataset, sincea technology able to genotype 

many thousand markers on a few thousand animals at low cost was not available in 

2001. In their study, Meuwissen et al. (2001) stated that:“[…] the advent of DNA chip 

technology may make genotyping of many animals for many of these markers 

feasible (and perhaps even cost effective) […] ”.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The term “phenotypes” in GS is generally used to indicate the dependent variable. As for now, the 
dependent variables used in GS are EBV, DYD (daughter yield deviations) or DRP (deregressed 
proofs), and not actual phenotypes.  



Only recently, the availability of cost-effective high throughput molecular information 

theorized by Meuwissen et al. (2001) became reality. Compared to MAS, dense 

maker maps allow carrying out population-wide studies, exploiting the genetic 

structure existing within breeds that determines a high level of linkage disequilibrium 

(LD) between neighbouring markers. In fact, GS fits the markers in the genetic 

model, not explicitly accounting for the QTLs controlling the trait. In this condition, 

marker-marker and marker-QTL phases (the latter considered only indirectly) are 

likely to be conserved across families within a breed.  

Currently, thousands of animals are being genotyped worldwide with the (54K) 

bovine SNP beadchip (VanRaden and Sullivan, 2009; Goddard and Hayes, 2009). 

The importance of GS is highlighted by the potential advantages of this methodology 

over current “traditional” selection. They range from an increase of genetic gain 

caused by a strong reduction of the generation interval (young animals receive their 

genomic evaluations nearly at birth), to the increase of accuracies of breeding value 

estimates in the female population (Shaeffer, 2006), including a more accurate 

genome-wide based estimation of the relationships between animals 

(VanRaden,2007; VanRaden, 2008;Figure 2) and a substantial reduction of the costs 

for estimating the genetic value of breeding animals (Konig et al., 2009).  

However, the statistical and computational issues raised by the large amount of 

information in GS are yet to be solved. In fact, no golden standard statistical method 

is agreed and many alternative statistical procedures for the estimation of DGV are 

under evaluation. Currently, the performances of different BLUP, non-linear or 

Bayesian models are being tested in different traits and breeds (VanRaden et al., 

2009; Hayes et al., 2009; Gredler et al., 2009; van der Werf, 2009;Legarra et al., 

2008; Gonzalez-Recio et al., 2009). In addition, nowadays it seems that completely 
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cancelling PT is not a viable option as previously stated, since accurate breeding 

values are needed of generations immediately before the current generation to 

maintain sufficiently accurate DGVs. 

 
Figure 2. Comparison between average and genomic relationship for half-sib      
Italian Holstein bulls. Only bulls with 0.25 <aaverage< 0.26 were considered. 

 

 

The black bar indicates the average relationship (i.e. currently used in ‘traditional’ 
genetic evaluations), whereas the white bars indicate the genomic relationship for the 
same bulls. Unpublished data. 
 

Genome-wide marker data are not only exploited for GS. Genomic information can 

also be used to study the genetic population structure (McKay et al., 2008), perform 

fine-mapping QTL (Armin et al., 2007; Lionikas et al., 2010), discover causative 

mutations (Charlier et al., 2008), genome-wide association studies (GWAS; Sherman 

et al., 2008; Goddard and Hayes, 2009), and tracing signatures of selection in the 

genome (Barendse et al., 2009; MacEachern et al., 2009; Stella et al., 2010), 

amongst others. The aim of this thesis is to study different aspects of both traditional 

and genomic selection, testing and suggesting new methods in both simulated and 

real datasets.  
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1) NATIONAL AND INTERNATIONAL GENETIC EVALUATIONS  

 
1.A. NATIONAL EVALUATIONS AND MODELS APPLIED 

The use of direct (DGV) and genomic (G-EBVs) breeding values, the latter obtained 

by combining DGV with pedigree based estimates, needs further validation in many 

breeds and countries, comprised Italy. The use of genomic data is therefore often still 

“experimental” and awaiting to enter in the routine of genetic evaluations. In the 

meantime, both national and international evaluations are still based upon what is 

know as “traditional” evaluations (i.e. PT based). In simple words, this means that 

phenotypes and known degrees of relationship (i.e. from pedigree information) are 

combined to obtain an estimation of the genetic value of an animal. The idea behind 

this is that genetic differences between animals can be estimated from phenotypes, 

once considered the relationships among them and excluded all non-genetic effects 

in a genetic model. This is the (simplistic) explanation of the concept driving all 

statistical methods currently applied in genetic evaluations. 

First approaches to selection of livestock were simply based on the raw comparison 

of phenotypes between animals. Since Best Linear Unbiased Predictions (BLUP) 

became available, these comparisons were performed on the estimated breeding 

value (EBV) of animals (Henderson, 1950). The evolution of more advanced features 

of this method generally corresponded to advances in computational and theoretical 

techniques. For example, early applications of BLUP methods evaluated in the model 

only the male population (sire, sire and maternal grandsire models). An evaluation of 

all animals in the pedigree (BLUP animal model) became feasible only in the late 

‘80s, when computer technology allowed performing the (much) higher amount of 



calculations required. Since then, many developments have been proposed and 

adopted in different countries. 

The success of this now considered “traditional” selection is demonstrated by the 

great genetic progress achieved. The greatest gains were mainly achieved in 

medium-high heritability traits, such as production related traits, on which selection 

has focused for decades. However, as a consequence, reduced (or even negative) 

genetic progress has been obtained in functional, low heritability traits or traits 

negatively correlated with production (Figure 1). 

 
Figure 1. Italian Holstein (progeny tested) bulls’ genetic trend for main productive 
and functional traits, by bulls’ year of birth. 

 

 

Figure “A” shows the genetic trend for milk (white circles), fat (black squares) and 
protein yield (black crosses). Figure “B” shows main functional traits trends for 
functional longevity (white squares), somatic cell count (black circles) and female 
fertility (black triangles). Note that there is a clear positive genetic trend for all 
productive traits, a nearly stable trend for functional longevity and somatic cell count 
and a negative trend for female fertility (data provided by the Italian Holstein 
Association, ANAFI; January 2010).  



CHAPTER I – From ‘traditional’ genetic evaluations to genomic selection 

19 
 

Below is presented a brief description of the basis of past and present models used 

in “traditional” genetic evaluations, to introduce some of the methods currently 

applied in genetic evaluation systems worldwide. 

 

Sire model (SM) and Sire and Maternal Grandsire model (MGS) 

Early applications of BLUP methods evaluated only bulls based on their progeny 

performances. The sire model in matrix form is defined by: 

y = Xb + Zs + e         [1.1] 

where y is a vector of phenotypes; X is an incidence matrix linking phenotypes to the  

fixed effects; b is a vector of solutions of the fixed effects; Z is an incidence matrix 

linking phenotypes to the random sire effect; s is a vector of sire random effects with                      

s ~ N(0,Aσ2
s), where A is the additive relationship matrix and σ2

s is the sire variance; 

and e is a vector of random residuals with e ~ (0, Iσ2
e ), where I is an identity matrix 

and σ2
e is the residual variance. Note that since only sires are evaluated, the genetic 

effect considered is half of the additive genetic effect  of the daughter (the other 

half, corresponding to the dam, is not accounted for). Thus, σ2
s= var(½ )= (½)2 x      

( )2 = ¼σ2
a, where σ2

a  is the (animal) additive genetic variance. 

The (factorized) mixed model equations (MME) of this model result: 

       [1.2] 

,where λ = σ2
e/σ2

s = (4–h2)/h2, and h2 is the heritability of the trait. 

Nearly all countries applied this methodology in their genetic evaluation systems until 

the late ‘80s. However, this model has some shortcomings. For example, in the case 

of assortative mating, not accounting for the genetic merit of dams biases sires’ BV 

estimates (Schaeffer, 1983). In a dairy cattle breed, a farmer may mate top bulls with 



top dams to produce high-quality offspring (positive assortative mating) or to dams of 

much lower genetic level, to improve the genetic level of the breed (negative 

assortative mating). Since SM considers only sire effects, the effect of the mating is 

not accounted for: sires are assumed to mate dams of equal genetic merit and not 

related to each other (usually not the case in dairy cattle). This model leads to an 

over- or under-estimation of sires EBV.  

Alternative models have been proposed to reduce this bias, as the model that 

considers the maternal grandsires in the evaluation of a sire genetic merit (MGS; 

Everett, 1979; Schaeffer, 1983). However, the best solution to this issue is to 

evaluate together all animals within a breed (i.e. bulls and cows), in an “Animal 

model”. 

 

Animal model (AM) 

In an AM, all animals are considered in the evaluation model. The number of MME is 

much higher than in the SM, as in dairy cattle the female is generally much larger 

than the male population. 

In matrix notation, an AM is similar to [1.1]: 

y = Xb + Za + e         [1.3] 

however, in an AM, the term “a” is a vector of animal random effects with a ~ N (0,    

Aσ2
a).The (factorized) MME in the AM result: 

       [1.4] 

,with λ = σ2
e/σ2

a = (1 – h2)/h2. 
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The AM started to be adopted in dairy breeds genetic evaluation systems in the late 

80’s, when computer technology allowed enough calculation power to store and 

solve (i.e. invert) large matrices, which can easily reach the order of millions.  

 

Modelling longitudinal phenotypes  

Longitudinal data are repeated measurements of a variable (i.e. milk yield) along a 

trajectory (i.e. a lactation). The statistical model that analyses this kind of phenotypic 

data should consider that measurements along the trajectory are somehow 

correlated.  

Among the statistical solutions available, the repeatability animal model (repAM) was 

the model used for productive traits by almost all countries until 1999  (Interbull, 

2010). The repAM allows to account for random environmental effects (including non-

additive genetic effects) important to define the (co)variance structure between 

measurements of the same animal over time. However, the repAM assumes an 

equal variance for all measurements and a correlation of one between pairs of 

measurements, hence considering successive records as repeated measurements of 

the same trait (Mrode, 2005). These unrealistic assumptions make this a simplistic 

model for the description of the complex behaviour of longitudinal data.  

In terms of model complexity and computing time, the easiest way to analyse 

longitudinal phenotypes is to combine single lactation records (test-day records) into 

a 305-day lactation record. This 305-combined record is usually estimated from a 

mathematical function that takes into account the shape of the lactation curve. Some 

examples of such mathematical functions are the “test interval method” (Everett and 

Carter, 1968) or the “multiple trait prediction” (Schaeffer and Jamrozik, 1996). Using 

these methods, covariables are used to describe the shape of the lactation curve of 



cows within fixed sub-classes (i.e., cows of the same productive region, age, parity 

and season of calving), and all factors that may influence single lactation records are 

averaged together (i.e. specific conditions of the test day). As a standard lactation 

curve is assumed for all cows in the same fixed sub-class, the EBV evidences the 

differences in the height of the lactation curves. Ptak and Schaeffer (1993) first 

approached a solution to this problem by directly using single test day records as 

phenotypic records, to consider that temporary environmental effects may differ 

across single test day records. The model they described bypasses the need to 

estimate the 305-day lactation record, although the amount of information to be 

stored for each lactation and the number of equations to be solved by the model was 

much higher (i.e. around 10 single test day records/lactation, instead of a single 305-

day lactation record). However, this solution still assumed a correlation of one 

between lactation records in a same lactation, and cow lactation curves weren’t 

allowed to assume different shapes within the same sub-class. These issues were 

solved with the introduction of random regression test day models (RRTDM; 

Schaeffer and Dekkers, 1994). In this model, the shape of the lactation curves for 

single cows are considered to be different, thus allowing persistency of cows1 to be 

evaluated and environmental effects affecting the lactation of a cow to be better 

estimated (Schaeffer et al., 2000). In a RRTDM the lactation curve of a cow is 

defined by both fixed and random regressions on days in milk (DIM). The general 

shape of the lactation curve is defined by fixed regressions for cows in the same 

(fixed) sub-class (as in the approach by Ptak and Schaeffer, 1993), whereas random 

regressions allow describing the deviation of a specific cow from that (general) fixed 

regression (Jamrozik and Schaeffer, 1997). The functions used to describe the shape 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Lactation persistency of a cow refers to the degree of milk production that is maintained form the 
beginning to the end of the lactation. In Italian Holstein, for example, persistency is evaluated as rate 
of milk production between the 280th and the 60th day of lactation.	
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of the lactation curve span from Wilmink functions (Wilmink, 1987) to Legendre 

polynomials (Kirkpatrick et al., 1990) or cubic splines (White and Brotherstone, 

1997), among others. 

The main drawback of this methodology is the much higher computational 

requirements in terms of storage of information and equation solving. Other 

shortcomings are the sensitivity of this model with respect to the accuracy of 

collection of phenotypes and the higher complexity of the model itself, that difficult 

the dissemination of information to breeders. 

 

Test day model in Italy 

In Holstein-Friesian dairy cattle population the RRTDM is the model currently 

adopted for the estimation of BV for milk, fat, protein and SCS in Italy, Canada, 

Germany and the Netherlands, among others (Interbull, 2010). The multiple-trait 

multiple-lactation RRTDM was adopted in Italy in November 2004 (Canavesi et al., 

2004). The term “multiple-trait” means that the four aforementioned traits are 

analysed simultaneously; and “multiple-lactation” refers to the fact that each of the 

first three lactations is considered as a different (correlated) trait. Thus, the model 

analyses 12 traits simultaneously: milk, fat, protein yield and SCS, for the first 3 

lactations of a cow. Test day records, in this model used as dependent variables, are 

pre-adjusted for both heterogeneity of variance (Schaeffer et al., 2000) and number 

of days of pregnancy at the test date (Canavesi et al., 2009). 

The model is as follows ( after Muir et al., 2007): 

   [1.5] 

where yijkptd is the (corrected) test-day record on trait t of cow j in lactation p on DIM d 

within herd-test-day-parity i and in the k fixed regression subclass for “TRAPS”: Time 



(considered as year effect of production), Region (four regions are currently 

considered: northern Italy, centre of Italy, southern Italy and Parmigiano-Reggiano 

region),  Age by Parity, and Season; HTDP are the herd-test-day-parity effects; β are 

the fixed regression coefficients; u and pe are the random genetic and random 

permanent environmental effects of cow j; ø are the m fourth-order Legendre 

polynomials; and e is the random residual. 

In matrix notation: 

y = Xb + Za + Wpe + e        [1.6] 

where y is a vector of test-day records; X is the incidence matrix for HTDP and fixed 

regressions; b is a vector of solutions for HTDP and fixed regressions, Z and W are 

incidence matrices for the animal and the permanent environmental effects, 

respectively; a is the random regression for animal genetic effects, with a ~  N(0, 

A⊗G), where A is the additive relationship matrix, and G is the (co)variance matrix of 

the additive genetic random regression coefficients for the four traits and three 

lactations (thus, of order 60 because each curve is defined by five Legendre 

polynomials parameters); pe is the random regression vector for permanent 

environmental effects, with pe ~ N(0,I⊗P), where I is an identity matrix and P is the 

(co)variance matrix of the permanent environmental random regression coefficients 

(of order 60); and e is a vector of random residuals, with e ~ N(0,R), where R is a 

(co)variance matrix of random residuals, where covariances among traits can 

assume values different from zero. The MME for the RRTDM are: 

   [1.7]  
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1.B.  INTERNATIONAL EVALUATIONS 

In the early ‘70s, the development of reproductive technologies (i.e. frozen semen) 

and the resulting international trade of livestock genetic material, evidenced the need 

to standardize the expression of bulls’ EBV to make them comparable across 

countries. In 1975 the European Association for Animal Production (EAAP) and the 

International Dairy Association (IDF) formed a working group to investigate possible 

solutions to this issue. In the following years, studies by Hinkovski et al. (1979) and 

Stolzman et al. (1981) evidenced differences in the genetic level of bulls coming from 

different countries. In particular, Stolzman et al. (1981) compared the productive 

performances of Polish Holstein cows, sired by bulls coming from 10 countries. Their 

results revealed large differences in milk yield, consistent with sires’ country of origin. 

Thus, international evaluations suddenly became a necessity not only for the 

international trade of bull’ semen, but also to enhance the genetic progress of the 

breed worldwide. 

In 1983, the EAAP, the IDF and the International Committee of Animal Recording 

(ICAR) founded Interbull, in order to organize, harmonize and structure the 

development of the international evaluations (Philipsson, 2005). In 1991, the Interbull 

centre was officially founded, and placed in the Swedish University of Agricultural 

Sciences (SLU) in Uppsala, Sweden. Five years later, the EU Commission 

designated Interbull as the official reference centre for international evaluations. 

One of the first tasks of the newborn Interbull group, was to gather all the information 

regarding the different breeding programs, traits analysed, models, methods and 

criteria for publication of EBV used in the different countries. Such reviews further 

evidenced that research and harmonization of methods were necessary. The very 

first attempt to compare bulls across countries was the use of conversion formulae of 



bulls’ EBV (Goddard, 1985; Wilmink, 1986). Those formulae were simple empirical 

methods to predict the EBV of a bull in a country i, given the EBV of the same bull in 

another country j: 

EBVi = a + b x EBVj         [1.8] 

where a is the intercept; b is the regression coefficient, obtained as in Goddard 

(1985) or Wilmink (1986). However, a set of common bulls with high EBV reliability2 

was needed to derive the parameters of the conversion formulae (i.e. not the entire 

population, but only a highly selected group). Powell (1988) showed that different 

thresholds of EBV reliabilities (i.e. different datasets of bulls) resulted in very different 

estimates. 

Research for a statistical method to perform a comprehensive across country 

evaluation in an international framework led, in 1994, to the application of a multiple 

across country evaluation (MACE; Schaeffer, 1994). MACE is a multiple-trait, sire 

and maternal grandsire model that is currently the official method for international 

evaluations. This method includes all known pedigree relationships between animals 

both within and across populations, accounting for differences in production systems 

across countries3. Using genetic correlations among countries, MACE allows to 

predict breeding values for all bulls in all countries participating to the international 

genetic evaluation, even those with no daughter information available locally (Figure 

2). 

In matrix notation this model is ( after Schaeffer, 1994): 

yi = 1µ i + ZiQpi + Zisi + ei        [1.9] 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Interbull officially adviced to include only bulls with EBV accuracy higher than 75% to estimate the 
parameters of the conversion formula (Powell, 1988).	
  
3	
  Different genotypes may respond differently to environmental conditions, a phenomenon known as 
genotype by environment interaction. The importance of taking into account this interaction in the 
model becomes clear when multiple countries and productive systems (i.e, grazing and stable, 
seasonal calving, etc) are analysed simultaneously.	
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where yi is a vector of deregressed proofs4 (DRP) of the country i for one trait (i.e. 

milk yield); 1 is a vector of ones; µ i is the mean of country i; Zi  is a design matrix 

relating phenotypes to sires in country i; Q is a design matrix relating sires to genetic 

(or phantom) groups (i.e. unknown parents grouped, for example, by breed, year of 

birth, country of origin and path of selection); pi is a vector of genetic effects for 

phantom groups; si is a vector of genetic effects for sires for country i; ei is a vector of 

random residuals. 

 
Figure 2. Role of MACE on bulls’ international EBV comparison. 

 

 
 

MACE analyses domestic EBV (based on domestic daughter information) in two 
countries participating to the International genetic evaluation. After MACE evaluation, 
the bull ranking in a country may differ from that in another country and also from the 
ranking in the country of origin. 
In this example, the relative ranking of bulls prior to MACE evaluation in country A is 
maintained after MACE evaluation in country B (Bull A1 > A2 > A3 > B4), but not 
vice-versa (dashed black line indicates that the top bull ranked in country B prior to 
MACE (bull B1) is ranked almost as the worst bull in country A). This happens 
because some animals perform better in some environments than in others. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Deregressed proofs are obtained by de-regressing national EBV in order to make them independent 
of country group effects and relationships among all bulls included in the international evaluation 
(Mrode, 2005). 	
  



This model also takes into account the precision of the calculation of the dependent 

variables (DRP) by using effective daughter contribution5 (EDC; Fickse and Banos, 

2001) as weighting factors (see (co)variance structure [1.10]). 

The (co)variance structure for two countries is (after Mrode, 2005):   
                
  

   [1.10] 

  
where n and p are the number of bulls and groups, respectively; A is the additive 

genetic relationship matrix of n bulls and p phantom groups, based on MGS 

relationships; gij is the sire genetic (co)variance between countries i and j; Di is a 

diagonal matrix containing the reciprocal of EDC of bulls in country i; and σ2
ei is the 

residual variance matrix for the ith country. 

Thus, MACE MME equations come from a multiple-trait MGS with genetic (phantom) 

grouping: 

  [1.11] 

As stated previously, the Interbull centre still adopts MACE for the estimation of 

international breeding values (ITB-EBV). However, some updates were introduced in 

the past (Interbull, 2010) and new developments are currently under study. Some 

examples of future developments are: i) the use of an sire-dam pedigree (van der 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 Effective daughter contribution is a measure of the precision of daughter information used to 
calculate DRP (Fikse and Banos, 2001).	
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Linde et al., 2005; Jakobsen and Fickse, 2009); and ii) the introduction of a multiple-

trait multiple-country MACE (MT-MACE) for female fertility (Nilforooshan et al., 2009). 

The Interbull centre currently distributes MACE-based EBVs three times a year 

(January, April and August) to all participating countries. The first official publication 

of international EBV was performed over production traits in Nordic countries. Since 

then, the number of countries, traits and breed analysed increased constantly (Figure 

3).  

Figure 3. Number of countries, traits and breeds analysed by Interbull center from 
first official publication of international evaluations to present  

 
White circles indicate the number of countries, black crosses indicate the number of 
traits and black circles indicate the number of breeds analysed (source: Interbull, 
2010). 
 

Currently, a total of 33 countries are involved in the international evaluations for at 

least one of the 7 major trait groups (production, conformation, udder health, direct 

longevity, calving traits, female fertility and workability) and breeds (Brown Swiss, 

Guersey, Jersey, Holstein, European red dairy breeds and Simmental). 

 

2) THE NEW FRONTIER: THE USE OF GENOMIC INFORMATION 

The recent availability of the bovine genome sequence and the related Hapmap 

project, led to the discovery of millions single nucleotide polymorphisms (SNP) 



spread across the genome (Bovine genome sequencing and analysis consortium, 

2009; Bovine Genome web-page, 2010; Bovine HAPMAP consortium, 2009). In the 

last few years, the development of new technologies allowed a dramatic reduction in  

the cost of genotyping, increasing in turn the number of species in which this 

technology can be applied. Genome-wide SNP chips are currently available for 

human, bovine, ovine, porcine, canine and equine populations (Illumina, 2010). 

Research is ongoing to augment the density of SNP chips for the species already 

available, and to increase the number of species that can be analysed with this 

technology. For example, in cattle 54K SNP beadchips are currently available; 

however, next generation bovine SNPchip (recently available) are providing 

genotypic information at much higher density (nearly 800K).  

The availability of dense marker panels throughout the genome has marked a 

paradigm shift in the way bovine livestock populations are investigated and analysed, 

either for studying the population genetic structure (McKay et al., 2008), searching for 

patterns of recent and past selection (MacEachern et al., 2009), searching for QTL 

controlling complex traits (Kolbehdari et al., 2008), or to perform a genome-wide 

marker-enhanced selection on young animals (Harris et al., 2008; VanRaden et al., 

2009; Hayes et al., 2009), among others.  

Until recently, population geneticists based their inferences assessing only a few (i.e. 

around 30) multi-allelic microsatellite or bi-allelic dominant AFLP markers (MacNeil et 

al., 2007; Negrini et al., 2007). Deriving population structure from whole-genome 

SNP data, provides a more precise picture of the true extent of genomic diversity and 

structure within and across cattle breeds. The importance of correctly assessing 

genetic population structure (i.e. populations stratification, linkage disequilibrium) and 

precisely inferring population demographic trajectories (i.e. bottlenecks, founder 
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effects) has a direct impact on the robustness of population genetic studies as well 

as the optimization of the strategies for genetic diversity conservation (i.e. control of 

inbreeding, optimal mating management). For example, the HapMap project 

analysed the population structure of 19 breeds (which included Bos Taurus, Bos 

Indicus and admixed breeds) genotyped for 37,470 SNP, and showed that “[…] 

difference in diversity [among breeds] is mainly due to progenitor population diversity 

and bottleneck effects at, and before, breed formation rather than differences in the 

intensity of natural or artificial selection post-domestication. […]” (The Bovine 

HapMap Consortium,et al., 2009). Moreover, the interest in detecting the hidden 

genetic structure relies on the fact that population stratification may heavily influence 

results in all genomic studies. In fact, one of the sources of bias in these studies is 

admixture, either considered as the presence of different breeds in the sample, or as 

the existence of relationship among the animals (Goddard and Hayes, 2009). In most 

of the techniques used for the aforementioned genomic studies, both sources of 

admixture can generally be accounted for in the statistical models used to analyse 

the data. 

The study and comparison of the genetic structure of breeds permits to identify 

genomic regions that are under selection. Such regions can be detected by 

comparing the distribution of allele frequencies at marker loci within or between 

populations (or groups of populations), in search for markers significantly departing 

from neutral behaviour. The comparison of the distribution of allele frequencies can 

be either direct or through different statistics, function of allelic or genotypic 

frequencies, as the fixation index Fst (The Bovine HapMap Consortium et al., 2009) 



or the linkage disequilibrium6 (LD; Ennis, 2007). In addition, specific tests for 

detecting significant effects have been developed, as the integrated standardized 

extended haploptype homozygosity, or integrated haplotype score (iHS; Voight et al., 

2006) that compares the LD of markers flanking a selected allele.  

The Fst index is a widely used, robust and simple methodology (Cavalli-Sforza, 1966; 

Weir et al., 2006; Barendse et al., 2009). It is obtained from the formula: Fst=1-Hs/Ht, 

where Hs is the expected within sub-population heterozygosity following Hardy-

Weinberg equilibrium, and Ht is the total expected heterozygosity, assuming no 

differentiation between sub-populations. This method uses differences in allele 

frequencies to determine the differentiation between sub-populations. However, such 

allele frequency differences might be determined by causes other than selection, as 

genetic drift caused by finite population size or inbreeding. On the other hand,   

deviations of Fst values caused by inbreeding or genetic drift can be identified, as 

inbreeding affects the entire genome in a similar way and genetic drift affects all loci 

randomly, not showing any pattern of LD between successive loci (MacEachern et 

al., 2009). A deviation of Fst in a small region of the genome will be only observed in 

case of selection, as it only affects small blocks of the genome (that is, the selected 

locus and the genetic markers linked to it). The length of the genomic region affected 

by selection depend on a series of variables, as number of generations of selection, 

the recombination rate in the region, etc.  

There are other methods available to identify genomic regions under selection, as 

Tajima’s D (Tajima, 1989) or Fay and Wu’s H tests (Fay and Wu, 2000) that use 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  Linkage disequilibrium is defined as the correlation of alleles at two loci, and is dependent on the 
distance between the loci. The greater the distance, the higher is the probability that a recombination 
event might occur between the two loci. On the other hand, if any two marker loci are very close to 
each other, then the probability of recombination of their alleles is very low, determining that the same 
alleles will (almost always) segregate together in the population. Assuming there is a QTL in between 
these marker loci, the same allele of the QTL will be transmitted jointly with the same alleles of the two 
marker loci. Consequently, following the segregation of the markers, we can also track the QTL.	
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frequency distribution summaries. These methods, however, can be influenced by 

the demographic history of the breeds included in the analysis. For example, a 

reduction in effective population size (Ne), can mimic selection if a marker has a rare 

allele, as increased inbreeding (derived by the reduction of Ne) can reduce the 

frequency of the rare allele.  

The use of LD to identify selection signatures in the genome is an appealing method; 

however, considering LD between intervals gives only small overall information in the 

study of selection history, as LD can also arise from different causes not related to 

selection (some of which will be discussed next) (Hill, 1981). On the other hand, 

comparing the LD of flanking markers to a specific (selected) core allele (known as 

“iHS method”) has been proved to be an effective method to detect positive selection 

both in humans (Voight et al., 2006) and in cattle (Hayes et al., 2007). The main 

problem with this methodology is that the information on ancestral alleles, which are 

inferred or assumed as the monomorphic alleles in wild relatives of Bos Taurus (as, 

for example, Bison or Yak), is usually low in cattle so that iHS can only be applied to 

a reduced subset of SNP. This issue will probably be bypassed when full-sequence 

on wild relatives will be available.  

The LD level and the (genetic) history of cattle populations are closely 

interconnected, as the demographic and evolutionary history of the population (in 

particular the effective population size Ne) are the main drivers of the genome-wide 

level of LD. Four are the main drivers of LD in a population: selection, mutation, 

migration and genetic drift. As discussed before, selection (and mutation) are 

influencing LD only in a small part of the genome, and migration is a cause of high 

genome-wide LD when pure-lines are crossbred (not usually the case in cattle 

breeding), that is greatly reduced after only a small number of generations. On the 



contrary, a high level of drift induced by severe bottlenecks or non random mating 

decreasing Ne means that few common ancestors, only few generations ago, gave 

origin to almost all the alleles that are segregating in the population (Goddard and 

Hayes, 2009). This means that the study of the LD level maintained against distance 

in a population can be used to study the population history itself (Tenesa et al., 2007; 

MacLeod et al., 2009). Using the LD information in some dairy cattle breeds, de Roos 

et al. (2008) showed that the Ne of these breeds was higher than 50.000 before 

domestication, declining to a few thousands after domestication and is currently 

around 100 in most modern breeds (Figure 4). This means that LD in cattle will be 

maintained at distances higher that 1 cM and, thus, currently available bovine 

SNPchips can potentially identify markers in LD with all the QTL involved in the 

expression of the traits currently under selection.  

 
Figure 4 Effective population size for main cattle breeds, inferred from LD (de Roos 
et al., 2008; Copyright © 2008 of Genetics Society of America, with kind permission 
of the Editor-in-Chief).  

 

Breeds analysed were: Dutch Holstein-Friesian (HF_NLD), Australian Holstein-
Friesian (HF_NLD), New Zealand Holstein-Friesian (HF_NZL), Dutch red-and-white 
Holstein-Friesian (RW_NLD), Australian Angus (ANG_AUS) and New Zealand 
Jersey (JER_NZL). 
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In the past, QTL discovery studies were performed using sparse multi-allelic 

microsatellites, which traced QTL by linkage within large half-sib families. This 

experimental design was needed to cope with the large distance between markers 

(that could reach 20cM, or even more), which made the underlying causative 

mutation difficult to identify and the QTL impossible to track at the population level.  

The higher density of markers currently available, however, can exploit population-

wise LD to identify more QTL and more precisely, in a genome-wide association 

study (GWAS). The appealing feature of applying GWAS with current SNP 

technology, is that this approach potentially identifies SNP that are in strong LD with 

all QTL that control a trait. GWAS analyses have been carried out with good success 

in different cattle breeds (Pryce et al., 2010), either for traits controlled by single 

genes (Charlier et al., 2008), and for traits controlled by many genes of small effect 

(Kolbehdari et al., 2008). These studies not only allowed to confirm QTL previously 

reported, but also identified new regions affecting either quantitative or qualitative 

traits. For example, Pryce et al. (2010) identified a new putative QTL on BTA 18 for 

female fertility, analysing Australian Holstein and Jersey breeds. Furthermore, using 

a 60K SNP chip, Charlier et al. (2008) identified the five regions causing five different 

inherited defects in three different breeds (Belgian Blue, Italian Chianina and Danish 

Red Holstein). 

Indeed, GWAS experience in humans showed that markers with significant (and 

validated) effects explain only a small proportion of the additive genetic variance of 

complex traits, even of those with high heritability (i.e. human height) and even when 

searched with several hundred thousand markers on tens of thousand samples 

(Manolio et al., 2009). This means that many of the underlying mutations controlling 

such traits are still uncounted for reasons still to be understood. Technical inability 



may be an explanation, since standard SNP typing technologies are not highly 

effective in detecting some type of polymorphisms as copy number variations (CNV). 

Epigenetic effects may play a role, or simply complex traits are really controlled by a 

very large number of genes with very small effect, as modelled by Fisher’s 

infinitesimal model. In the latter case, signals remain below the significance threshold 

unless a huge population is analysed. In cattle, where the number of individuals 

analysed in GWAS is much lower than in humans, the power to identify QTL with low 

effects is reduced, although the level of LD at any distance is higher than in the 

human population. 

Furthermore, the generally high levels of false discovery rate7 found in GWAS 

performed in cattle, suggests that a (medium-large) proportion of the significant 

markers are expected to be significant just by chance. Further research, with higher 

power to detect QTL with small effects (i.e. larger datasets) or different models that 

consider gene-gene interactions, or genotype-environment interactions is ongoing. 

As specified before, genome-wide associations studies were boosted by the 

availability of dense markers spread throughout the genome, based on the fact that 

all QTL are (or should be) in medium-high LD with at least one SNP. Based on the 

same assumptions, Meuwissen et al. (2001) suggested the possibility of using this 

technology in breeding. They called this methodology genomic selection (GS), and 

tested it on simulated data using different statistical methods. GS uses dense marker 

panels to estimate direct genomic breeding values (DGV) in a training population in 

which both phenotypes and genotypes are known, and predicts DGV on young 

animals before their phenotypic information is available (Figure 5). Briefly, single 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 False discovery rate (FDR) is the expected percentage of (significant) markers that are false 
positives. It is obtained from the formula:  [n x P(k)]/k, where n is the number of markers tested; P(k) is 
the largest P-value of the marker that exceeded the significance threshold; and k is the number of 
markers that exceeded the significance threshold.	
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SNP effects are estimated in the training population using a prediction equation (i.e., 

a statistical model) and are then used to estimate the DGV  on young animals using 

molecular information only8.  

This means that, theoretically, progeny test could be avoided, highly reducing the 

cost of the selection process. Furthermore, remarkable gains in genetic progress are 

expected, as the generation interval could be markedly reduced and the genome-

enhanced EBV (DGV or G-EBV) accuracies  of both (young) bulls and cows could be 

increased (Shaeffer, 2006). Other potential advantages of GS over current 

“traditional” selection include a more accurate control of  inbreeding in the population 

(Daetwyler et al., 2007), a more accurate estimation of relationship matrices 

(VanRaden, 2007; VanRaden, 2008) and a marked reduction of costs (Konig et al., 

2009). 

Meuwissen et al. (2001) tested statistical methods that ranged from ordinary least 

squares (OLS) and BLUP to Bayesian models (BayesA and BayesB). OLS required a 

two step procedure to reduce the dimensionality of the dataset, as this methodology 

does not allow the number of independent variables (i.e. marker effects) to be higher 

than the number of dependent variables (i.e. phenotypes). OLS-derived DGV 

accuracies (obtained as correlation between DGV and simulated true breeding 

values) were the lowest of all methods tested, and marker estimates obtained with 

this method resulted highly biased. 

 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 As it will be specified later on, there are several methods available to integrate genomic information 
into breeding. Most methods currently applied in national breeding programs worldwide integrate 
“traditional” and molecular information together. Originally, the term G-EBV was used to indicate a 
genetic evaluation based on markers only. Only very recently, a distinction of the terms “DGV” and “G-
EBV” was adopted internationally. Currently, the term DGV means “Direct Genomic Value”, that 
considers molecular information only, whereas G-EBV (Genome-Wide Estimated Breeding Values) 
blends traditional and molecular information together. Please note that, because of this recent change 
in terminology, the term “G-EBV” actually means “DGV” in Chapters III and IV of this thesis.	
  



Figure 5. Simple scheme of genome-wide selection. 

 

Training population is the population of animals genotyped with phenotypes 
available. All this information is combined in the prediction statistical model to obtain 
the DGV. The DGV obtained from the training population will be used to predict 
genomic values for the (young) animals in the “prediction” population (i.e. without 
phenotypes available).  
 

The BLUP method assumed an equal contribution of each locus to the genetic 

variance. However, when considering molecular data in the genetic model, BLUP 

infinitesimal assumptions should be reconsidered, as only a small proportion of the 

loci included in the model are assumed to be actually contributing to the genetic 

variance of a trait (i.e. those SNP that are in LD with the QTL). In terms of estimation 

of BV, BLUP can still obtain good results, as the effects of all QTL (signalled by the 

nearby SNP) are aggregated across many segments. In fact, in Meuwissen et al. 

(2001), the BLUP method obtained nearly twofold DGV accuracies compared to 

OLS.  

The two Bayesian methods (BayesA and BayesB) proposed were tested to consider 

a specific variance for each marker. The prior SNP variance distribution was a scaled 

inverted chi-squared distribution, to consider that most of the markers should have a 

nearly (or exact) zero effect (i.e. markers not linked to any QTL) and only few should 

obtain large effects. This leads to a t-distribution for SNP effects. The t-distribution is 
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somewhat similar to the normal distribution, but has thicker tails, allowing a higher 

proportion of markers to assume high effects (Figure 6).  

The main difference between the two Bayesian models is in the specifications for the 

prior distribution of SNP variances: BayesA allows SNP effects to have SNP 

variances that are close to 0, whereas BayesB allows a certain proportion of the 

markers to obtain a variance equal to zero (Figure 7).  

This means that some of the variables analysed by BayesB are actually excluded 

from the analysis. In Meuwissen et al. (2001), both these models obtained accuracies 

of DGV higher than OLS and BLUP, with BayesB reaching a DGV accuracy of nearly 

85% in a simulated trait with an heritability of 0.5. 

The differences between BayesA and BayesB methods, introduce an interesting 

concept about the variables that are taken into account in the predictive model. In 

general, the number of phenotypes (i.e. genotyped bulls) is much lower than the 

number of independent variables (i.e. SNP effects) that have to be estimated. 

Figure 6. Comparison of standardized normal and t-student distributions used as 
prior distribution of SNP effects in BLUP and BayesA, respectively. 

 

 

The continuous line indicates the normal distribution (BLUP), whereas the dashed 
line indicates a t-student distribution (BayesA).  
 

 

 



Figure 7. Prior distribution for SNP variances in BayesA and BayesB.  

 

Density of the scaled inverted chi-squared distribution for SNP variances used in 
BayesA (left) and BayesB (right). Note that BayesA allows SNP variances to obtain 
values close to 0, while BayesB allows SNP variances to assume a value equal to 0. 
From Ben Hayes course notes, September 2008, Salzbourg (Austria), with 
permission. 
 
Such data asymmetry raises several statistical issues, such as co-linearity among 

predictors and multiple testing (Gianola and van Kaam, 2008). Until recently three 

main approaches were used to reduce the dimensionality of the set of regression 

variables:  

i) to use a method that directly reduces the number of the “original” 

variables. Some examples are BayesB (Meuwissen et al., 2001), 

Least angle regression (LARS) or Least absolute shrinkage and 

selection operator (LASSO; Tibshirani,1996);  

ii) to reduce dimensionality of “original” variables in an indirect way (in a 

two-step procedure, by preselecting the SNP before using the 

predictive model); or 

iii) to find a (reduced) number of linear combinations of the variables (as, 

for example, partial least squares regression and principal component 

regression; Solberg et al., 2009).  
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In the last few years, many other methods have been tested to perform GS either 

reducing the dimensionality of the dataset or using all variables available9. For 

example, Meuwissen (2009) suggested an alternative BayesC method (a derivate 

from BayesB), that instead of considering a null SNP variance for a proportion of the 

total amount of markers, assigns a common (small) variance to these markers in an 

attempt to capture a part of the genetic variance given by QTL with small effects. 

Other developments resulted in more advanced methods, like BayesCpi, 

BayesCCsub, etc.  

A common characteristic of most of the aforementioned methods is that hyper-

parameters10 of all the prior distributions are considered fixed, thus, are defined a 

priori. In particular, for BayesA and BayesB, where the prior influences heavily the 

resulting shrinkage of estimates of the model (Gianola et al., 2009), this means that 

the same fixed hyper-parameters might perform better in one simulated data than in 

the other, depending of the simulated genetic structure of the population. 

Consequently, when analysing real data, these methods are expected to perform 

differently depending on the QTL distribution of the traits considered. For example, 

the diacylglycerol-acyltransferase1 (DGAT1) is a mutation that explains more than 

30% of the variation for fat percentage (Grisart et al., 2002). In such scenario, 

methods that allow non-normal marker effects will more accurately estimate the 

resulting DGV. In fact, VanRaden et al. (2009) compared linear and non-linear 

models over 21 traits, obtaining the greatest difference in performance of the two 

models in this trait (non-linear model obtained 8% higher DGV accuracy). However, 

for most of the traits currently under selection, there is no such large-effect QTL 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 From the many methods (and developments) that have been proposed to analyze genomic data, 
only those directly or indirectly related to this thesis are briefly considered in this introduction. 	
  
10 Hyper-parameters are the parameters that define the prior distribution. For example, hyper-
parameters for a Gaussian prior distribution are its mean and variance.	
  



affecting the traits. Thus, more flexible (or different) assumptions are needed to 

account for the different QTL distributions (and heritability) of complex traits in real 

data. Some of the Bayesian methods that have been proposed take such issue into 

account, allowing to obtain hyper-parameters that are conditional on the data. This 

means that the resulting shrinkage of the estimates of the model are regulated by the 

data itself. Yi and Xu (2008) and de los Campos (2009) suggested a computationally 

efficient method to approach this, implementing a hierarchical approach called the 

Bayesian LASSO. In the Bayesian LASSO, SNP variances (i.e. this method uses all 

the variables available, differently from the “original” LASSO) are sampled from an 

exponential distribution. This leads to SNP effects sampled from a double-

exponential distribution, which has greater mass towards zero than the normal or the 

t-distribution (Figure 8).  

This is not much different from BayesA, with the only difference that SNP variances 

and effects are sampled from a more stringent distribution. The main difference 

between these two methods is that in BayesA the hyper-parameters of the prior 

distribution are fixed, whereas in the Bayesian LASSO the hyper-parameter of the 

exponential prior distribution is sampled from the data. This means that is the data 

itself that regulates the amount of shrinkage of the estimates. 

Although research on new and more efficient methods to predict DGV are currently 

being investigated, most of the countries that are actually applying GS in their 

breeding programs use BLUP as predictive model. In Australia, Canada, Ireland, 

New Zealand and the USA, the BLUP method is used to perform genome-enhanced 

estimates which are blended with parent average or “traditional” EBV by selection 

index in order to obtain the “final” G-EBV (Nieuwhof et al., 2010; van Doormaal, 

2009; Kearney et al., 2009; Harris et al., 2008;  VanRaden et al., 2009). 
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Figure 8. Comparison of standardized normal and exponential distributions, used as 
prior distributions for SNP effects in BLUP and Bayesian LASSO, respectively (de los 
Campos et al., 2009; Copyright © 2009 of Genetics Society of America, with kind 
permission of the Editor-in-Chief).  

 

 

The exponential distribution has greater mass towards zero than a normal or a t-
distribution. However, the thicker tails indicate that a greater proportion of marker 
effects can obtain high values than in a normal distribution. 

 
 

These and many other countries tested several methodologies that span from 

Bayesian to non-linear or non-parametric methods (Gianola and van Kaam, 2008). 

However, most countries reported that G-EBV accuracies obtained with BLUP were 

only slightly lower than those obtained with other methods in most traits, and the 

need in terms of computational time and resources were much lower (VanRaden et 

al., 2009; Gredler et al., 2009). These results suggest that for most traits, there is a 

large proportion of QTL of small effect and only few (or none) of large effect, thus, the 

infinitesimal assumption in BLUP is close to reality (Hayes et al., 2009). 

The aforementioned countries are only a part of the list of countries that have 

implemented or are close to implement GS in their breeding programs. Other 

countries are: Austria (Gredler et al., 2009),  Germany (Reinhardt et al., 2009), Italy 



(van Kaam et al., 2009); France (Ducrocq et al., 2009), the Netherlands11 (de Roos et 

al., 2009), the Nordic countries (Lund and Su, 2009) and Poland (Szyda et al., 2009), 

among others. Furthermore, international cooperation to obtain a multiple-country 

genomic evaluation, coordinated by the Interbull Centre, is currently taking place for 

some breeds as, for example, Holstein, Jersey (Interbull, 2010) and Brown Swiss 

(InterGenomics, Jordani et al., 2010),  
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CONTENTS OF THE THESIS 
 

This thesis is structured in an introduction, five main chapters and a conclusion. The 

five main chapters (Chapters II to VI) contain papers published or submitted to 

national or international journals. Papers in Chapters II to V were published (or 

submitted) to peer-reviewed journals. The paper included in Chapter VI was 

published in the Interbull bulletin, which is not peer reviewed. 

Chapter II assess the ability of international genetic evaluations in predicting 

domestic breeding values of Holstein bulls. This is an important issue, as 

international EBV are used in most countries either to improve bulls’ national 

evaluations or to decide whether to import or not to import semen of a foreign bull. 

Previous studies have reported a greater accuracy of international genetic 

evaluations compared to other possible sources of information (i.e. pedigree 

relationships, or “country of origin” foreign evaluations). These have been carried out 

in single countries, considering different time periods, using different methods, 

analysing different traits and including a different amount of genetic evaluations. The 

study described in Chapter II uses a common approach on bulls progeny tested in six 

countries with different production systems and evaluation models, and is focused on 

yield traits (milk, fat and protein). This to assess the value of international evaluations 

across countries in a wide range of possible scenarios. 

Chapter III investigates marker pre-selection methods in genome-wide simulated 

data. Marker pre-selection decreases the over-parameterization of models used in 

the estimation of breeding values with genome-wide information. Two indirect 

methods, chosen for their simple application and based on statistical significance of 

SNP association with the trait analysed, were tested: i) Bonferroni correction of the 

significance threshold and ii) Permutation test to obtain the reference distribution of 



the null hypothesis. Associations were estimated by single SNP regression and DGV 

with a BLUP method. 

In Chapter IV the aforementioned simulated dataset was used to test an alternative 

Principal Component Regression (PCR) approach to reduce the number of estimates 

in the model. The appealing feature of PCR is that it reduces the number of estimates 

without actually excluding SNP from the estimation by using (independent) linear 

combinations of all markers. The idea is not new, as interesting results on simulated 

data have already been reported (Solberg et al., 2009). The study included in this 

thesis tested the use of eigenvalues in the mixed model equations, to account for the 

fact that eigenvalues actually quantify the contribution of each PC to the original 

marker covariance structure (avoiding to consider a homogeneous variance for all 

PCs which would be incorrect). 

Chapter V tested four different methods for genome-wide selection in both simulated 

and real datasets: Bayes-BLUP, BayesA, and two different Bayesian LASSO models. 

Simulated data were the same as in Chapters III and IV. The real dataset consisted 

in nearly a thousand progeny tested Australian Holstein bulls. The Bayesian LASSO 

had already been proposed for QTL mapping and for indirectly pre-select markers for 

genomic selection. However, there are no direct comparisons available of the 

performance of this method with other well-known methods as BLUP and BayesA. 

The paper in Chapter VI searched for genome-wide selection signatures in Italian 

Brown comparing fixation index (Fst) profiles of 2682 bulls belonging to the dairy 

Italian Brown and Italian Holstein, the dual purpose Italian Simmental, and the beef 

Marchigiana and Piedmontese breeds. Thereafter, different combinations of markers 

with outlier Fst values were used in a genomic prediction of two production traits (milk  
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yield and protein percentage), a conformation trait (Udder Score) and an economic 

index (Total Economic Index), using BayesA as prediction method. 

 

OBJECTIVES OF THE THESIS 

The general objective of this thesis is to investigate new problems and opportunities 

presently faced by the dairy cattle industry. On the one side, the need for unbiased 

methods for estimating breeding values across countries, since semen and embryos 

international trading is continuously increasing in importance and value. On the other 

side, the new opportunities offered by novel developments in DNA technologies to 

include or even base the genetic evaluations on genomic data. Both are hot topics 

that promise to have a great impact in the sector in the near future. In particular, 

specific objectives are: 

• To assess the accuracy of international genetic evaluation when predicting dairy 

cattle domestic breeding values of foreign Holstein bulls in a multi-country 

framework. 

• To test different methods (BLUP with and without marker pre-selection, principal 

component regression, different Bayesian methods) in the prediction of 

breeding values using genome-wide marker data. 

• To analyse the different performance of the methods in simulated and real 

scenarios. 

• To search for selection signatures in five Italian breeds genotyped genome-wide 

by the Italian SELMOL project. 

• To test genome-wide predictions in Italian Brown using markers carrying 

significant selection signatures in this breed.	
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ABSTRACT 

International genetic evaluations are a valuable source of information for decisions 

about the importation of (semen of) foreign bulls. This study analysed data from six 

countries (Australia, Canada, Italy, France, the Netherlands and the United States), 

and compared international evaluations for production traits of foreign bulls (i.e. when 

no national daughter information was available) with their national breeding values in 

August 2009, based only on domestic daughters’ data. A total of 821 bulls with highly 

reliable estimated breeding values (EBV) for milk, fat and protein yield were included 

in the analysis. No evidence of systematic over or underestimation was found in most 

of the countries analysed. Observed correlations between national and international 

evaluations were close to 0.9 and for most of the countries generally close to their 

expected values (calculated from national and international EBV reliabilities). In Italy, 

however, higher differences between observed and expected correlations and 

significant mean differences between EBVs for more than one trait were observed for 

bulls progeny tested in the USA and in (other) European countries (with differences 

up to 33.1% of the genetic standard deviation). These results were probably induced 

by a relatively recent change in the model for national evaluation. The findings in this 

study reflect a conservative outcome of the real value of international evaluations, as 

changes in methodologies in either the national or the international evaluations 

reduced the ability of past international evaluations to predict current national 

evaluations. Nevertheless, our results indicate that international evaluations based 

on foreign information for Holstein bulls were reasonably accurate predictions of the 

future national breeding values based only on domestic daughters. 

(Key words: Holstein, production trait, international genetic evaluation) 

 
 



INTRODUCTION 

International estimated breeding values (EBV) are expected to accurately predict the 

future performance of bull daughters in all countries participating in the international 

genetic evaluations. Since 1995, the method used to estimate international EBV is a 

multiple-trait sire model called Multiple Across Country Evaluation (MACE) by 

Schaeffer (1994). Interbull genetic evaluation service provides international EBV for 6 

dairy breeds and 7 major trait groups. In the August 2009 evaluation, MACE 

predictions for the Holstein breed were distributed to 26 participant countries for 

production traits. International information on foreign bulls is widely used by all 

countries not only to improve national bull evaluations but also to decide whether or 

not to import a foreign bull (or its semen). When domestic daughters’ data for a 

foreign bull are not available in the importing country, possible sources of information 

are pedigree relationships and information on daughters in another (foreign) country, 

either as “country of origin” foreign evaluations or as (MACE) international 

evaluations. 

Over the past fifteen years, Interbull implemented several changes in the procedure 

for international evaluations to improve the ability of the method to convert breeding 

values across countries. For example, a time edit for (date of birth of) bulls was 

considered to ensure that the base population is similar for all countries (Weigel and 

Banos, 1997; de Jong, 2003). In 2000 effective daughter contributions (EDC; Fikse 

and Banos, 2001) replaced number of daughters as weighting factors to account for 

the precision of national bull evaluations, which reduced bias in sire variance 

estimates and resulted in improved approximations of reliabilities. The procedure for 

estimation of genetic correlations was reviewed in 2004 (Wilmink and Fikse, 2004), 

and changes were implemented during the same year. Furthermore, other 
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improvements are under development, such as the inclusion of a sire-dam pedigree, 

which is expected to greatly reduce the problem related to the influence of phantom 

grouping (de Jong, 2003; van der Linde et al., 2005; Jakobsen and Fikse, 2009), or 

the implementation of multiple-trait MACE (Nilforooshan et al., 2009). Interbull 

evaluations are under constant scrutiny and other concerns (Canavesi et al., 

2005; Ducrocq et al. 2003) have not directly resulted in changes. Hence, monitoring 

of the quality of international evaluations is warranted.  

Powell et al. (2000) showed that accuracy of the United States national dairy bull 

evaluations (i.e. based only on national data) was improved when including foreign 

daughter information. Later on, Powell et al. (2004) showed that parent average for 

production traits was not a good alternative to international EBV based on foreign 

daughters. Parent average underestimated bulls’ EBV based on US daughters after 

semen importation. On the other hand, international evaluations were on average 

close to the US national evaluation based on US daughters. Furthermore, Van der 

Linde  (2004) showed that correlations in conformation traits for Holstein bulls 

between “country of origin” foreign evaluations (i.e. on foreign country scale) and 

Dutch national evaluations were up to 32% lower than those obtained comparing 

international and national evaluations. In addition, Brochard et al. (2006) analysed 

production, udder health and conformation traits and confirmed the accuracy of 

international evaluations for predicting the future performance of Holstein foreign 

bulls in France.  

While these previous studies were of great importance to document the accuracy of 

international EBV in predicting future performance of imported bulls in different 

countries, comparability of the results is somewhat limited because of differences in 

the approaches adopted in the analyses. In this study we compared data of six 



countries from three continents using a common approach (i.e., time period, editing 

criteria and statistical analysis). This facilitates a multiple-country assessment of the 

value of international EBV for production traits (milk, fat and protein yield) as 

unbiased predictors of future performance of Holstein bulls’ daughters in countries 

other than the test country. 

 
MATERIALS AND METHODS 

Six reference countries from three continents were studied: Australia (AUS), Canada 

(CAN), France (FRA), Italy (ITA), the Netherlands (NLD) and the United States of 

America (USA). Two sources of information were compared: i) August 2009 national 

evaluations in each reference country (i.e. EBVs based only on daughter information 

in the reference country, and hereinafter referred to as DOM2009) and ii) previous 

international genetic evaluations based only on foreign daughters’ information 

(Interbull evaluations from 2001 and onwards, hereinafter referred to as INTPRED). 

For each reference country we retrieved a bull’s last international EBV that did not 

include information on daughters from the reference country. Bulls missing one or 

both types of information were not of interest and deleted from the analysis.  

International EBVs of bulls in MACE are based on pedigree relationships and 

progeny information. If a bull has no daughters in a particular country, MACE allows 

predicting breeding values for this bulls and country by using genetic correlations 

among countries and daughter information from other countries. In addition, 

information on ancestors, currently sire and maternal grandsire, is utilized. In matrix 

notation MACE is (after Schaeffer, 1994): 

yi = 1µ i + ZiQgi + Zisi + ei ,     

where yi is a vector of deregressed proofs (DRP) of country i for a trait (e.g. milk 

yield); 1 is a vector of ones; µ i is the mean of the country i; Zi  is a design matrix 
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relating phenotypes to sires in country i; Q is a design matrix relating sires to 

phantom groups; gi is a vector of phantom parent group effects; si is a vector of 

genetic effects for sires in country i; and ei is a vector of random residuals. Phantom 

groups of unknown parents are formed by year of birth, country of origin and path of 

selection (sire, maternal grand-sire, maternal grand-dam). 

To express historical evaluations on the same base and scale, linear regression were 

performed of MACE EBVs from August 2009 on MACE EBVs from May 2001 

onwards. These regressions were done separately for each country, and were based 

on all bulls with domestic daughters for each pair of MACE evaluations. Intercept and 

slopes were used to convert all international EBV to the most recent genetic base, in 

order to allow comparisons across time. In general, intercepts were negative (i.e. 

because of base changes), regression coefficients were close to one and correlations 

were high (i.e. higher than 94%), except when a change in the predictive model of a 

reference country was introduced (Figure 1). 

To ensure comparisons between reliable EBV, animals with Interbull reliability lower 

than 70% or less than 100 daughters in either the foreign or the reference country 

were discarded. For the same reason, only bulls with a first international evaluation 

before January 2004 and uninterruptedly present in the Interbull distribution files up 

to August 2009 were retained. 

All bulls that met the aforementioned requirements were analysed either all together 

(i.e. bull progeny tested in all the foreign countries included in our study) or grouped 

by the foreign country of test. The foreign country of test of a bull was defined as the 

country where the bull had the highest number of daughters in the last international 

genetic evaluation considered (August 2009). The assumption was that most bulls 

would have the highest number of daughters in the country of test. Although this 



assumption may incorrectly assign the foreign country of some bulls, it was 

considered more accurate than using the country of first registration. For all reference 

countries, bulls progeny tested in Italy, France, Germany and the Netherlands were 

grouped together (and named EUR), because the number of bulls per country was 

less than 50.  

Mean and SD of differences, average reliabilities, regressions and correlations 

between INTPRED and DOM2009 were calculated. Significances of differences 

between INTPRED and DOM2009 were tested for all three traits and in all foreign 

countries with a paired t-test. A Bonferroni correction of type I error threshold was 

applied to reduce false positives due to multiple testing. 

All comparisons were performed on the national scale of the reference country. Mean 

and SD of differences between EBVs were expressed in % of (animal) genetic SD of 

the reference country (obtained from Interbull, 2010). Domestic reliabilities 

(RELdomestic) were obtained as a function of EDC and heritability (Liu et al., 2004): 

 

, where  

 

Since Interbull made reliabilities of international evaluations for fat and protein yield 

available only from March 2007 onwards, reliabilities for these traits prior to January 

2007 were considered to be equal to milk reliabilities. As a result, reliabilities of 

international EBV in this study are not expected to have large variation across traits. 

Observed correlations were compared to their expected value, obtained following 

Brochard et al. (2006): 

, 
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where Correxp is the expected correlation, RELdomestic is the mean reliability of bulls in 

August 2009 national evaluation of the reference country, and RELITB is the 

(previous) international mean reliability of bulls on their latest international evaluation 

without daughters in the reference country.  

During the time period considered (from May 2001 to August 2009) models and 

procedures have changed for both national and international evaluations. Detailed 

information on these changes is available on the Interbull website (Interbull, 2010). 

Briefly, major changes on international evaluations were: the introduction of checks 

on national EBV and on pedigree data received by the countries and a modification 

of the procedure for estimation of genetic correlations.  

With respect to national evaluations for production traits, Italy changed its model from 

a lactation model to a random regression multiple-trait multiple-lactation test day 

model (TDM) in November 2004. In May 2003, Canada introduced Legendre 

polynomials to model the curves of their TDM. The Netherlands introduced a random 

regression single-trait multiple-lactation TDM inNovember 2002. Finally, the United 

States introduced new adjustments to its model in February 2005 and May 2007.  

 

RESULTS AND DISCUSSION 

The total number of bulls considered was 821, with 518 foreign bulls present in only 

one reference country and the remaining 303 bulls present in more than one 

reference country (Table 1). A total of 1,337 cases (bulls receiving a domestic 

evaluation after semen import in one of the reference countries) were obtained after 

the editing in the six reference countries (Table 1). The year of birth of the bulls 

included in the analyses ranged from 1986 to 1999. The United States and Australia 

had the lowest number of observations (134 and 137, respectively), whereas the 



number of foreign bulls in Italy was the highest (336). Only 29 European bulls were 

found when Canada was the reference country; thus results in this analysis must be 

read carefully because they might be influenced by the low number of observations. 

The majority of bulls had their last Interbull evaluation without daughters in the 

reference country before 2007. The number of observations in the last class, 

generally corresponding to younger bulls, was usually lower than the other two 

classes (Table 2). 

Table 1. Number of bulls in the reference countriesand mean (international and 
domestic) reliabilities for milk yield(1). 
 

Reference 
countries 

  Foreign countries(2) 

  ALL CAN USA EUR 
Australia bulls (n) 

reliability int.(3) 
reliability dom.(4) 

   137 
79.3 
95.9 

    54 
79.5 
95.5 

83(5) 
79.2 
96.1 

Canada bulls (n) 
reliability int.(3) 

reliability dom.(4) 

   180 
90.6 
97.8 

  151 
90.3 
97.9 

29(6) 
92.4 
97.4 

France bulls (n) 
reliability int.(3) 

reliability dom.(4) 

   288 
90.4 
97.9 

    61 
    90.9 
    98.4 

 155 
90.1 
97.7 

72(7) 
90.5 
98.1 

Italy bulls (n) 
reliability int.(3) 

reliability dom.(4) 

   336 
88.1 
97.3 

    52 
   88.9 
   96.9 

 199 
89.1 
97.7 

85(8) 
85.2 
96.5 

The 
Netherlands 

bulls (n) 
reliability int.(3) 

reliability dom.(4) 

   262 
89.1 
97.4 

  161 
89.4 
97.3 

   101(9) 
88.7 
97.7 

United States bulls (n) 
reliability int.(3) 

reliability dom.(4) 

   134 
86.7 
95.2 

   57 
87.6 
95.7 

      77(10) 

86.0 
94.9 

 

(1) Mean reliabilities in fat and protein yield do not differ more than 1.5% from those obtained in milk, 
thus, are omitted for clarity.  
(2) Foreign countries: ALL=all countries in this study, analysed together; CAN=Canada; USA=the 
United States of America; EUR= European countries 
(3) Mean of ‘previous’ international reliability. 
(4) Mean of August 2009 domestic reliability. 
(5) Italy(20), Germany (17), France(18) and the Netherlands(28) were grouped together. 
(6) Italy(10), Germany(7) and the Netherlands(12) were grouped together. 
(7) Italy(36), Germany(12) and the Netherlands(24) were grouped together. 
(8) France(20), Germany(30) and the Netherlands(35) were grouped together. 
(9) Italy(26), France(36) and Germany(39) were grouped together. 
(10) Italy(22), Germany(12), France(11) and the Netherlands(32) were grouped together. 
 



 CHAPTER II - Accuracy of international evaluations 

69 
 

 
Table 2. Number of bulls in the reference countriesby classes of latest international 
genetic evaluation without domestic daughters. 
 

   Foreign countries(1) 
Reference 
countries 

Latest 
international 
evaluation 

ALL CAN USA EUR 
      

Australia [2001:2003](2) 
[2004:2006](3) 
[2007:2009](4) 

68 
45 
24 

 32 
15 

7 

36(5) 
30(5) 
17(5) 

Canada [2001:2003](2) 
[2004:2006](3) 
[2007:2009](4) 

61 
72 
47 

 56 
62 
33 

5(5) 
10(5) 
14(5) 

France [2001:2003](2) 
[2004:2006](3) 
[2007:2009](4) 

169 
76 
43 

34 
19 

8 

91 
43 
21 

44(6) 
14(6) 
14(6) 

Italy [2001:2003](2) 
[2004:2006](3) 
[2007:2009](4) 

130 
149 

57 

12 
25 
15 

82 
89 
28 

36(7) 
35(7) 
14(7) 

The 
Netherlands 

[2001:2003](2) 
[2004:2006](3) 
[2007:2009](4) 

 159 
 52 
 22 

 115 
38 

8 

44(8) 
14(8) 

   14(98 

United States [2001:2003](2) 
[2004:2006](3) 
[2007:2009](4) 

63 
54 
17 

32 
20 

5 

 31(5) 

34(5) 

12(5) 

 

(1) Foreign countries: ALL=all countries in this study, analysed together; CAN=Canada; USA=the 
United States of America; EUR= European countries 
(2) Latest international evaluations without domestic daughter information from May 2001 to November 
2003. 
(3) Latest international evaluations without domestic daughter information from February 2004 to 
November 2006. 
(4) Latest international evaluations without domestic daughter information from February 2007 to April 
2009. 
(5) Italy, Germany, France and the Netherlands were grouped together. 
(6) Italy, Germany and the Netherlands were grouped together. 
(7) France, Germany and the Netherlands were grouped together. 
(8) Italy, France and Germany were grouped together. 

. 

 

Domestic reliabilities of bulls in August 2009 national evaluation were on average 

higher than 95% (Table 1). The reliabilities of the last Interbull evaluation without 

daughters in the reference country were somewhat lower (generally around 90%), 

especially for Australia (79%) due to the lower genetic correlation for production 



between Australia and most of the other countries in the Interbull evaluations 

(Interbull, 2010).   

Australia 

When all 137 foreign bulls were analysed together mean differences between 

INTPRED and DOM2009 were 9.4, 0.1 and 15.1% of the genetic SD for milk, fat and 

protein yield, respectively (Table 3).  

Table 3. Mean and standard deviations of differences (1) for milk, fat and protein yield 
traits, between LAST (2)  and PREV, expressed in % of genetic standard deviation. 
Significance thresholds were corrected for multiple testing. 
 

   Foreign country(3) 
  ALL CAN USA EUR 

Reference country Trait mean(1) SD(1) mean(1) SD(1) mean(1) SD(1) mean(1) SD(1) 
          

Australia milk yield 
fat yield  
protein yield  

9.4 
0.1 

15.1 
 

47.9 
47.3 
52.4 
 

  11.6 
-4.8 
7.7 

49.3 
40.5 
49.7 

  8.0 
 3.5 
20.5 

47.2(4) 
   51.5(4) 

54.1(4) 

Canada milk yield 
fat yield  
protein yield 

8.1 
-9.7* 
11.0 

40.4 
36.9 
42.7 

  8.9 
-11.8* 
10.8 

41.9 
37.5 
44.4 

 4.2 
 1.3 
12.2 

31.5(4) 
31.8(4) 
32.7(4) 

France milk yield 
fat yield  
protein yield 

-0.2 
-5.6 
6.8 

37.5 
34.4 
40.4 

1.9 
-0.2          
12.3 

32.6 
25.2 
36.2 

-0.1 
-9.1 
4.2 

37.8 
36.6 
41.3 

-2.2 
-2.3 
7.6 

41.0(5) 
35.8(5) 
41.7(5) 

Italy milk yield 
fat yield  
protein yield 

18.4*** 
  7.1 
22.0*** 

 

46.7 
45.7 
50.3 

2.6 
-2.3 
1.6 

44.2 
45.3 
48.0 

21.0*** 
4.6 

22.6*** 

45.8 
44.4 
48.1 

22.0** 
18.4* 
33.1*** 

48.6(6) 
47.2(6) 
53.2(6) 

The Netherlands milk yield 
fat yield  
protein yield 

-3.7 
-3.5 
-2.5 

40.5 
40.1 
44.5 

  -3.8 
-3.6 
-3.5 

39.1 
39.7 
42.9 

-3.6 
-3.4 
-0.8 

42.9(7) 
40.8(7) 
47.1(7) 

United States milk yield 
fat yield  
protein yield 

4.9 
3.1 
6.7* 

 

21.5 
21.9 
23.2 

1.6 
0.0 
0.9 

20.1 
20.3 
21.6 

  7.2 
5.3 

11.1** 

22.4(4) 
22.8(4) 
23.5(4) 

* P< 0.05    ** P < 0.01   *** P < 0.001 
• (1) Mean and standard deviations of differences, expressed as % of genetic standard deviation. EBV 

mean differences were calculated as: 100 × (latest national EBV– international EBV)/σg, where σg is 
the animal genetic standard deviation. 

• (2) Obtained using only domestic daughters information. 

(3) Foreign countries: ALL=all countries in this study, analysed together; CAN=Canada; USA=the 
United States of America; EUR= European countries 
(4) Italy, Germany, France and the Netherlands were grouped together. 
(5) Italy, Germany and the Netherlands were grouped together. 
(6) France, Germany and the Netherlands were grouped together. 

• (7) Italy, France and Germany were grouped together. 
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None of these differences were significant ( P > 0.05). SD of the differences were 

generally the highest of all the reference countries analysed in this study. Such 

variability of differences was expected based on the lower reliability of international 

EBV (Table 1) resulting from the lower genetic correlations between Australia and the 

other reference countries analysed (Interbull, 2010). Coefficients of regression of 

DOM2009 on INTPRED ranged from 1.08 to 1.16, but were not significantly different 

from one. Observed correlations between INTPRED and DOM2009 were at most 1% 

lower than their expectation (Table 4).  

When bulls were grouped by foreign countries of test, mean differences between 

INTPRED and DOM2009 for bulls tested in the USA were 11.6, -4.8 and 7.7 % of the 

genetic SD for milk, fat and protein yield, respectively. For bulls tested in EUR, mean 

differences between EBVs for the same traits were 8.0, 3.4 and 20.5% of the genetic 

SD. None of these differences were significant. 

Coefficients of regression of DOM2009 on INTPRED ranged from 1.01 to 1.18, and 

none were significantly different from one. McClintock et al. (2004) reported a similar 

trend for foreign US bulls between 2000 and 2003, for a combination of all three 

production traits (Australian Selection Index). Observed correlations between 

INTPRED and DOM2009 for bulls tested in the USA were as expected for milk yield 

and 1% higher than expected for fat (Table 4). However, for protein yield the 

observed correlation (0.84) was somewhat lower than expected (0.87). This 

difference could be traced to three closely related bulls (two half-sib bulls, and a third 

bull having the same maternal grandsire with one of the half-sibs) with more than 2 

SD of difference between national and international EBV. 

 

 



Table 4. Expected(1) and observed(2) correlations for milk, fat and protein yield on 
each for each reference country. 
 
    Foreign country(3) 

  ALL       CAN      USA EUR 
Reference 

country Trait Exp.(1) Obs.(2) Exp.(1) Obs.(2) Exp.(1) Obs.(2) Exp.(1) Obs.(2) 

          
Australia milk yield 

fat yield  
protein 
yield  

0.87 
0.87 
0.87 

0.88 
0.86 
0.86 

  0.87 
0.87 
0.87 

0.87 
0.88 
0.84 

0.87 
0.87 
0.87 

0.88(4) 
0.82(4) 
0.86(4) 

Canada milk yield 
fat yield  
protein 
yield 

0.94 
0.94 
0.94 

0.90 
0.93 
0.91 

  0.94 
0.94 
0.94 

0.89 
0.92 
0.91 

0.95 
0.94 
0.94 

0.94(4) 
0.93(4) 
0.94(4) 

France milk yield 
fat yield  
protein 
yield 

0.94 
0.94 
0.94 

0.92 
0.92 
0.93 

0.95 
0.95 
0.94 

0.92 
0.95 
0.91 

0.94 
0.94 
0.94 

0.93 
0.92 
0.92 

0.94 
0.94 
0.94 

0.90(5) 
0.90(5) 
  
0.92(5) 

Italy milk yield 
fat yield  
protein 
yield 

0.93 
0.93 
0.92 

0.88 
0.87 
0.85 

0.93 
0.93 
0.93 

0.87 
0.87 
0.82 

0.93 
0.93 
0.93 

0.87 
0.88 
0.86 

0.91 
0.91 
0.90 

0.88(6) 
0.83(6) 
0.83(6) 

The Netherlands milk yield 
fat yield  
protein 
yield 

0.93 
0.93 
0.93 

0.89 
0.90 
0.91 

  0.93 
0.93 
0.93 

0.90 
0.91 
0.91 

0.93 
0.93 
0.93 

0.87(7) 
0.87(7) 
0.90(7) 

United States milk yield 
fat yield  
protein 
yield 

0.91 
0.91 
0.91 

0.89 
0.90 
0.91 

0.92 
0.92 
0.92 

0.88 
0.88 
0.86 

  0.90 
0.90 
0.90 

0.89(4) 
0.90(4) 
0.91(4) 

 

(1) Expected correlations were obtained from the square root of the product of mean international and 
domestic reliabilities. 
(2) Observed (Pearson) correlations. 
(3) Foreign countries: ALL=all countries in this study, analysed together; CAN=Canada; USA=the 
United States of America; EUR= European countries 
 (4) Bulls tested in Italy, Germany, France and the Netherlands were grouped together. 
(5) Bulls tested in Italy, Germany and the Netherlands were grouped together. 
(6) Bulls tested in France, Germany and the Netherlands were grouped together. 

• (7) Bulls tested in Italy, France and Germany were grouped together. 

 

On the other hand, observed correlations for bulls progeny tested in EUR were 

almost as expected for milk and protein yield. However, the observed correlation for 

fat yield was 5% lower than its expected value. Again, a thorough analysis revealed 

two bulls with more than 2 SD of difference between national and international EBV. 

These five outlier bulls had in common that their reliability of international EBV was 

low (on average 74%), and had information on daughters and sons in several 

countries contributing to the latest international EBV.  
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Canada 

Analysed foreign countries in Canada were the same as those considered in 

Australia as a reference country (Table 1). However, large differences were observed 

in either the total amount of bulls (180) or the number of bulls considered for each of 

the foreign countries considered. In fact, the number of bulls progeny tested in the 

USA was nearly threefold (151), and almost a third of the bulls tested in EUR (29). 

No bulls progeny tested in France were retained after editing. When bulls were 

analysed all together, mean differences between INTPRED and DOM2009 were 8.1, 

-9.7 and 11.0% of the genetic SD for milk, fat and protein yield, respectively (Table 

3). A significant difference (P < 0.05) was found for fat yield, which could be 

attributed to bulls progeny tested in the USA. Coefficients of regression of DOM2009 

on INTPRED ranged from 1.04 to 1.11 and were not significantly different from unity. 

Observed correlations between INTPRED and DOM2009 were always lower than the 

expected correlations (-4, -1 and -3% for milk, fat and protein yield, respectively). For 

bulls progeny tested in the USA, mean differences between INTPRED and DOM2009 

for milk and protein yield were similar to those for US bulls in Australia as a reference 

country, but the SD of differences were 8 and 5% lower for both traits, respectively 

(Table 3). A significant mean difference between EBVs of -11.8% of the genetic SD 

was observed for fat yield (P < 0.05). This was somewhat unexpected, especially 

considering the large amount of common bulls in both countries’ pedigrees. There 

were 11 bulls with differences between EBV from INTPRED and DOM2009 greater 

than 2 SD in at least one of the three production traits, and the latest international 

evaluation without daughters in Canada for all these bulls was prior to November 

2005. Many major changes in methodologies and models were introduced in both 

countries before that evaluation. For example, in May 2003, Canada changed from 



Wilmink to Legendre polynomials to model the curves used in their TDM and in 

February 2005 the USA introduced a package of adjustments to its national model 

(USDA, 2010). The impact of these changes on the results obtained in this study was 

tested retaining only bulls with latest international evaluation without Canadian 

daughters after November 2005 (50 bulls). When considering only these bulls, mean 

differences between INTPRED and DOM2009 were greatly reduced (-2.01, -4.67 and 

0.53% of the genetic SD for milk, fat and protein yield, respectively) and non-

significant, and the SD of differences between EBVs were nearly halved (18.90, 

18.25 and 21.67% of the genetic SD). Thus, the significant difference for protein yield 

between INTPRED and DOM2009 was more likely caused by changes in the models 

and the procedures rather than by an actual bias of international EBV. 

None of the coefficients of regression of DOM2009 on INTPRED were significantly 

different from unity, with values ranging from 0.99 for milk yield for bulls tested in 

EUR to 1.11 for fat yield for bulls tested in the USA. Observed correlations for bulls 

tested in EUR were close to their expected values (-1, -1 and 0% differences 

between observed and expected correlations for milk, fat and protein yield, 

respectively). Observed correlations for bulls tested in the USA were 0.89, 0.92 and 

0.91 for milk, fat and protein yield, respectively, and somewhat lower than expected 

(Table 4). Considering only US bulls with the last international evaluation without 

domestic daughters after November 2005, observed correlations matched their 

expected value for milk yield, and were 1% higher than expected for fat and protein 

yield. 

France 

Foreign bulls progeny tested in CAN, the USA and EUR were considered (Table 1). 

When all bulls where analysed together, mean differences between INTPRED and 
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DOM2009 were generally small and non-significant for all traits. A significant 

coefficient of regression of DOM2009 on INTPRED of 0.92 was found for fat yield, 

whereas the other two not significant regression coefficients ranged from 0.90 to 

0.91. Observed correlations between INTPRED and DOM2009 were always lower 

than expected, but only with a maximum of 2% difference (for milk and fat yield). 

The highest mean differences between EBVs (expressed in % of the genetic 

standard deviation) for bulls grouped by foreign country of test were found for protein 

yield, for bulls progeny tested in CAN and in EUR, and for fat yield for foreign US 

bulls (12.3, 7.6, and -9.1%, respectively). However, none of the mean differences 

were significant. 

Coefficients of regression of DOM2009 on INTPRED ranged from 0.83 for fat yield 

for bulls tested in EUR (the only regression coefficient found significant, P < 0.05) to 

1.01 for fat yield for bulls progeny tested in CAN. Observed correlations between 

INTPRED and DOM2009 ranged from 0.90 for protein yield for bulls tested in EUR to 

0.95 for fat yield for bulls tested in CAN (Table 4). These results were reasonably 

similar to those reported by Brochard et al. (2006). In fact, Brochard et al. (2006) 

obtained slightly higher observed correlations between national and international 

EBV for bulls tested in CAN and the USA, although lower observed correlations were 

reported for bulls tested in EUR.  However, differences in the methods implemented 

in both studies make comparisons of results difficult. In particular, in Brochard et al. 

(2006) the grouping of bulls was by country of first registration, whereas in the 

present study it was the country with the highest number of daughters in August 

2009. Another reason is the different time period and editing criteria adopted in this 

paper, resulting in a different number of bulls analysed. Brochard et al. (2006) 

considered a shorter time period (from 2000 to 2005) whereas our study includes 



four more years of international evaluations. Finally, the editing criteria in Brochard et 

al. (2006) were less strict for international evaluations (only a reliability higher than 

70% was required to include bulls in the analysis) and more stringent for national 

evaluations (at least 150 daughters, corresponding to a reliability higher than 90%) 

than the criteria adopted in this study.  

Italy 

Bulls progeny tested in CAN, the USA and EUR were analysed. Large mean 

differences between INTPRED and DOM2009 were found for all traits (18.42, 7.06 

and 22.0% of the genetic SD for milk, fat and protein yield, respectively) when all 

bulls were analysed together (Table 4). The differences for milk and protein yield 

were highly significant (P < 0.001). Significant regression coefficients of DOM2009 on 

INTPRED of 1.03 and 1.02 were found for the same traits. Observed correlations 

between INTPRED and DOM2009 were between 5% (milk yield) and 7% (protein 

yield) lower than expected correlations. Possible causes of these results are 

discussed next, when bull tested in the different foreign countries were analysed 

separately. In this case, lower mean differences between INTPRED and DOM2009 

were found for all traits for bulls tested in CAN, although the SD of differences were 

similar to those obtained for the other foreign countries (Table 3). Lower mean 

differences between EBV of ITA and CAN were expected, considering that since 

November 2004 both countries use a similar TDM model for production traits 

(Canavesi et al.,2004). Highly significant (P < 0.001) mean differences between 

EBVs were found for milk and protein yield for US progeny tested bulls and for 

protein yield for bulls tested in France, Germany and the Netherlands. Moreover, for 

foreign bulls tested in EUR, significant mean differences of EBV were also found for 

milk ( P < 0.01) and fat yield (P < 0.05). Surprisingly, the SD of differences between 
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INTPRED and DOM2009 for bulls tested in the USA and in EUR were similar to, and 

in two cases higher than, the ones obtained considering Australia as a reference 

country. 

Coefficients of regression of DOM2009 on INTPRED for the three foreign countries 

were not significant and ranged from 0.95 for protein yield in EUR to 1.06 for milk 

yield in the USA, indicating that in the countries and traits with significant mean 

differences there is a systematic underestimation of international predictions. 

Observed correlations between INTPRED and DOM2009 were lower than expected 

in all foreign countries and traits (Table 4). Differences between observed and 

expected correlations ranged from -11% (protein yield for bulls tested in CAN) to -3% 

(milk yield for bulls tested in EUR).  

The impact of the relatively recent introduction of TDM on national EBV correlations 

in all traits was more profound in Italy compared to the introduction of TDM in other 

countries like Canada or the Netherlands (Figure 1). With respect to international 

evaluations, the introduction of TDM affected genetic correlations between Italy and 

the other countries. In addition, in November 2004 Interbull introduced a new method 

for the estimation of genetic correlations that caused further impact on genetic 

correlations across countries (Interbull, 2010). Considering that these changes in 

methodologies may have a large impact on results, further analyses were performed. 

Foreign bulls in the USA and in EUR were divided into two sub-groups corresponding 

to the two periods with different predictive models in Italy. The first sub-group (LAC) 

included bulls with the latest international genetic evaluation without Italian daughters 

from May 2002 to May 2004 (i.e. corresponding to the time period during which Italy 

used a lactation model). The remaining bulls formed a second sub-group (TDM), 

corresponding to the time period after the introduction of TDM in Italy.  



Figure 1. Within reference country correlations of national EBV in August 2009 with 
previous evaluations for milk (a), fat (b) and protein yield (c). Reference countries 
were coded as: AUS (Australia), CAN (Canada), FRA (France), ITA (Italy), NLD (the 
Netherlands) and USA (the United States of America).  

 

 

International evaluations for bulls included in the LAC sub-group were compared with 

August 2004 Italian EBVs, and for bulls included in the TDM sub-group were 

compared with August 2009 national EBVs. Observed correlations for bulls tested in 

EUR decreased from 0.93, 0.93 and 0.91 for milk, fat and protein yield in the LAC 

sub-group, to 0.81, 0.80 and 0.79 for the same traits in the TDM sub-group. 
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Surprisingly, for bulls progeny tested in the USA, lower differences in observed 

correlations between the two sub-groups were observed. Observed correlations for 

all traits in the LAC sub-group were 0.87, and only 1 and 2% lower for milk and 

protein yield, and 3% higher for fat yield compared to the TDM sub-group. Note that 

bulls progeny tested in CAN were omitted because the number of observations in 

both sub-groups was low. Higher variability of correlations between national and 

international evaluations across time within TDM evaluations had already been 

reported by Van Kaam et al. (2008). In recent years many efforts have been made to 

successfully deal with this problem of stability of TDM indices in Italy (Canavesi et al., 

2008a,b, 2009). These improvements, however, are too recent to evaluate their 

impact in the present study. 

The Netherlands 

Bulls progeny tested in the USA and EUR were considered in the analysis (Table 1). 

When all bulls were analysed together, mean differences between INTPRED and 

DOM2009 were always small and negative (-3.7, -3.5, and -2.5% of the genetic SD 

for milk, fat and protein yield). None of these differences were significant. Non-

significant regression coefficients of DOM2009 on INTPRED ranged from 0.94 (milk 

yield) to 0.96 (fat and protein yield). Observed correlations between  INTPRED and 

DOM2009 were always lower than their expectations (-4%, -3% and -2% for the 

aforementioned traits, respectively). 

Mean differences between INTPRED and DOM2009 for bulls grouped by single 

country of test were negative for all traits, with at most -3.8% of the genetic SD 

difference for milk yield (for bulls progeny tested in the USA). None of the mean 

differences between EBVs were significant (Table 3). Van der Linde (2004) reported 



similar mean differences between EBVs considering Canada, Germany and France 

as foreign countries, with a lower number of bulls included in the analysis. 

Coefficients of regression of DOM2009 on INTPRED were lower than one in all traits 

with values ranging from 0.93 to 0.98, except for protein yield for bulls progeny tested 

in EUR (1.03). Again, none of these regression coefficients were significant. 

Observed correlations between INTPRED and DOM2009 for US progeny tested bulls 

were about 0.9 (from 2% to 3% lower than expected). Lower observed correlations 

were found for bulls tested in EUR, with values ranging from 0.87 for milk and fat 

yield to 0.90 for protein yield (Table 4). In this case, ten bulls were found with 

differences greater than 2 SD in at least one of the production traits. Eight of these 

bulls had been progeny tested in Italy and France, two countries with different 

predictive models from the Netherlands. Other than this, no clear pattern for the 

outlier bulls was found: international reliabilities were only 2% lower than the average 

of all other bulls; national reliabilities were on average with the non-outlier bulls; the 

time of the last international evaluation without Dutch daughters ranged from 

November 2002 to January 2007; birth years of the bulls ranged from 1994 to 1998; 

and except for three half-sibs, no clear pedigree structure was found. 

The United States 

Foreign bulls progeny tested in CAN and EUR were considered in the analysis (Table 

1). When considering all bulls together, mean differences between INTPRED and 

DOM2009 were low, positive and not significant for milk and fat yield (4.9 and 3.1% 

of the genetic SD, respectively). A significant mean difference between EBVs of 6.7% 

of the genetic SD was obtained for protein yield. Non significant regression 

coefficients of DOM2009 on INTPRED ranging from 1.01 to 1.05 were observed for 

the three production traits. Observed and expected correlations between INTPRED 
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and DOM2009 were generally similar. Observed correlations were 2% and 1% lower 

than expected for milk and fat yield, respectively, whereas they matched for protein 

yield. As for the previous reference countries, specific analyses for each bulls’ foreign 

country of test were performed. For CAN progeny tested bulls, low mean differences 

between INTPRED and DOM2009 were observed (1.6, 0 and 0.9% of genetic SD for 

milk, fat and protein, respectively). Larger mean differences between EBVs were 

observed for bulls tested in EUR, with a significant (P < 0.01) mean difference of 

11.1% of the genetic SD for protein yield. SD of differences for all traits and both 

foreign countries were the lowest of all the reference countries analysed (values 

ranged from 20.1 to 23.5% of the genetic SD).  

Coefficients of regression of DOM2009 on INTPRED ranged from 0.90 for protein 

yield for bulls tested in CAN to 1.05 for fat yield for bulls progeny tested in EUR. 

None of these values deviated significantly from unity. Observed correlations 

between INTPRED and DOM2009 for bulls tested in CAN (0.88, 0.88 and 0.86 for 

milk, fat and protein yield, respectively) were similar to those reported by Powell et al. 

(2004), although both studies differ not only by the period of time considered (from 

1995 to 2004 in Powell’s study) but also by the number of bulls included in the 

analysis. Powell et al. (2004) retained bulls with higher national and international 

EBV reliabilities (80%) than those used in this study but did not set a threshold on the 

number of daughters for both national and international evaluations. As a result, the 

editing adopted in the present study was more stringent, as indicated by the higher 

average reliabilities (+1.7 and +3.6 average reliability in national and international 

evaluations, respectively). Similar to the results obtained for the USA (foreign) bulls 

with Canada as a reference country, the six (foreign) CAN bulls progeny tested in the 

USA found with differences greater than 2 SD between national and international 



EBV for at least one of the three production traits, had their latest international 

evaluation without US domestic daughters before November 2005. Furthermore, four 

of these bulls had common pedigree with the outliers when Canada was reference 

country (only sires and maternal grandsires were checked).  

Observed correlations between INTPRED and DOM2009 for bulls tested in EUR 

were almost as expected, with a maximum of ± 1% differences between observed 

and expected correlations for all traits. For these bulls, comparisons of realized 

correlations with those obtained by Powell et al. (2004) were not possible. 

Final considerations 

Mean differences between INTPRED and DOM2009 based on two independent 

(national and foreign) groups of daughters were generally small and in most cases 

not significant. Nearly all regression coefficients of DOM2009 on INTPRED did not 

deviate significantly from unity. In fact, only one regression coefficient was significant 

(fat yield for bulls progeny tested in EUR when considering France as a reference 

country). Observed correlations between INTPRED and DOM2009 were generally 

similar to their expected values.  

Although possibly influenced by the low number of bulls included in the analyses, 

these results indicate that, except for Italy, there is no evidence of systematic 

problems in the international evaluation of production traits or specific foreign 

countries. 

Modifications in methodologies in either the national or the international evaluations 

might have influenced our findings (i.e. Italy, Canada). As a consequence, this study 

may show a conservative outcome of the real value of international foreign 

evaluations, as these changes could actually be responsible for some of the variation 

found.  
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The expected correlations were based on reliability of domestic and international 

evaluations, which in turn were based on EDCs. Both EDCs and the methods to 

compute reliabilities are approximate methods, and the expected correlations in this 

study are thus subject to approximation errors. Approximation methods typically lead 

to overestimation of reliability, the degree of which depends on genetic evaluation 

models and data structure. This means that expected correlations in the present 

study probably imply an upper bound.  

The choice to retain only bulls with 70% EBV reliability and at least 100 daughters in 

both the foreign and the reference country had a direct impact on the amount of 

young bulls included in the analysis (Table 2). By requiring such highly reliable EBV, 

the variability of results obtained in this study was more likely to be affected by past 

changes in predictive models and procedures in both national and international 

evaluations. To verify the impact of the editing criteria, we performed all analyses 

using bulls with at least 60% EBV reliability in the domestic evaluation as the only 

editing criteria. Although observed and expected correlations were somewhat lower, 

as expected, we confirmed that the agreement between observed and expected 

correlations was as good as the results in Table 4. Thus it appeared that our 

observations also apply to younger bulls with lower reliabilities. In addition, all 

analyses were performed by weighting the information by bull’s effective daughter 

contribution (EDC) for bulls retained after the editing, but results were very similar to 

those of the unweighted analyses.  

The range of birth years among the bulls included was 13 years, but there were 

relatively few young bulls as a consequence of our editing criteria. The amount and 

sources of information will differ based on the age of  the bull, where older bulls 

typically have higher reliabilities due to larger daughter group sizes and more 



information on other close relatives like full/half-sibs brothers. To determine whether 

the agreement between international and domestic evaluations depended on the 

age, each dataset was divided in two halves based on year of birth (“old”: born before 

1994; and “young”: born after 1995). No specific trend in regression coefficients was 

found for the two groups (data not shown). In general lower observed and expected 

correlations were observed for the group of “young” bull, corresponding to a lower 

reliability of their EBV.  

The criterion used to assign the foreign bulls’ country of origin might not have been 

optimal. In fact, this criterion might have wrongly assigned some bulls, especially in 

countries where the use of imported bulls is intensive (i.e. Italy), contributing to an 

increase in the variability of results. 

This study analysed performances of bulls tested in different production systems and 

with different national evaluation models, genetic parameters and amount of genetic 

links between countries. However, even if countries were selected to cover a wide 

variability of scenarios, these results can only be considered as a general indication 

for countries not involved in the current analysis. 

 

CONCLUSIONS 

Results obtained in this study show that international genetic evaluation for yield 

traits based on foreign daughters’ performance are reasonably accurate predictions 

of bulls’ national EBV in most countries. In fact, except for Italy, no strong bias was 

observed and realized correlations between national and international EBV obtained 

were generally close to 0.90. Italian results were most probably influenced by a 

number of circumstances that might have affected the outcome in this analysis. 
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Nevertheless, results obtained in this study agreed well with previous studies that 

compared national and international evaluations. 
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ABSTRACT 
 

Two methods of SNPs pre-selection based on single marker regression for the 

estimation of genomic breeding values (G-EBVs) were compared using simulated 

data provided by the XII QTL-MAS workshop: i) Bonferroni correction of the 

significance threshold and ii) Permutation test to obtain the reference distribution of 

the null hypothesis and identify significant markers at P<0.01 and P<0.001 

significance thresholds. From the set of markers significant at P<0.001, random 

subsets of 50% and 25% markers were extracted, to evaluate the effect of further 

reducing the number of significant SNPs on G-EBV predictions. The Bonferroni 

correction method allowed the identification of 595 significant SNPs that gave the 

best G-EBV accuracies in prediction generations (82.80%). The permutation methods 

gave slightly lower G-EBV accuracies even if a larger number of SNPs resulted 

significant (2,053 and 1,352 for 0.01 and 0.001 significance thresholds, respectively). 

Interestingly, halving or dividing by four the number of SNPs significant at P<0.001 

resulted in an only slightly decrease of G-EBV accuracies. The genetic structure of 

the simulated population with few QTL carrying large effects, might have favoured 

the Bonferroni method. 

Key words:Genomic Selection, SNP pre-selection, Bonferroni correction, Permutation 
test 
 

 
INTRODUCTION 

The recent availability of high-density SNP panels for the bovine genome boosted 

fine-mapping QTL studies, association studies with functional traits, and the search 

for causative mutations. However, the highest expectation is in Genomic Selection 

(GS), which uses dense marker panels for predicting genomic estimated breeding 

values (G-EBVs) on young animals before phenotypic information is available 



 

(Meuwissenet al., 2001). A major statistical and computational limitation to be solved 

in GS is the estimation of tens of thousands of marker effects based only on few 

thousands of phenotypes. The size of available SNP panels (54K in cattle) largely 

affects the dimension of matrices in the mixed model equations and the required 

computational resources for data storage and algorithm solving (Legarra and Misztal, 

2008). To face these problems, an important issue is whether or not to include all the 

available SNPs in the predictive model (Gonzalez-Recio et al., 2008). In spite of likely 

decreasing G-EBV accuracies, SNPs pre-selection will sensibly reduce the number of 

equations in the model. The choice of a suitable predictive model, able to combine 

adequateG-EBV accuracies with reasonable computing requirements, is another key 

issue. In simulated data, Meuwissen et al. (2001) using Bayesian MCMC methods 

obtained values of accuracies ranging from 6 to 11% higher than those obtained 

using BLUP. However, Bayesian methods require substantially longer computing 

time compared to BLUP. Moreover, early results on real data indicate that G-EBV 

accuracies obtained with BLUP are only 2-3% lower than those obtained with 

Bayesian methods (Harris et al., 2008). Therefore, BLUP predictions based on pre-

selected SNPs seem a reasonable compromise between loss of accuracy and 

computational effort. In this paper we tested two single marker regression based 

methods to reduce the number of equations in the modelcomparing the variations in 

G-EBV accuracies.  

 
MATERIAL AND METHODS 

 
The simulated data set comprised 5,865 individuals structured in 7 generations. 

Pedigree relationships and genotypes at 6,000 SNPs evenly distributed across six 

chromosomes were available for all individuals, whereas phenotypic information was 

provided for the first 4 generations only. A total of 4,665 individuals from generation 0 
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to 3 were considered as training animals and 1,200 individuals from generations 4 to 

6 as prediction young animals. True breeding values (TBV), calculated by summing 

QTL effects, were available for all animals. Although the SNP phases were known, all 

the analyses were performed by single markers because the level of linkage 

disequilibrium (LD) of the dataset (r2=0.21 at 0.1 cM distance) greatly reduces the 

potential advantage of using haplotypes (Hayes et al., 2007).SNP pre-selection using 

Bonferroni correction was performed (Bolding, 2006) fixing an empirical threshold of 

1.6E-6 (i.e., 0.01/6000) for the P values of the F test. 

SNPs pre-selection by Permutation test was performed considering 1,000 iteration (a 

good compromise between statistical significance and computational time) and fixing 

two different significance thresholds: 0.01 and 0.001. Furthermore, two subsets 

comprising 50% and 25% of SNPs significant at 0.001 threshold were randomly 

assembled, to assess the effect of the number of SNPs on G-EBV accuracies. 

Random sampling procedure was iterated three times for each subset. Marker effects 

were estimated with the following mixed linear model: 

yijk = µ + SEXi + GENj +  + eijk 

wherey is the trait value, µ is the overall mean, SEX is the fixed effect of sex (i=1, 2), 

GEN is the fixed effect of generation (j=0-6), b is a vector of genotype random effects 

for all m significant SNPs, H is the corresponding design matrix, and e is the random 

residual. An equal contribution of each locus to the genetic variance was considered 

(e.g.: σ2
a*1/m), thus  was calculated as σ2

e/(σ2
a /number of m significant SNPs). 

Moreover, no interaction effect between SNPs was assumed. G-EBVs for training 

and prediction generations were obtained as:  

G-EBVi = m +  



 

Variance components were calculated with the MTDFREML package, and accuracies 

were estimated by calculating the correlation between G-EBVs and TBVs. 

 
RESULTS AND DISCUSSION 

 
Theadditive variance (σ2

a) of the trait was 1.324 and the residual variance (σ2
e) was 

3.142. The heritability was 0.30.The polygenic animal model for traditional EBV 

estimation produced accuracies of 71% for training and 33% for prediction 

generations. 

Bonferroni correction method retained 595 out of 6,000 markers, whereas the 

permutation approach yielded 2,053 and 1,352 significant SNPs for 0.01 and 0.001 

significance thresholds, respectively. All the Bonferroni-selected markers overlapped 

those selected with permutation test, with the exception of one marker at the 0.001 

threshold. 

High conservative Bonferroni correction showed its drawback failing to retain markers 

close to 8 small effect QTLs out of the 44 QTLs embedded in the dataset. However, 

Bonferroni-selected markers yielded higher accuracies in prediction generations 

(Table 1). 

Conversely, permutation test was able to identify all QTLs but the cost for this 

sensitivity was a “background noise” - due to the higher number of false positives - 

that negatively affected G-EBV accuracies. Indeed, SNPs significant at 0.001 

threshold performed better than those significant at 0.01 threshold, albeit only 2/3 of 

the markers were used in G-EBV estimation(81.11% vs. 79.37% accuracy in 

prediction generations).Given the hard computation effort needed to further decrease 

the significance threshold (e.g., to 1/10,000), a lower number of markers was tested 

just creating subsets of randomly selected SNPs among those passing the 0.001 

threshold. Interestingly, randomly halving the number of SNPs used in the estimation, 
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G-EBV accuracies decreased only 2% on average. Indeed, many of the 1,352 SNPs 

were located nearby the 44 QTLs and the random selection of marker subsets still 

tagged all or most QTLs. When decreasing the number of markers fourfold, G-EBV 

accuracies decreased further (84.97 and 74.26 for training and prediction, 

respectively). 

 
Table 1. Accuracies obtained with Bonferroni and Permutation methods. 

   Bonferroni correction Permutation test 
0.01 threshold 

Permutation test 
0.001 threshold 

   Training Prediction Training Prediction Training Prediction 
 
All SNPs " 89.00 82.80 89.20 79.37 89.19 81.11 

50% 
SNPs % - - - - 87.79 (0.008) 78.40 (0.001) 4 training 

generations 
25% 
SNPs " - - - - 84.97 (0.008) 74.26 (0.017) 

All SNPs " 
 
84.85 71.15 83.12 64.55 83.93 68.46 

50% 
SNPs % - - - - 83.25 (0.006) 65.79 (0.023) 

1 training 
generation 

25% 
SNPs " - - - - 81.20 (0.007) 61.67 (0.014) 

 
 
The accuracy values obtained in this paper, combining pre-selection methods based 

on single marker regression and BLUP estimation of G-EBV, were lower than those 

reported in literature for Bayesian methods while higher than those obtained by the 

polygenic animal model. These results were also comparable with those reported in 

simulated data with similar marker density and models (Kolbedhari et al., 2007; Muir, 

2007). In traits where few QTLs explain large proportions of genetic variance - as in 

this simulated data set - Bonferroni correction seems a better pre-selection method 

compared to Permutation test at 0.001 significance threshold. 
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ABSTRACT 

Genome-wide selection aims to predict genetic merit of individuals by estimating the 

effect of chromosome segments on phenotypes using dense single nucleotide 

polymorphism (SNP) marker maps. In the present paper, principal component analysis 

was used to reduce the number of predictors in the estimation of genomic breeding 

values for a simulated population. Principal component extraction was carried out 

either using all markers available or separately for each chromosome. Priors of 

predictor variance were based on their contribution to the total SNP correlation 

structure. The principal component approach yielded the same accuracy of predicted 

genomic breeding values obtained with the regression using SNP genotypes directly, 

with a reductionin the number of predictors of about 96% and computation time by 

99%. Although these accuracies are lower than those currently achieved with 

Bayesian methods, at least for simulated data, theimproved calculation speed together 

with the possibility of extracting principal components directly on individual 

chromosomes may represent an interesting option for predicting genomic breeding 

values in real data with a large number of SNP. The use of phenotypes as dependent 

variable instead of conventional breeding values resulted in more reliable estimates, 

thus supporting the current strategies adopted in research programs of genomic 

selection in livestock.  

 

Key words: single nucleotide polymorphism, genomic selection, principal component 

analysis, eigenvalue. 

 

 

 



INTRODUCTION 

Marker assisted selection programs had limited commercial applications until the early 

2000s because of the fact that most of reported marker-QTL associations had been 

found within families but were in linkage equilibrium across the population (Hayes and 

Goddard, 2001; Dekkers, 2004; Khatkar et al., 2004). The availability of genome-wide 

dense marker maps for several animal species has recently allowed the prediction of 

genomic breeding values (GEBV) by estimating marker haplotype effects on 

phenotypes (Meuwissen et al., 2001; Goddard and Hayes, 2007). Genome-wide 

selection relies on highly dense markers whose effects on phenotypes are estimated 

on a training population and then used to calculate GEBV for both training individuals 

and animals with only marker genotypes available (for example, young animals without 

phenotypes or EBV). A reduction in generation interval, an increase of accuracy in the 

cow side of the pedigree, and a decrease of selection costs are the expected 

advantages of an efficient genome-wide selection over traditional selection (Schaeffer, 

2006; Konig et al., 2009). 

High density SNP maps fulfill the basic requirement of genome-wide selection (i.e., the 

analysis of genome bits having large and persisting population-wide linkage 

disequilibrium; Muir, 2007). However, the use of dense marker platforms results in a 

large number of effects to be estimated (many thousands) in comparison with the 

relatively small number of phenotypes available (often just a few thousand). Such data 

asymmetry raises several statistical issues, such as collinearity among predictors and 

multiple testing (Gianola and van Kaam, 2008). To cope with such a problem, several 

methods of reduction of the number of predictors without a large decrease in accuracy 

have been proposed. 
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Selection of relevant SNP by single marker regression on phenotypes may improve 

results in genome-wide association studies (Aulchenko et al., 2007; Long et al.,2007), 

but it leads to a decrease of GEBV accuracy (Meuwissen et al., 2001). Bayesian 

methods that select SNP by evaluating their individual contribution to the variance of 

the trait, such Bayes B method (Meuwissen et al., 2001; Fernando et al., 2007; 

VanRaden, 2008), usually give best GEBV accuracies when simulated data with few 

QTL are modeled. However, results on actual data indicate that BLUP estimation, 

which assumes an equal contribution of all marker intervals to the genetic variance, 

performs only slightly worse than Bayesian methods in GEBV prediction (Hayes et 

al.,2009; VanRaden et al., 2009). Moreover in all the abovementioned techniques, 

markers are selected according to their relevance on the variability of the phenotype 

analyzed. Consequently, specific sets of markers may be required for different traits 

(Habier et al., 2009). 

Multivariate dimension reduction techniques may offer an alternative approach based 

on the evaluation of the contribution of each marker locus to the total SNP 

(co)variance structure. Principal component analysis (PCA) has been used for 

analyzing complex genetic patterns in human genetics (Cavalli Sforza and Feldman, 

2003; Paschou et al., 2007) and for selecting markers in genome-wide association 

studies. Solberg et al. (2009) used PCA and partial least squares regression to reduce 

the dimensionality of predictors in genomic selection. Both PCA and partial least 

squares regression showed comparable accuracies with Bayes B when lower marker 

densities were fitted, whereas the gap between methods increased with the number of 

markers used. Solberg et al. (2009) concluded that reduction in computational 

complexity provided by multivariate methods did not counterbalance their lower 

accuracy compared with Bayes B. Such considerations are justified by the low cost of 



calculation time and by the computational speed that can be provided by optimized 

techniques such as parallel computing. On the other hand, it is reasonable to expect 

that denser SNP platforms will be available very soon for livestock species and 

dimensionality will again represent a relevant problem. 

In their proposal, Solberg et al. (2009) regressed phenotypes on principal component 

(PC) scores extracted from the SNP matrix using the single value decomposition 

approach with an assumption of equal variance of each PC score. The choice of priors 

of marker effects represents a crucial point for genomic models (de los Campos et al., 

2009). On the other hand, the ordinary method for calculating PC relies on the 

eigenvalues of the correlation matrix of starting variables that measure the contribution 

of each PC to the original variance of predictors. Thus, eigenvalues can be used as 

priors of predictor effect for the calculation of GEBV. It is worth remembering that 

eigenvalues have already been incorporated in mixed model algorithms to optimize 

calculations for variance component estimation (Dempster et al., 1984; Taylor et al., 

1985). 

In the present paper, PCA is used to perform a BLUP prediction of GEBV in a 

simulated data set to test the ability of this technique to reduce the number of 

predictors without decreasing GEBV accuracy. Moreover, the feasibility of extracting 

PC from dense, commercially available SNP platforms is tested.  

 

MATERIALS AND METHODS 

Data 

The data set was generated for the XII QTLs–MAS workshop 

(http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html).The base 

population consisted of 100 individuals (50 males, 50 females). The genome had 6 
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chromosomes (total length 6 M), with 6,000 biallelic SNP, equally spaced at a distance 

of 0.1 cM. A total of 48 biallelic QTL were generated, with positions sampled from the 

genetic map of the mouse genome. Quantitative trait loci effects were sampled from a 

gamma distribution with parameters estimated by Hayes and Goddard (2001). Initial 

allelic frequencies of both SNP and QTL were set to 0.5. Then 50 generations of 

random mating followed. Generations 51 to 57 were used to create the experimental 

population of 5,865 individuals. Generations 51 to 54 (4,665 individuals; TRAIN data 

set) had pedigree, phenotype, and marker information available. The last 3 

generations (1,200 individuals; PRED data set) had only pedigree and marker 

information available. True breeding values (TBV) were considered as the sum of all 

QTL effects across the entire genome. Phenotypes were generated by adding 

environmental noise to the TBV. Further details on the simulation can be found in Lund 

et al. (2009). Polygenic breeding values, being among the most frequently used 

dependent variable in GEBV prediction with real data, were also predicted.  

Polygenic breeding values and additive genetic (σ2a) and residual (σ2e)variance 

components were estimated with a single trait animal model that included the fixed 

effects of sex and generation and the random additive genetic effect of the animal. The 

pedigree relationship matrix included 5,939 animals. 

PCA analysis 

Principal component analysis aims to synthesize information contained in a set of n 

observed variables (M1,…, Mn) by seeking a new set of k (k < n) orthogonal variables 

(PC1,…, PCk) named PC, which are calculated from the eigen decomposition of the 

covariance (or correlation) matrix M. The jth PC is a linear combination of the 

observed variables 

PCj = α1jM1  + … + αnjMn 



where coefficients αij are the elements of the eigenvector corresponding to jth 

eigenvalue. Principal components are usually extracted in a descending order of the 

corresponding eigenvalue that measures the quota of variance of original variables 

explained by each PC (Morrison, 1976; Krzanowsky, 2003).  

An SNP data matrix M with m rows (m = 5,865, the number of individuals in the entire 

data set) and n columns (n = 5,925, the number of SNP markers that were found to be 

polymorphic) was created. Each element (i,j) corresponded to the genotype at the the 

jthmarker for the ith individual. Genotypes were coded as −1, 0, or 1 according to the 

notation used by Solberg et al. (2009). 

Data editing is usually recommended when handling dense marker maps (Wiggans et 

al., 2009), either to correct for data quality (i.e., genotyping not successfully 

performed) or to avoid possible estimation biases because of a severe imbalance of 

genotypes. However, considering that in the present simulated data only 288 markers 

had minor allele frequency <0.05, whereas 47 deviated significantly (P < 0.01) from 

the Hardy-Weinberg equilibrium, this deviation may be attributable to drift; only the 75 

monomorphic SNP were discarded from the analysis. Such a choice is at least partially 

supported by results of Chan et al. (2009), who pointed out that SNP attributes 

commonly considered in SNP data editing, such as minor allele frequency or deviation 

from Hardy-Weinberg equilibrium, have actually a very small effect on overall false 

positive rate in genomewide association studies. 

Principal component analysis was carried out on M, and the number of PC (k) retained 

for further analysis was based on both the sum of their eigenvalues and the obtained 

GEBV accuracy. Principal component extraction was performed either on all SNP 

simultaneously (PC_SNP_ALL) or separately for each chromosome 

(PC_SNP_CHROM). Scores of the k selected PC were calculated for all individuals. 
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Marker haplotypes may be more efficient than genotypes in capturing marker-QTL 

association, especially in outbred populations where it may differ between families 

(Calus et al., 2008). Thus, PCA was performed also on haplotypes constructed from 

pairs of adjacent marker loci, using either 

all loci together (PC_HAP_ALL) or separately per chromosome (PC_HAP_CHROM). 

Predictor effect estimation and GEBV calculations 

Dependent variables used in the analysis were either phenotypes or polygenic 

breeding values. For the estimation of the effects of predictors, records of the 4,665 

individuals of the TRAIN data set were analyzed with the following mixed linear model: 

y = Xb + Zg + e 

where y is the vector of either phenotypes or polygenicbreeding values, X is the 

design matrix of fixed effects(mean, sex = 1, 2, generation = 1, 2, 3, 4 for 

phenotypes;only mean for polygenic breeding values); b isthe vector of solutions for 

fixed effects; Z is the (m ×k) design matrix of random effects, where each 

elementcorresponds to the score of the kth component for themth animal of the training 

generations; g is the vector ofsolution for random regression coefficients of PC 

scores;and e is the random residual. Covariance matrices ofrandom PC effects (G) 

and residuals (R) were modelled as diagonal I(σ2
ai) and I(σ2

e), respectively. The 

BLUPmethods used for estimating SNP effects usually assumean equal contribution of 

each SNP locus to the varianceof the trait, sampled from the same normal 

distribution(i.e., σ2
aj = σ2

a/n; Meuwissen et al., 2001; VanRaden etal., 2009). In the 

present work, 2 different options werecompared. The first is the above-mentioned 

equalityof variances. The second starts from the considerationthat PC scores were 

used as predictor variables andtheir contribution to the original SNP covariance 



structureis quantified by the corresponding eigenvalue (λ).Thus, variances of PC 

effects were calculated as σ2
aj=(σ2

a/k) × λj.	
 

The G matrix diagonality, commonly implementedin BLUP methodologies for 

estimating SNP marker effects(Meuwissen et al., 2001; VanRaden, 2008), relieson the 

assumption that marker effects in a large populationare uncorrelated (VanRaden et al., 

2009). Withthe use of PC scores, such an assumption is consistentwith the 

orthogonality between PC (Morrison, 1976).The BLUP solutions were estimated using 

Henderson’snormal equations (Henderson, 1985). 

To have a comparison with the most straightforwardestimation method, SNP effects 

were estimated directlyby using the same mixed linear model but with Z indicatingthe 

design matrix of the 5,925 polymorphic SNPgenotypes [coded as 0, 1, and 2 (i.e., on 

the basis of thenumber of alleles)]. Covariance matrix G was assumedto be diagonal 

as I(σ2
a/n). A Cholesky decompositionwas used to solve mixed model equations 

(Harville,1997). 

Overall mean and effects of PC scores or SNP genotypes(ĝ) estimated on the TRAIN 

data set were thenused to predict GEBV both in TRAIN and PREDindividuals as 

 

,where GEBV is the vector of predicted GEBV and Z is the matrix of the PC scoresor 

SNP genotypes of all individuals.  

Accuracies of prediction where evaluated by calculating Pearson correlations between 

GEBV and TBV for the PRED generations. Bias of prediction was assessed by 

examining the regression coefficient of TBV on GEBV (Meuwissen et al., 2001).



 CHAPTER IV – Principal component analysis in genomic selection 
 

107 
 

Figure 1. Pattern of the eigenvalues of the correlation matrix of SNP markers.   

 

Goodness of prediction wasevaluated also by the mean squared error of prediction 

(MSEP), calculated as  

 

where n is the number of individuals in the PRED generations, and by its partition in 

different sources of variation related to systematic and random errors of prediction 

(Tedeschi, 2006). 

 

RESULTS 

The pattern of eigenvalues of the correlation matrix of SNP genotypes obtained with 

PCA of all markers simultaneously is reported in Figure 1 (only the first 1,000 

eigenvalues are plotted for brevity). A smooth decrease in the amount of variance 

explained by each successive PC can be observed, with a plateau between 250 and 

300 PC (about 84% of variance explained). Thus, between 200 and 300 PC could be 

considered adequate for describing the original variance of the system. The GEBV 

accuracies for different numbers of retained PC (50–600) using all SNP 

simultaneously and eigenvalues as variance priors are reported in Figure 2. Accuracy 
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for both training and prediction generations increases until a plateau, reached at about 

250 to 300 PC. Further increasing the number of retained PC does not result in an 

increase of accuracy, probably because of the small amount of variance explained by 

each additional variable. Similar results were obtained by Solberg et al. (2009), who 

report best accuracies when 350 PC were extracted from 8,080 biallelic markers 

distributed on 10 chromosomes. However, Solberg et al. (2009) found a rather 

decreasing trend of the correlation between GEBV and TBV for larger numbers of PC. 

Based on the accuracy of GEBV prediction, 279 PC (83% of the original variance) 

were retained in the present work for PC_SNP_ALL and PC_HAP_ALL approaches. In 

the analysis carried out on individual chromosomes, to keep the same number of 

predictors of the previous approach, 46 and 47 PC for chromosomes 1 to 3 and 4 to 6, 

respectively, were retained. 

Figure 2. Pattern of correlations between genomic breeding values (GEBV) and true 
breeding values (TBV) when principal components are extracted from all SNP 
genotypes simultaneously and eigenvalues are used as priors, for different number of 
retained PC (white bars = training individuals, black bars = prediction individuals).  

 

The continuous line represents the amount of variance explained by the corresponding 
number of PC. 
 
Average GEBV accuracies obtained using phenotypes are, for the 3 prediction 

generations, around 0.70 (Table 1) when an equal contribution of PC score on the 

variance of the trait is assumed, similar to those reported by Solberg et al. (2009).  
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Table 1. Pearson correlations between predicted genomic breeding values and true 
breeding values, for different estimation methods, using either phenotypes or 
polygenic breeding values for the prediction generations and assuming either equal 
variance contribution for each principal component or eigenvalues as variance priors. 
 

Method1 Phenotype Polygenic breeding values 
SNP_ALL 0.76 0.41 
Equal variance   
PC_SNP_ALL 0.69 0.53 
PC_SNP_CHROM 0.70 0.55 
PC_HAP_ALL 0.68 0.54 
PC_HAP_CHROM 0.71 0.56 
Eigenvalues   
PC_SNP_ALL 0.76 0.57 
PC_SNP_CHROM 0.73 0.56 
PC_HAP_ALL 0.75 0.56 
PC_HAP_CHROM 0.73 0.55 

1 SNP_ALL = all 5,925 SNPs; PC_SNP_ALL = principal components extracted from all 
SNP genotypes simultaneously; PC_SNP_CHROM = principal components extracted 
from SNP genotypes separately for each chromosome; PC_HAP_ALL  = principal 
components extracted from all SNP haplotypes simultaneously; PC_HAP_CHROM = 
principal components extracted from haplotypes separately for each chromosome. 
 
 
 
Figure 3. Correlations between genomic breeding values (GEBV) and true breeding 
values (TBV) in the different approaches when phenotypes were used as dependent 
variables. 
 

 

SNP_ALL = all 5,925 SNP; PC_SNP_ALL = principal components extracted from all 
SNP genotypes simultaneously; PCA_SNP_CHROM = principal components extracted 
from SNP genotypes separately for each chromosome; PCA_HAP_ALL = principal 
components extracted from all SNP haplotypes simultaneously; PCA_HAP_CHROM = 
principal components extracted from haplotypes separately for each chromosome 
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Figure 4. Correlations between genomic breeding values (GEBV) and true breeding 
values (TBV) in the different approaches when polygenic breeding values were used 
as dependent variables. 
 

 
SNP_ALL = all 5,925 SNP; PC_SNP_ALL = principal components extracted from all 
SNP genotypes simultaneously; PCA_SNP_CHROM = principal components extracted 
from SNP genotypes separately for each chromosome; PCA_HAP_ALL = principal 
components extracted from all SNPS haplotypes simultaneously; PCA_HAP_CHROM 
= principal components extracted from haplotypes separately for each chromosome 
 

Accuracies increase by about 10% (to an average of 0.75) when eigenvalues are used 

in the diagonal of the G−1 matrix of mixed model equations. In general, results are of 

the same order as in previous literature reports for BLUP estimation on simulated 

(Meuwissen et al., 2001, 2009; Fernando et al., 2007) and real (Hayes et al., 2009; 

VanRaden et al., 2009) data. Correlations obtained when all SNP were used as 

predictors are equal to those obtained with PC with eigenvalues as priors. On the 

other hand, a remarkable difference in calculation speed between the 2 methods has 

been observed: about 6 h for the SNP_ALL approach and 3 min for the PC, using a 

computer with a dual core processor (2.33 GHz and 3.26 MB of random access 

memory). Slight differences can be observed between estimates of PC carried on all 

chromosomes or separately for each of them. Moreover, the same results have been 

basically obtained when genotypes at single markers or haplotypes were used, in 
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agreement with previous reports for high density markers (Hayes et al., 2007; Calus et 

al., 2008). 

The GEBV accuracies are larger when phenotypes instead of polygenic breeding 

values are used as dependent variables (Table 1). This is particularly evident when all 

SNP are used as predictors (on average 0.73 vs. 0.55 for phenotypes and polygenic 

breeding values, respectively). Also, the decrease in accuracy between TRAINING 

and PRED generations is more evident for polygenic breeding value-based predictions 

(Figures 3 and 4). These findings are confirmed by values of regression coefficients of 

TBV on GEBV (Table 2). Moreover, b-values for methods based on PC are similar to 

those reported by Solberg et al. (2009) when equal variances were assumed, whereas 

they are closer to 1 (about 0.85) when eigenvalues are used as variance priors. 

Table 2. Regression coefficients (bTBV,GEBV) of true breeding value (TBV) on predicted 
genomic breeding value (GEBV) for the different estimation methods using either 
phenotypes or polygenic breeding values for the prediction generations and assuming 
either equal variance contribution for each principal component or eigenvalues as 
variance priors. 
 

 Phenotype Polygenic breeding value 
Method1 bTBV,GEBV SE bTBV,GEBV SE 
SNP_ALL 1.08 0.027 1.15 0.073 
Equal variance     
PC_SNP_ALL 0.63 0.019 1.08 0.049 
PC_SNP_CHROM  0.67 0.019 1.13 0.048 
PC_HAP_ALL 0.61 0.019 1.08 0.049 
PC_HAP_CHROM  0.65 0.018 1.11 0.047 
Eigenvalues     
PC_SNP_ALL 0.88 0.021 1.33 0.055 
PC_SNP_CHROM  0.84 0.022 1.28 0.055 
PC_HAP_ALL 0.88 0.022 1.32 0.056 
PC_HAP_CHROM  0.83 0.023 1.26 0.056 

1SNP_ALL = all 5,925 SNPs; PC_SNP_ALL = principal components extracted from all 
SNP genotypes simultaneously; PC_SNP_CHROM = principal components extracted 
from SNP genotypes separately for each chromosome; PC_HAP_ALL  = principal 
components extracted from all SNP haplotypes simultaneously; PC_HAP_CHROM = 
principal components extracted from haplotypes separately for each chromosome 
The decomposition of the MSEP for some of the considered scenarios is reported in 
Table 3.  



Table 3. Mean squared error of prediction (MSEP) decomposition (%) and coefficient 
of determination (r2) for the prediction generations in some scenarios using either 
phenotypes or polygenic breeding values1,2.  
 

Item SNP_ALL PC_SNP_ALL1 PC_SNP_ALL2 
Phenotype    
MSEP 1.55 1.48 1.02 
Mean Bias (UM) 72.2 53.5 56.9 
Unequal variances  (US) 6.9 0.6 1.9 
Incomplete covariation (UC) 21.9 45.9 41.2 
Slope bias (UR) 0.22 11.1 1.1 
Random errors (UD) 27.6 35.4 42.0 
r2 0.57 0.48 0.57 
Polygenic breeding value    
MSEP 2.96 2.88 2.72 
Mean Bias (UM) 72.0 75.1 74.6 
Unequal variances  (US) 13.9 8.9 11.9 
Incomplete covariation (UC) 14.1 16.0 13.5 
Slope bias (UR) 0.01 0.00 0.7 
Random errors (UD) 27.9 24.9 24.7 
r2 0.17 0.28 0.33 

1SNP_ALL= all 5,925 SNPs; PC_SNP_ALL 1= principal components extracted from all 
SNP genotypes simultaneously and equal contribution of each SNP to the variance of 
the trait; PC_SNP_ALL 2 principal components extracted from all SNP genotypes 
simultaneously and contribution of each SNP to the variance of the trait proportional to 
the eigenvalue. 
2 UM + US+ UC = UM + UR + UD = 100% 

The MSEP is always smaller (about half) when GEBV are calculated using 

phenotypes. Its partition highlights a great relevance of components related to the bias 

of prediction (i.e., mean bias, inequality of variances) in the approach that directly fits 

SNP genotypes (about 79%). Methods based on PC extraction are characterized by a 

prevalence (about 80%) of random terms, measured by the random error and by the 

incomplete covariation. The use of eigenvalues as variance priors results in the lowest 

MSEP and, compared with the other PC-based method, in a reduction of the slope 

bias and the highest relevance of random variation. These differences be clearly seen 

from the plots of TBV versus GEBV for the PC_SNP_ALL approach using equal 

(Figure 5a) or eigenvalue-based (Figure 5b) variance.  
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Figure 5.Regression plots for the scenarios analyzed. 

 
a) Plot of true breeding values versus genomic breeding values predicted using 
phenotypes when principal components (PC) are extracted from all SNP genotypes 
simultaneously and variance contribution of the PC scores in the estimation step is 
assumed equal. b) Plot of true breeding values versus genomic breeding values 
predicted using phenotypes when principal components are extracted from all SNP 
genotypes simultaneously and variance contribution of the PC scores in the estimation 
step is based on their eigenvalues. c) Plot of true breeding values versus genomic 
breeding values predicted using phenotypes when all SNP genotypes are used as 
predictors (Continuous line= regression line of true breeding values on genomic 
breeding values; dotted line= equivalence line, y=x). 
 
The latter shows a regression slope closer to the equivalence line (y = x) and a smaller 

value for the intercept that indicates a smaller systematic underestimation of TBV. The 

composition of MSEP becomes very similar across the different methods when 

polygenic breeding values are used as dependent variables, with a reduced incidence 

of random components and a larger relevance of unequal variances compared with 

the phenotype-based estimates (Table 3). Actually, the comparison of plots of TBV 

versus GEBV estimated with the PC_SNP_ALL approach using phenotypes (Figure 

5a) or polygenic breeding values (Figure 5c) clearly shows a reduced range of 

variability and a higher underestimation (as evidenced by the larger value of the 

regression intercept) for polygenic breeding value-based GEBV. 

An interesting feature of PCA is the possible technical interpretation of extracted 

variables. Figure 6 reports score averages for the first 2 PC that together explain about 

5% of the original variance of the system, calculated for each generation. Averages of 

the second PC ranged gradually from negative values for the first 3 generations to 
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positive for the last 3 generations. A possible explanation of the ability of the second 

PC to distinguish individuals of different generations can be found in its negative 

correlation with the average observed heterozygosity per animal (−0.26) that tends to 

decrease from older to younger generations (Figure 7). 

 
Figure 6. Plot of the average scores of the first two principal components for seven 
generations. 
 

 

Figure 7. Pattern of the average observed heterozygosity in different generations. 
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DISCUSSION 

The main objectives of this work were to assess the effect of reducing predictor 

dimensionality in GEBV estimation using PCA and to test the effect of structuring the 

variance contribution of PC with their eigenvalues. 

Principal component analysis allows an efficient description of the correlation matrix of 

biallelic SNP with a markedly smaller number of new variables (4.7%) compared with 

the original dimension of the system. Such a huge decrease has a straightforward 

effect on the calculation speed of GEBV, with a reduction of more than 99% of 

computing time achieving the same accuracy of predicted GEBV using all SNP. 

Compared with other methods of reduction of predictors where SNP are selected 

based on their position along the chromosome (VanRaden et al., 2009) or their 

relevance with the trait considered (Hayes et al., 2009), the multivariate reduction 

approach limits the loss of information because each SNP is involved in the 

composition of each PC.  

The GEBV accuracies obtained in the present work agree with a previous report on 

the use of PCA to estimate GEBV (Solberg et al., 2009) when an equal contribution of 

each PC to the variance of phenotypes is assumed. This approach follows the 

common BLUP assumption of equality of variance of predictors, usually criticized for 

its inadequacy to fit the widely assessed distribution of QTL (i.e., many loci with a 

small effect and very few with large effect; Hayes and Goddard, 2001). However, when 

eigenvalues are used as prior of PC variance, accuracies increase by about 10%. 

These figures highlight the importance of an accurate modeling of the variance 

structure of random effects in GEBV estimation. Bayesian methods estimate variances 

of different chromosome segments combining information from prior distribution and 

data (Meuwissen et al., 2001). These methods usually give the best performance 



(accuracies >80%) when simulated data are fitted, whereas results obtained on real 

data seem to indicate a substantial equivalence with the BLUP approach (Hayes et al., 

2009; VanRaden et al., 2009). A common explanation is that, in Bayes method, 

assumptions on prior distributions of parameters are more difficult to infer when real 

data are handled. The use of eigenvalues as variance priors relies only on data (i.e., 

the SNP correlation structure) and does not require assumptions on prior distribution. 

A potential drawback in the calculation of GEBV using PCA is represented by PC 

extraction. In the present work, about 40 min were needed to process an SNP data 

matrix of 5,865 rows and 5,925 columns. The commercially available SNP panel for 

cattle has 54,000 marker loci, although about 40,000 are retained on average after 

editing (Hayes et al., 2009). Such a marked increase of columns, usually not 

accompanied by a comparable increase of rows (i.e., phenotypic records), may lead to 

statistical and computational problems if PC are extracted treating all SNP 

simultaneously. However, results of the present study indicate that PC may be 

calculated separately for each chromosome, keeping the same GEBV accuracy. It 

should be remembered that the number of SNP per chromosome is not far from 

current dairy data (on average 1,200–1,300; Hayes et al., 2009; VanRaden et al., 

2009; Wiggans et al., 2009). Thus, PCA carried out on individual chromosomes may 

be of great interest for real data, also considering the substantial biological 

orthogonality among chromosomes. The availability of denser marker maps (i.e., 

500,000 SNP) will represent a challenge for the method, although the number of PC to 

be retained does not seem to increase linearly with the number of original variables. 

Missing genotypes is a potential problem for computation of PCA, which requires data 

in each cell. Although edits that are normally carried out on SNP data leave only a few 

missing cells per animal, they are spread across different markers and this may lead to 
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a severe reduction in the number of records. Missing data can be reconstructed using 

appropriate algorithms as those described by Gengler et al. (2007) or others 

implemented in software of common use such as fastPHASE (Scheet and Stephens, 

2006) or PLINK (Purcell et al., 2006). 

Of particular interest is the difference in GEBV accuracy obtained when using 

phenotypes versus polygenic breeding values as dependent variable. Polygenic 

breeding values are phenotypes corrected for additive relationships among animals 

based on pedigree information. On the other hand, in GEBV predictions the genetic 

similarity between animals is accounted for by the specific combination of marker 

genotypes possessed by each individual. Therefore, the use of polygenic breeding 

values as dependent variable in GEBV prediction may be regarded as redundant in 

terms of exploitation of genetic relationships. This behavior is particularly evident for 

the regression using all SNP markers. In this form, the calculation of GEBV is 

equivalent to the use of an animal model with the additive genetic effect structured by 

the genomic relationship matrix (Goddard, 2009). Such a double counting of genetic 

relationship resulted in an evident reduction of the variability of GEBV compared with 

TBV. From a statistical standpoint, polygenic breeding values are model-predicted 

values and may not be suitable as a dependent variable in further analyses (Tedeschi, 

2006). Results of the present study, although obtained on simulated data, may more 

accurately reflect the reality of genomic selection programs in cattle. In previous 

studies, polygenic breeding values were generally the dependent variable. This is 

because TBV are not available on real data and polygenic breeding values estimated 

with a high accuracy (>0.90) may represent a sort of golden standard for cross 

validations. However, the tendency now seems to move toward the use of partially 



corrected phenotypes such as deregressed proofs or daughter yield deviations (Hayes 

et al., 2009; VanRaden et al., 2009). 

Finally, an interesting side product of PCA used to reduce the dimensionality of 

predictors in genome-wide selection is represented by the extraction of synthetic 

variables that can have a technical meaning. Studies in human and animal genetics 

have highlighted the role of PC as indicators of population genetic structure. For 

example, the top eigenvectors of the covariance matrix often show a geographic 

interpretation (Price et al., 2006; Chessa et al., 2009). Usually, the meaning of the ith 

PC in terms of relationship with the original variables is inferred from the structure of 

its eigenvector. In the present study, such an evaluation was not feasible, probably 

because of both the relatively small amount of variance explained by each PC and the 

large number of original variables considered (i.e., the 5,925 SNP). However, one of 

the top PC was able to reflect the genetic variation among generations, although the 

discrimination between individuals of different generations was rather fuzzy, as 

expected, given the small amount of variance explained. However, this last point 

deserves some additional consideration. An assessed criterion in choosing which PC 

to retain is to look at their eigenvalues. However, sometimes the PC associated with 

the largest eigenvalue does not have a defined meaning, whereas successive PC 

characterized by smaller eigenvalues may contain more relevant or biological 

information (Jombart et al., 2009). In the case of the present work, a meaning of the 

second PC as indicator of genetic drift, which should be the only reason of variation of 

genotypic frequencies in the simulated generations (Lund et al., 2009), could be 

hypothesized. 
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ABSTRACT 

Introduction 

The ideal method to estimate genome-enhanced breeding values (DGV) would 

calculate the conditional mean of the breeding value given the genotype of 

individuals at each QTL. This conditional mean requires a prior distribution of QTL 

effects. However, both the QTL and their distribution of effects are unknown, with 

SNP markers used to track the QTL. In this study we compare accuracies of DGV 

obtained using three different prior distributions of SNP effects (normal, Student’s t 

and double-exponential) in simulated data, in order to understand the extent of 

reduction in DGV accuracy when the prior distribution does not match the true 

distribution of QTL effects. We then apply the methods in a real dataset both to find 

the prior distribution that is most robust across traits and to make interpretations 

about the true distribution of QTL effects. 

 

Methods 

The simulated dataset was provided by the XII QTL-MAS workshop. Genotypes of 

1149 progeny tested Australian Holstein-Friesian bulls were used to test all methods 

in a real scenario. The traits analyzed were protein yield and fat percentage. Methods 

using normal and Student’s t prior distributions had fixed hyper-parameters, whereas 

hyper-parameters for double-exponential prior distribution were conditional to the 

data. Accuracies of DGV and prediction bias were controlled in both datasets. 

 

Results 

Using the Student’s t distribution for the prior distribution of SNP effects (BayesA) 

gave the largest estimates of SNP effects in the presence of QTL with large effects in 



both simulated and real data, and achieved the best accuracies of DGV in both 

datasets. The double-exponential distribution (Bayesian LASSO) resulted in higher 

shrinkage of SNP effect estimates, even when a large true effect was present. As a 

result, this method obtained lower accuracies than BayesA. The normal distribution 

(Bayes-BLUP) resulted in the greatest degree of shrinkage of estimated effects, and 

gave the lowest accuracies. 

 

Conclusions 

Hyper-parameters conditional to the data allow a trait-specific shrinkage of the 

estimates, avoiding the use of fixed parameters that might be sub-optimal for some 

traits. However, the amount of information of the data analyzed might still be 

inadequate to estimate these hyper-parameters accurately. A Student’s t distribution 

with fixed hyper-parameters was the best approximation of the QTL distribution for 

the two dairy traits analyzed. 

 

INTRODUCTION 

The recent availability of dense genome-wide SNP panels has allowed 

implementation of genomic selection (GS) in a number of livestock breeding 

programs worldwide (e.g. Van Raden et al., 2009; Hayes et al., 2009; Harris et al., 

2008; van der Werf, 2009, Legarra et al., 2008, Gonzalez-Recio et al., 2009). The 

best statistical method for the estimation of direct genomic values (DGV) for selection 

candidates is still under discussion. Goddard and Hayes (2007) argued that the ideal 

method to estimate breeding values from genomic data would calculate the 

conditional mean of the breeding value given the genotype of individuals at each 

QTL. This conditional mean requires a prior distribution of QTL effects. However, in 
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practice, both the QTL and their distribution of effects are unknown, with SNP 

markers being used to track the QTL through linkage disequilibrium. Meuwissen et al. 

(2001) evaluated Bayesian methods either with a normal (Bayes-BLUP), a Student’s 

t (BayesA), or a 0-t mixture distribution of marker effects (BayesB) in simulated data. 

Their results indicated that BayesA and BayesB performed better than Bayes-BLUP. 

However, these results could reflect the simulated distribution of QTL effects they 

used, which was a small number of QTL of moderate to large effect. On the other 

hand, results reported from real data show in general small differences in the 

accuracy of DGV from non-linear Bayesian models and Bayes-BLUP models, 

depending on the trait analyzed (VanRaden et al., 2009; Hayes et al., 2009; Luan et 

al., 2009; Gredler et al., 2009; Habier et al., 2010).VanRaden et al. (2009) tested 

both a Bayes-BLUP and a non-linear model (similar to BayesA) over 27 traits in dairy 

cattle. They showed that predictions using non-linear model were more accurate for 

some traits highly affected by QTL of large effects (i.e. fat and protein percentage). 

However, considering the results obtained across all 27 traits, only 1% average 

difference was observed between Bayes-BLUP and non-linear models. Also in data 

from dairy cattle, Hayes et al.(2009) obtained higher accuracies with BayesA in 

Australian Selection Index (ASI), Australian Profit Ranking (APR), protein yield and 

protein percentage indexes. Accuracy differences between BayesA and Bayes-BLUP 

models ranged from a minimum of 2% in APR to a maximum of 7% in protein 

percentage. Opposite results were obtained for female fertility, where Bayes-BLUP 

obtained a 4% higher accuracy than BayesA. These results indicate that, when 

dealing with real data, more flexible (or different) assumptions are needed to account 

for the different QTL distributions (and heritability) of complex traits. One potential 

solution is a two or three level hierarchical model, called the Bayesian LASSO (Park 



and Casella, 2008), a Bayesian counterpart of the “original” least absolute shrinkage 

and selection operator (LASSO; Tibshirani,1996). The Bayesian LASSO assumes a 

double exponential prior distribution for SNP effects. Park and Casella (2008) 

describe a computationally efficient approach to implement the Bayesian LASSO 

using a hierarchical approach, whereby SNP effects are sampled from a normal 

distribution with a SNP specific variance, and these SNP variances are in turn 

sampled from an exponential distribution. The exponential distribution has a 

regularization hyper-parameter λ, which is sampled conditional on the data. The 

regularization hyper-parameter plays a key role in the model, as the degree of 

shrinkage of the estimates will be determined by the information in the data itself. In 

simulated data, de los Campos et al. (2009) tested five sets of parameters and two 

different distributions (gamma and beta distributions) for the prior of the regularization 

hyper-parameter, observing only small differences in terms of SNP effect estimates. 

They also analyzed the effect of the inclusion of a polygenic term in the Bayesian 

LASSO model, on wheat and mice real datasets. Their results (using only beta prior 

distribution for the regularization parameter) indicated that the inclusion of a 

polygenic effect increased the predictive ability of the model. 

In this paper we compare accuracies of DGV and estimates of SNP effects in both 

simulated and real scenarios using Bayes-BLUP, BayesA and two Bayesian LASSO 

with different hyper-parameter prior distributions, as discussed in de los Campos et 

al. (2009). Since we are comparing accuracies with three different prior distributions 

of SNP effects (i.e., Normal distribution in Bayes-BLUP, Student’s t in BayesA and 

double-exponential in Bayesian LASSO), an additional objective is to gain some 

insight into the distribution of QTL effects for the traits analyzed in the real dataset. 
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MATERIALS AND METHODS 

Methods were tested on both simulated and real data. First, a simulated dataset was 

used to study the properties of the methods in a scenario with known QTL positions 

and effects. Then, genotypes, phenotypes and pedigree information of Australian 

Holstein-Friesian bulls were analyzed for two production traits to test the 

performance of all methods using real data.  

 

Simulated dataset 

The simulated dataset, provided by the XII QTL-MAS workshop (QTLMAS workshop 

common dataset web-page), comprised 5,865 individuals structured in 7 generations. 

A total of 46 QTL with additive effect and 2 QTL with epistatic effect were distributed 

along the simulated genome. QTL effects were drawn from a Gamma distribution 

using Hayes and Goddard (2001) parameters. Pedigree relationships and genotypes 

at 6,000 SNP evenly distributed across six chromosomes were available for all 

individuals, whereas phenotypic information was provided for the first 4 generations 

only. All 4665 individuals from the first 4 generations were considered as training 

animals and individuals from the last 3 generations as prediction young animals. 

Phenotypes were pre-corrected for fixed effects, as in the following model: 

 

where y is the original phenotype for the ithanimal; SEX is the fixed effect of sex 

(p=1,2); GEN is the fixed effect of generation (j=0-6); and e is the random residual 

(term considered as the corrected phenotype for each animal). True breeding values 

(TBV), were available for all animals. QTL effects considered in this study where 

those reported by Crooks et al., 2010. Accuracies were obtained by calculating the 



correlation between DGV and TBV ( r(DGV,TBV) ). Prediction bias was assessed by 

calculating the regression coefficient of TBV on DGV. 

	
 

Real dataset 

A total of 1250 progeny tested Australian Holstein-Friesian bulls born between 1950 

and 2005 were genotyped with the Illumina Bovine SNP50TM chip (54K). SNP were 

eliminated from the dataset if they had more than 10% of missing genotypes, less 

than 1% of MAF and extreme values for chi-squared test for Hardy-Weinberg 

equilibrium. Mendelian inheritance of SNP was investigated and bulls with genotype 

incompatible with pedigree were eliminated. A total of 1149 animals and 39.048 SNP 

were retained for the analysis. The 763 older bulls (born between 1950 and 2002) 

where considered as reference population and the rest as validation population. 

Dependent variables (e.g. phenotypes) were de-regressed proofs of Australian 

Breeding Values (ABV), with the de-regression removing contribution from relatives 

other than daughters (see Hayes et al.,2009 for details). Accuracies were obtained 

as correlation between DGV and ABV. Regression coefficients of ABV on DGV were 

calculated to investigate bias of predictions. Traits analyzed were protein yield and 

fat percentage.  

 

Description of models. 

The following model was fitted: 

 

wherey is a vector of phenotypes in the reference population; 1nis a vector of ones; µ 

is a general mean; g is a vector of (random) SNP effects; X is the corresponding 

design matrix with elements of Xij=0,1,2 for genotypes  11, 12 and 22, respectively 
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for the ithanimal and jth SNP; u is a vector of polygenic breeding values assumed to 

be normally distributed, with ui ~N(0,A ), where A is the average relationship matrix 

and  is the additive genetic variance; Z is the corresponding design matrix linking 

polygenic breeding values to the data; and e is a vector of random residuals, with ei ~ 

N(0, ) , where  is the residual variance. Direct genomic values were calculated as:  

DGVi = µ +  

The Bayes-BLUP method assumed a normal prior distribution of SNP effects 

(maintaining BLUP infinitesimal assumptions). The variance of this normal 

distribution was sampled in each iteration of the Gibbs Sampler (Verbyla et al., 

2010). BayesA prior structure and (fixed) hyper-parameters followed Meuwissen et 

al. (2001), thus, degrees of freedom were set to 4.012. 

The Bayesian LASSO (B-LASSOgamma) was defined as follows (after de los 

Campos et al., 2009): 

 

 

where is a normal distribution with mean  and variance

; ,  and  are normal distributions for general mean, 

SNP effects and polygenic breeding values, with null mean and variances ,   

and , respectively; 	
   and	
   are scaled inverted chi-



squared distributions with degrees of freedom dof and scale parameter S, for random 

residual and polygenic variances, respectively;  is an exponential 

distribution for marker variances, controlled by a single parameter λ (the 

regularization parameter);  and  is a Gamma distribution with α1 and α2 as 

shape and rate parameters, respectively. The above conditional distributions have a 

closed form, thus, a Gibbs Sampler can be used to solve the equations. Shape and 

scale parameters for the regularization hyper-parameter λ were defined as 

p(λ2|P,S)∝G(λ2 | P=0.1, S=1x10-04). 

A modification to B-LASSOgamma tested in de los Campos et al. (2009), was a more 

flexible Beta prior distribution for the hyper-parameter λ.  We tested this method as 

well (B-LASSObeta). This distribution allows setting a relative flat prior in a wider 

range of values than Gamma distribution. In this case, parameters used for λ hyper-

prior distribution were p(λ|max,α1,α2) ∝ Beta((λ/max=400) | α1=1.4, α2=1.4). A 

Metropolis-Hastings step was required because the Beta distribution is not a 

conjugate prior. Further details on both Bayesian LASSO methods applied in this 

study are available in de los Campos et al. (2009).  

A total of 20,000 runs of iteration were performed for each method under study. The 

first 10,000 iterations were discarded as burn-in, and no thinning interval was 

considered. A residual updating algorithm was implemented to reduce computational 

time (Legarra and Mistzal, 2008).  

 

RESULTS 

Simulated dataset 

The Student’s t prior distribution of SNP effects assumed in BayesA allowed to obtain 

the largest magnitude of effects in the presence of QTL with true moderate to large 
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effects (Table 1).  This prior also resulted in the most accurate estimate of QTL with 

smaller effects (Figure 1.a). BayesA obtained the highest accuracies of DGV (0.87) 

and the lowest bias (Table 2).Accuracy of DGV obtained with the two Bayesian 

LASSO methods were lower than those obtained with BayesA. The degree of 

shrinkage of marker estimates with the Bayesian LASSO was greater than BayesA in 

the presence of QTL with large effects, with the largest QTL effects being severely 

under-estimated (Figure 1b, 1c). In fact, marker effects in these regions were on 

average 75% lower than those obtained with BayesA, and substantially lower than 

the true effects of the QTL (Table 1). This led to accuracies 10% lower (and higher 

bias) than those obtained with BayesA (Table 2). The two distributions of the λ hyper-

parameter did not influence the results: negligible differences were observed in 

posterior estimates of λ from B-LASSOgamma and B-LASSObeta.  

Figure 1.Absolute values of SNP effects in the simulated dataset. 

 
The crossed squares indicate (absolute) simulated true QTL effects and the triangles 
indicate SNP effects for BayesA (a), B-LASSOgamma (b), B-LASSObeta (c), and 
Bayes-BLUP (d). On the x-axis, SNP are ordered by position from chromosome 1 to 
6. 



The Bayes-BLUP method gave accuracies 3% lower than the Bayesian LASSO 

methods.  Marker effect estimates in QTL regions with large effects were always 

lower from BayesA, but in general they were similar to the estimates obtained in both 

Bayesian LASSO methods (Table 1). The correlation between DGV from Bayes-

BLUP and Bayesian LASSO methods was 0.96, whereas the correlation between 

DGV from Bayes-BLUP and BayesA was lower at 0.87. 

Table 1. Absolute SNP effects in simulated QTL regions with high effect.  

BayesA B-LASSO 
gamma 

B-LASSO  
beta 

Bayes-BLUP 

Chr.(1) Position 
(cM) 

QTL(2) 

(3) Dif.(4) (3) Dif.(4)  (3) Dif.(4)  (3) Dif.(4) 

1 20.00 0.62 0.60 -0.02 0.09 -0.53 0.08 -0.54 0.02 -0.60 
1 40.00 0.56 0.12 -0.44 0.02 -0.54 0.03 -0.53 0.01 -0.55 
1 77.23 0.37 0.38 0.01 0.04 -0.33 0.04 -0.33 0.01 -0.36 
2 27.41 0.35 0.23 -0.12 0.03 -0.32 0.04 -0.31 0.01 -0.34 
2 30.00 0.33 0.01 -0.32 0.02 -0.31 0.01 -0.32 0.01 -0.32 
2 48.62 0.37 0.31 -0.06 0.05 -0.32 0.05 -0.32 0.02 -0.35 
2 74.91 0.50 0.01 -0.49 0.02 -0.48 0.01 -0.49 0.01 -0.49 
3 14.91 0.30 0.03 -0.27 0.02 -0.28 0.02 -0.28 0.01 -0.29 
3 60.00 0.68 0.26 -0.42 0.03 -0.65 0.03 -0.65 0.01 -0.67 
4 3.21 0.61 0.37 -0.24 0.12 -0.49 0.13 -0.48 0.02 -0.59 
4 36.93 0.34 0.02 -0.32 0.02 -0.32 0.01 -0.33 0.01 -0.33 
4 76.06 0.58 0.50 -0.08 0.07 -0.51 0.07 -0.51 0.02 -0.56 
4 96.49 0.29 0.06 -0.23 0.04 -0.25 0.03 -0.26 0.01 -0.28 
5 5.15 0.18 0.05 -0.13 0.02 -0.16 0.02 -0.16 0.01 -0.17 
5 93.50 0.75 0.65 -0.10 0.25 -0.50 0.24 -0.51 0.03 -0.72 

(1) Chromosomes where QTL with large effect were simulated. No QTL was simulated on chromosome 
6. 
(2) Absolute (true) value of major QTL effects. 
(3) Mean posteriors of SNP effects in the region of QTL with moderate to large effects. 
(4) Difference between true QTL effect and mean posterior of SNP effect in the region of the QTL. 
 
 
Table 2. Accuracies, regression coefficients and regularization parameters obtained 
in the simulated dataset. 
 

 BayesA B-LASSO gamma B-LASSO beta Bayes-BLUP 

r(TBV,DGV)
(1) 0.87 0.77 0.77 0.74 

r(Phe,DGV)
(2) 0.432 0.392 0.390 0.373 

b(TBV,DGV)
(3) 1.009 0.867 0.859 1.185 

λ(4) - 98.79 (4.60) 97.45 (4.11) - 
(1)Accuracy in validation population, obtained as correlation between true breeding values and direct 
genomic breeding values.  
(2)Accuracy in validation population, obtained as correlation between pre-corrected phenotypes and 
direct genomic breeding values. 
(3) Regression coefficients of true breeding values on direct genomic breeding values. 
(4)Posterior mean (and standard deviation) of the regularization parameter for both Bayesian-LASSO 
methods. 
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Real dataset 

For fat percentage, BayesA identified three SNPs with large to moderate effects: one 

on BTA-14 (i.e. in the diacylglycerol-acyltransferase 1 region, DGAT1), one on BTA-

20 (i.e. in the growth hormone receptor region, GHR) and one on BTA-5. A mutation 

with moderate to large effect on fat percentage in the DGAT1 gene has been 

previously reported (Grisart et al., 2002). Marker effects of flanking SNP in these 

regions were close to zero (Figure 2).  On the other hand, both Bayesian LASSO 

methods identified 32 SNP in the DGAT1 region (with the highest effect obtaining 

one third of the effect observed in BayesA) and one SNP in the GHR region (with 

much lower estimated effect than in BayesA), however failing to identify SNP with 

relative high effects on BTA-5 (Figure 2b, 2c).   

Figure 2. Absolute values of SNP effects in the real dataset for fat percentage. 

 
Mean posterior estimates of SNP effects (y-axis) for the 39.048 SNP considered (x-
axis, displayed ordered by position from BTA-1 to BTA-29) obtained with BayesA (a), 
B-LASSOgamma (b), B-LASSObeta (c), and Bayes-BLUP (d).  
 



There are two possible explanations for why BayesA gives a large effect to only one 

SNP in the DGAT1 region while the Bayesian LASSO methods identify many more 

SNP.  One is that the prior in BayesA is flexible enough to allow all of the mutation 

effect to be captured by one SNP in high LD, while the prior for the Bayesian LASSO 

methods shrink the effects so hard that even when this SNP effect is removed, there 

is some effect of the mutation remaining, and thus this effect is then distributed over 

other SNP which are in LD with the mutation.  An alternative explanation would be 

that the prior used in BayesA results in poor mixing during Gibbs sampling, such that 

once the effect of the mutation is allocated to one SNP, the following SNP in the 

chain never receive an effect (ter Braak et al., 2005).  In this case the Bayesian 

LASSO results would indicate better mixing.  If the mutation itself were genotyped 

and included in the data, we could determine which of the explanations is correct. 

The distribution of effects in Bayes-BLUP were similar to those from Bayesian 

LASSO methods, with a total of 35 SNP with relative high effect in the DGAT1 and 

GHR regions, and no SNP with relative high effect in BTA-5 (Figure 2d). However, 

the magnitude of the highest SNP effects was more than ten-fold lower. 

The influence of the DGAT1 mutation was also evident on protein yield (Figure 3). 

Again, BayesA identified only a single SNP with a negative effect in this region, 

whereas Bayesian LASSO and Bayes-BLUP methods showed a similar pattern 

grouping a large number of SNPs with relatively large, but smaller than BayesA, 

effects on BTA-14. In general, for protein yield, SNP estimates of both Bayesian 

LASSO and Bayes-BLUP showed only a slight difference in terms of magnitude of 

SNP effects. 
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Figure 3. Absolute values of SNP effects in the real dataset for protein yield. 

 
Mean posterior estimates of SNP effects (y-axis) for the 39.048 SNP considered (x-
axis, displayed ordered by position from BTA-1 to BTA-29) obtained with BayesA (a), 
B-LASSOgamma (b), B-LASSObeta (c), and Bayes-BLUP (d).  
 

A difference in posterior estimates of the regularization hyper-parameter λ was 

observed between B-LASSOgamma and B-LASSObeta for both fat percentage and 

protein yield (Tables 3, 4). Higher penalization was observed in protein yield (128.72 

and 108.47, in B-LASSOgamma and B-LASSObeta, respectively) rather than in fat 

percentage (100.48 and 70.04 in the aforementioned methods). Furthermore, 

posterior estimates of λ were more variable (i.e. higher standard deviation of 

posterior estimates after burn-in) in protein yield than in fat percentage. These results 

could reflect the distribution of QTL structure for the traits. The conditional 

regularization hyper-parameter obtained for fat percentage, is likely to be driven by 

the few QTL of large effect that affect the trait, resulting in a reduced (and more 

stable) penalization parameter.  



Table 3. Accuracies, regression coefficients and regularization parameters obtained 
in the real dataset for fat percentage. 
 

 BayesA B-LASSOgamma B-LASSObeta Bayes-BLUP 

r(ABV,DGV)
(1) 0.75 0.71 0.71 0.59 

b(ABV,DGV)
(2) 0.943 1.110 1.108 1.395 

λ(3) - 100.48 (4.09) 70.04 (6.50) - 
(1)Accuracy in validation population as correlation between Australian breeding values and direct 
genomic breeding values.  
(2)Regression coefficients of Australian breeding values on direct genomic breeding values. 
(3)Posterior mean (and standard deviation) of the regularization parameter for both Bayesian-LASSO 
methods. 
 

 
Table 4. Accuracies, regression coefficients and regularization parameters obtained 
in the real dataset for protein yield. 
 

 BayesA B-LASSOgamma B-LASSObeta Bayes-BLUP 

r(ABV,DGV)
(1) 0.52 0.48 0.48 0.47 

b(ABV,DGV)
(2) 1.112 1.327 1.241 1.474 

λ(3) - 128.72 (15.59) 108.47 (11.57) - 
(1)Accuracy in validation population as correlation between Australian breeding values and direct 
genomic breeding values.  
(2)Regression coefficients of Australian breeding values on direct genomic breeding values. 
(3)Posterior mean (and standard deviation) of the regularization parameter for both Bayesian-LASSO 
methods. 
 

BayesA obtained the best accuracies of DGV (0.75 and 0.52 in fat percentage and 

protein yield, respectively; Tables 3, 4). Surprisingly, although showing a different 

distribution of SNP effects, accuracies obtained with both Bayesian LASSO methods 

were only 4% lower than those obtained in BayesA for both production traits. 

Regularization hyper-parameter differences in both Beta and Gamma hyper-prior 

structures did not influence accuracy results. In simulated data, de los Campos et al. 

(2009) noted that inferences on SNP effects were robust over a large range of values 

of the regularization hyper-parameters. For example, their results in simulated data 

showed nearly twofold differences of λ posterior estimates in models using Gamma 

and Beta prior distributions similar to those reported in this study, although obtaining 
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similar accuracies. Our results in the dairy data are in agreement with their 

observations. 

Bayes-BLUP obtained the lowest accuracies of DGV (-16% respect to BayesA and     

-12% respect to both Bayesian LASSO) and the highest bias for fat percentage. For 

protein yield, however, differences in terms of accuracy of DGV were greatly reduced 

(-5% with BayesA and -1% with B-LASSOgamma). 

 

DISCUSSION 

Bayesian LASSO methods have been successfully tested in real data for QTL 

mapping studies (Yi and Xu, 2008), to test genomic selection in wheat and mice (De 

los Campos et al., 2009) and to choose sub-sets of SNP for genomic predictions in 

livestock (Weigel et al., 2009). However, comparisons of performance of the 

Bayesian LASSO with other methodologies (i.e. BayesA) are only available in 

simulated data (Cleveland et al., 2010). These authors observed a tendency of the 

Bayesian LASSO methods to obtain SNP effects of lower magnitude than BayesA 

where the true QTL effect were moderate to large. The same trend was observed in 

our study. However, DGV accuracy results in both studies do not agree, most 

probably because of differences in the model and the simulated dataset used. In 

Cleveland et al. (2010) the Bayesian LASSO did not include a polygenic term, 

whereas in our study it was fitted to account for population sub-structure. 

Furthermore, Cleveland et al. (2010) analyzed the XIII QTLMAS workshop dataset 

(XIII QTLMAS webpage), which included nearly 1000 animals (structured in 20 full 

sib families) as training population and 453 markers, whereas the simulation used in 

this study (XII QTLMAS dataset) was based over nearly 5000 animals and 6000 

markers. In addition, the organizers of the XIII QTLMAS workshop provided 



longitudinal phenotypic data at five different time-points, whereas phenotypes used 

as dependent variables had to be predicted at a sixth time-point (meaning that 

different approaches to predict this values could lead to differences in results). 

Finally, the distribution of QTL effects in the two simulated datasets were very 

different, with 3 QTL of medium-large effect and 15 of low effects affecting the 

parameters used to determine the phenotypes provided in our dataset. Considering 

all these differences, results obtained in both studies are not comparable. In any 

case, both simulated datasets are likely to be far from the reality for complex traits, 

as the number of SNP and QTL was very limited compared to real data. In our case, 

for example, the XII QTLMAS dataset included four QTL explained more than 50% of 

the genetic variability of the trait. However, using the simulated data did allow us to 

study and compare the different performances of all methods in a simple dataset with 

a known distribution of QTL effects. In this scenario, BayesA more accurately 

estimated the effects of QTL, in fact obtaining best DGV accuracies and the lowest 

bias. On the other hand, both Bayesian LASSO methods and Bayes-BLUP resulted 

in very similar SNP estimates and DGV accuracy results. These results were 

markedly lower than those obtained with BayesA method, as expected in a trait 

highly affected by few QTL, as BayesA resulted in much less shrinkage of estimates 

of large to moderate QTL effects than either Bayes-BLUP or Bayesian LASSO.  

In this study we also analyzed milk fat percentage and protein yield in Australian 

Holstein Friesian dairy cattle, as there is some information about the distribution of 

QTL effects for these traits. For fat percentage, a mutation in DGAT1 explains up to 

30% of the variation of the trait (Grisart et al., 2002). Another interesting QTL for fat 

percentage is located on BTA-20, in the region of GHR (Viitala et al., 2006). 

However, no such large or moderate-effect QTL are present for protein yield, 
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although there is evidence that DGAT1 contributes to the negative correlation 

between these two traits (Thaller et al.,2003; Cole et al., 2009).Thus, known QTL 

regions with large effects in the traits analyzed, accuracies and bias results can be 

used to compare the performance of all methods tested in this study. All methods 

identified the DGAT1 and GHR regions, although with large differences in the 

magnitude of the effects. In addition, BayesA identified a third region with a high 

effect on BTA-5 for fat percentage. This SNP is positioned at 101,042,396bp, which 

is within a region where two QTL with large confidence intervals have been reported 

for milk and fat yield (CattleQTLdb; Viitala et al., 2003; Olsen et al 2002). 

Using the double exponential prior distribution in Bayesian LASSO resulted in a 

degree of shrinkage of SNP effect estimates that was much higher than BayesA. 

However, this method gave only 4% lower accuracies than BayesA for both fat 

percentage and protein yield. As previously reported, the normal prior distribution 

used in the Bayes-BLUP method gave the lowest DGV accuracy for fat percentage, 

compared to methods that allowed SNP effects to assume non-normal distributions 

(VanRaden et al., 2009; Hayes et al., 2009). Interestingly, estimates of SNP effects 

from the Bayesian LASSO for protein yield were very similar to Bayes-BLUP for 

protein yield, a trait not controlled by QTL with large effects (in fact, the accuracies of 

DGV were only 1% higher, for both B-LASSOgamma and B-LASSObeta). 

 

CONCLUSION 

An appealing feature of Bayesian LASSO methods as described by Park and Casella 

(2008) is that hyper parameters of the double exponential prior distribution of SNP 

effects are conditional to the data.This in contrast to methods such as BayesA where 

the leptokurtosis of the Student t prior must be specified.  However, with the limited 



amount of data in our study, the Bayesian LASSO methods resulted in strong 

shrinkage of SNP effect estimates, which in some cases was similar to what 

observed in Bayes-BLUP.  With large datasets there would be more information from 

the data to condition the hyper-parameters, which may result in more optimal 

shrinkage.  The Bayesian LASSO methods may be particularly useful with next 

generation SNP-chips (i.e. with many more SNP than analyzed here in much greater 

linkage disequilibrium with QTL) and larger datasets. 
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ABSTRACT 

The availability of panels of several thousand SNPs ordered on the genome has 

initiated the era of population genomics, that is the application of genomic approaches 

to population genetics. One application of population genomics is the investigation of 

patterns of diversity along the chromosomes in search for signatures left by past and 

recent selection. These signatures are locus specific and can be identified and 

distinguished from the genome wide effects caused by genetic drift and demographic 

events. In this paper we searched for outlier behavior within the 54,001 SNPs of the 

Illumina Beadchip Array assayed on 2682 bulls belonging to Italian Brown and four 

other Italian breeds, one dairy (Italian Friesian), one dual purpose (Italian Simmental), 

and two beef (Marchigiana and Piedmontese) investigated within the Italian SELMOL 

project on molecular genetics applied to animal breeding. Outlier values of the 

Fstgenetic differentiation index averaged along 9 markers sliding windows were 

searched in pairwise breed comparisons by a permutation strategy. A total of 8944 

sliding windows were significant in at least one of the four comparisons that included 

Italian Brown. 

Among these, 869 SNPs were significant in all three comparisons vs. dual purpose 

and beef breeds. These two subsets of 8944 and 869 SNPs were used in a genomic 

prediction exercise. The 749 Italian Brown genotyped bulls were divided in training 

(the 600 older bulls) and prediction (the 149 younger bulls) populations. In all cases 

DGVs, BayesA estimates of Milk Yield, Protein Percent, Udder Score and Total 

Economic Index, were not significantly higher than those obtained with a random 

marker subset of the same size. Selection signatures likely identify genomic regions 

subjected to historical selection that do not match with those in which genes controlling 

economic traits are segregating in modern populations. This hampers the use of the 



selection signature approach for identifying marker subsets useful in genomic 

selection. 

 

INTRODUCTION 

Population genomics is a term first proposed in a publication on human genetic 

diseases (Gulcher and Stefansson, 1998) to indicate the use of genomic technologies 

in population genetics studies. The availability of panels of many thousand and 

sometimes many hundred thousand SNPs ordered along the genome has recently 

marked a paradigm shift in the way populations can be investigated. One major 

advance is the ability to identify genomic regions that are under selection. These can 

be detected by comparing the distribution of allele frequencies at marker loci within or 

between populations or groups of populations, in search for markers significantly 

departing from neutral behavior. The comparison of the distribution of allele 

frequencies can be either direct or through different statistics, function of allelic or 

genotypic frequencies, as Fst(e.g. The Bovine HapMap Consortium et al., 2009) and 

linkage disequilibrium (e.g. Ennis, 2007). In addition, specific tests for detecting 

significant effects have been developed (e.g. Voight et al., 2006). The objectives of 

this study are i) to detect selection signatures in the Italian Brown cattle breed and ii) 

to evaluate the performance of markers under selection in the genomic prediction of 

genetic values of young bulls. To reach these goals we used SNP data produced 

within the Italian SELMOL project on the application of molecular genetics to animal 

breeding. 
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MATERIALS AND METHODS 

Animals 

A total of 2295 animals from 5 breeds were genotyped with the 54001 SNP 

markersincluded in the Illumina BovineSNP50 BeadChip: 775 Italian Brown (BRW), 

419Italian Friesian (FRI), 379 Piedmontese (PIM), 229 Marchigiana (MCG) and 493 

Italian Simmental (SIM). 

Genomic data 

Following clean up by filtering subjects with more than 5% missing SNPs and SNPs 

with more than 5% missing typing, the final dataset included 2266 individuals and 

45087 SNPs. Among these 43771 were located on the 29 autosomes and BTAX and 

1316 remained not anchored to the Btau 4.0 version of the bovine sequence 

assembly. These latter were excluded from further analyses. 

Fst 

Fstindex was calculated as Fst=1–Hs/Ht, where Hs is the Hardy-Weinberg equilibrium 

(HWE) heterozygosity within subdivisions, averaged across subpopulations and Htis 

the HWE heterozygosity for the total population, assuming no genetic differentiation 

among subpopulations. Fstvalues were averaged along sliding windows of nine 

consecutive SNPs, irrespectively on the relative distance between adjacent markers. 

Each chromosome contained a number of sliding windows equal to SWi=Ni-(Nsw-1), 

where SWiis the number of sliding windows on chromosome i, Niis the number of 

markers on chromosome i and Nsw is the number of markers included in the sliding 

window. In total, 43531 sliding windows were assembled. 

Permutations 

To estimate the 5% genome-wide significance thresholds of Fstvalues, markers were 

first randomly shuffled across the genome. Then, the distribution of average Fstvalue of 



groups of 9 randomly selected markers was computed. Finally the Fstvalues separating 

5% of the distribution were recorded. The highest values among permutation runs 

were used as Fstthresholds to evaluate the significance of Fstcalculated on markers 

ordered along chromosomes. 

Genomic prediction 

Genomic predictions of breeding values (DGVs) were obtained using a BayesA model 

(Meuwissenet al.,2001). A total of 20.000 runs of iteration were performed on each 

analysis. First 10.000 iterations were discarded as burn-in and no thinning interval was 

considered. The model included a polygenic term for taking the population structure 

into account. Accuracies were obtained as Pearson correlations between DGVs and 

breeding values obtained from progeny testing (EBVs).  

 

RESULTS 

Selection signatures 

Average Fstvalues of individual markers varied between 0.034+0.049 in BRW vs. PIM 

to 0.057+0.080 in BRW vs. FRI. Fstvalues of sliding windows had same average and 

smaller values of SD, spanning from 0.023 in BRW vs. PIM to 0.035 in BRW vs. FRI. 

Sliding windows spanned on average 483+263 Kb, with a maximum of 1382 Kb and a 

minimum of 4 Kb. In all comparisons involving Italian Brown 8944 sliding windows had 

Fstsignificantly higher than the 5% threshold established by the permutation approach. 

These sliding windows are not equally distributed across breed comparisons (Table 1). 

Surprisingly the comparison with Italian Friesian was the one in which the highest 

number of signatures was detected. A remarkable number of signatures was found 

consistent across all comparisons or across comparisons between BRW and the beef 

and dual purpose breeds. Selection signatures were not equally distributed across 
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chromosomes as well. Numbers ranged between 1076 on BTA6 and 4 on BTAX. 

 
Table 1. Selection signatures detected in the comparison between Italian Brown cattle 
and all four, three beef/dual purpose breeds and each single breed investigated. 

 
Comparison involving  

Italian Brown 
N. Sliding windows 

with signature 
(P<0.05) 

Piedmontese 1770 

Marchigiana 1795 

Italian Simmental 1728 

Italian Friesian 1999 

Three beef/dual 
purpose breeds 

869 

All four breeds 463 

 

Genomic predictions 

Table 2 summarizes the correlations between EBVs and DGVs calculated using 

subsets of markers carrying signatures of selection. 

 
Table 2. Correlation between EBVs and DGVs estimated by different marker subsets 
in Italian Brown cattle. 
 

Marker Subset 
(N markers) 

Milk 
Yield 

Protein 
% 

Udder 
Score 

ITE 

Sel. Sign. all 
(8944) 0.131 0.423 0.270 0.511 

Random (mean) 
(8944) 0.127 0.407 0.256 0.579 

Sel. Sign. Italian Brown specific 
(869) 0.010 0.105 0.017 0.245 

Random (mean)  
(869) 0.160 0.219 0.291 0.294 

 
 

 Triplicate random sets of markers having the same size of subsets investigated were 

also used as control. Using 8944 markers, correlations were slightly higher with 



markers under selection compared to the average of three runs with random subsets, 

but always lower than with the random subset giving the highest correlations. With the 

869 Italian Brown specific subset correlations were always lower than with random 

subsets. 

 

DISCUSSION 

In this paper we have scanned the genome of the Italian Brown dairy cattle searching 

for signatures of selection. Among possible indexes, we used Fstto study selection 

because it is robust, easy to calculate and widely used for this purpose (e.g. Barendse 

et al., 2009). Single marker Fstvalues varied substantially even among SNPs very 

close to each other and had standard deviations even higher than the means. 

Therefore, we adopted a sliding windows approach to avoid excessive noisiness (Weir 

et al., 2005). We decided to include in sliding windows an homogeneous number of 

markers rather than using a predetermined genome size. This to avoid having 

windows including only one or a few markers. The use of 9 markers was a 

subjectivechoice but also facilitates the comparison with published data using the 

same or similar sliding window size (e.g. Stella et al., 2010). On average the 43771 

windows spanned genomic regions of 500Kb and among these 1195 regions larger 

than 1Mb and 118 larger than 2Mb, providing a rather detailed survey of the cattle 

genome. Fstvalues were calculated in pair wise comparisons in which the dairy Italian 

Brownwas contrasted with the dairy Italian Friesian, the dual purpose Italian 

Simmental and the beef Piedmontese and Marchigiana cattle breeds. The highest 

average Fstacross markers was found in the BRW vs. FRI. This is likely the result of 

the combined effect of different origin, reduced gene flow and small effective 

population size of Italian Friesian compared to the beef and dual purpose breeds 
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investigated. However, ascertainment bias is possibly contributing to this divergence, 

given that a relevant number of SNPs included in the array have been developed to be 

highly informative in the Holstein population. A permutation approach permitted the 

identification of significant selection signatures in each pair wise comparison. In total 

8944 were underselection in at least one of the comparisons involving Italian Brown 

(Table 1). Contrary to expectation, the highest number of signatures was found in the 

contrast between the two dairy breeds, rather than between Italian Brown and the beef 

breeds. In pair wise comparisons signatures are due to selection in either breed or to 

divergent selection in both breeds. Markers having consistent outlier behavior in 

multiple comparisons involving the same breed are likely to be under selection in that 

same breed. Using this rationale, we have isolated 869 markers specific to selection in 

BRW. Markers under selection might include those associated to traits included in 

selection indexes and hence be informative for genomic prediction of genetic merit. 

However, DGV of three production traits estimated in young BRW bulls based on 

markers under selection were no better and often worse than those calculated from an 

equal number of random markers (Table 2). With the current approach only the 

historical and strongest effects of selection could be detected, probably on genes 

close to fixation and having either a qualitative or a major effect on traits that have 

been selected since Italian Brown breed formation. Therefore, most selection 

signatures likely correspond to genomic regions subjected to historical selection that 

do not match with those in which genes controlling economic traits are segregating in 

modern populations. The selection signature approach is useful in the reconstruction 

of the interesting process of breed formation, but seems to have little application in the 

choice of marker subsets that can be profitably used in genomic selection. 
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Genetic evaluation systems are in rapid development worldwide. In most countries, 

“traditional” breeding programs based on the recording of phenotypes and 

relationships between animals are currently being integrated and in the future might 

be replaced by the introduction of molecular information. This thesis stands in this 

transition period, therefore it covers research on both types of genetic evaluations. 

The study in Chapter II treats an important issue of “traditional” genetic evaluations, 

which is the assessment of international genetic evaluations in predicting domestic 

breeding values of yield related traits in Holstein bulls. This study showed that 

international genetic evaluations based on foreign daughters performance are 

reasonably accurate predictions of bulls’ national breeding values in most of the 

countries analyzed. Among Australia, Canada, France, Italy, the Netherlands and the 

United States of America, only Italy showed biased results. In the other countries, no 

strong bias was observed since realized correlations between national and 

international breeding values were generally similar to their expected values and 

close to 0.90. It is important to underline that the variations in methodologies in either 

national or international evaluations during the rather long time period considered 

(nearly 8 years) might have influenced the results obtained. For example, the Italian 

results were influenced by a relatively recent change in the predictive model for 

production traits (from a lactation to a random regression test day model), which 

heavily affected the correlations between breeding values before and after the 

change. In addition, the methods used either to edit the data (in order to obtain 

reliable breeding values) or to assign the foreign bull’s country of origin, might have 

in turn penalized more some of the countries than others (i.e. again the case of Italy 

that imports large proportions of the semen used in their farms). In spite of these 

unaccounted effects (and considering the relatively low number of bulls analyzed), 



results obtained in this study agreed well with previous studies that compared 

national and international evaluations, confirming that international genetic 

evaluations are accurate predictions of domestic breeding values in the countries 

analyzed. All the software produced in this project (and used for this study) was 

automated to allow running such analysis to all countries participant to the 

international genetic evaluation, just by updating a parameter file. Other major group 

traits (conformation, udder health, longevity, etc.) could be analyzed in the same 

way. 

In Chapter III, two SNP pre-selection methods based on single marker regression for 

the estimation of genomic breeding values were tested: Bonferroni correction of the 

significance threshold and permutation test. These methods were chosen by their 

simplicity of application, and were tested on the XII QTLMAS workshop (simulated) 

dataset. Although likely rather far from the reality of complex traits (i.e. only 6000 

SNP and a simulated QTL structure with six QTL explaining more than 50% of the 

genetic variance of the trait), this dataset has the advantage of providing a 

straightforward way to study the behavior of both pre-selection methods in the 

presence of QTL responsible for both high and low levels of variation.  

Bonferroni correction assumes independence of tests. As SNP data are actually 

(auto)-correlated because of Linkage Disequilibrium, the Bonferroni correction is a 

highly stringent method. On the other hand, a more relaxed threshold could be used, 

estimating an approximation of the number of independent “blocks” of SNP along the 

genome. When using the traditional approach of Bonferroni correction (i.e. 

considering independence of tests), markers selected obtained better DGV 

accuracies, compared to those selected by the permutation test, even if permutation 

test at 0.001 threshold obtained DGV accuracies only 2% less accurate than 
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Bonferroni correction. Although in this study only 1000 permutations per SNP were 

run, performing up to 1 million permutations per SNP and choosing the most 

stringent threshold possible (P < 1 x 10-06) only increased the accuracy by 2% 

(unpublished results). This was somehow expected, as the random reduction of 50% 

of the markers in the permuted dataset gave in turn only a slight decrease in DGV 

accuracies.  

When based upon simulated data, results should be carefully taken into account. The 

genetic structure of the simulated population, the QTL distribution, the simulated Ne, 

the heritability of the trait, etc., can heavily influence results. All methods, regardless 

of their complexity, have to be cross-validated in real data. At the time of this (and 

next) work, genotypic data were yet not available in Italy.  In any case, even if other 

more advanced approaches can be used to reduce dimensionality of predictors, the 

methods studied in this paper resulted in a simple and efficient first step in pre-

selecting SNP. However, it has to be noted that the methods applied in this and next 

two chapters were performed over a simulated dataset, with a reduced number of 

markers, and an unrealistic QTL distribution. Different simulated genetic structures 

may show different outcomes. For example, a Bonferroni correction over a larger 

dataset with only small-effect QTL might in turn give a reduced accuracy because of 

the low amount of markers retained due to the highly stringent threshold applied.   

In Chapter IV the same simulated data of the previous study were used to test an 

alternative approach to reduce the number of variable, a multivariate Principal 

Component Regression (PCR; Solberg et al., 2010). The novelty introduced in the 

method, previously proposed by Solberg and coauthors, was the introduction of 

eigenvalues as variance priors. 



Principal Component Regression is an appealing method as it avoids co-linearity 

between markers by creating a new set of variables that are independent from each 

other, avoiding at the same time the loss of information as every SNP is part of each 

principal component. Compared to other methods tested in this study, PCR using 

eigenvalues as variance priors obtained the best DGV accuracies and the lowest 

bias. Furthermore, it greatly reduced the computing time required to perform the 

estimation (the number of variables was reduced by more than 90%). In addition, it 

allowed the use of principal components to study the genetic structure of the 

population, by interpreting the orthogonal variables. For example, in this study, the 

second principal component was able to reflect the genetic variation among 

generations. As stated previously, the results obtained in a simulated dataset must 

be cross-validated, as they might be influenced by the simulation method defined by 

the researcher. In a recent study, this method was tested in three different Italian 

breeds (Holstein, Brown Swiss and Simmental), confirming good performances, 

although a low number of animals per breed (1000 or  less) was included in the 

analyses (unpublished data). 

The study in Chapter V compared 4 different methods for GS in a simulated and a 

real dataset. The main objective was to test the performance of the Bayesian 

LASSO, an appealing method that uses a conditional hyper-parameter of the prior 

distribution of SNP variances, differently from two other methods tested (BLUP and 

BayesA), which have fixed hyper-parameters. BayesA obtained the best results in 

both datasets. In real data, BayesA outperformed all the other methods, especially 

when analyzing fat percentage, a trait highly affected by a high-effect QTL (DGAT1). 

Using the double exponential prior distribution, Bayesian LASSO resulted in a degree 

of shrinkage of SNP effect estimates higher than BayesA. However, this method 
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gave only 3% lower accuracies than BayesA in both fat percentage and protein yield. 

The BLUP method obtained the worst results in both traits, although the difference 

with BayesA in terms of DGV accuracy was large in fat percentage (nearly -15%) but 

lower in protein yield (nearly -5%). However, our dataset included only ~1000 

animals that were further divided in validation and prediction datasets. For this 

reason, low heritability traits were not tested in the analysis, as the number of 

animals with phenotypes available for those traits was even lower, possibly further 

affecting the comparability of results across-traits.  

With the limited amount of data in our study, the Bayesian LASSO methods resulted 

in strong shrinkage of SNP effect estimates, which in some cases was similar to what 

observed in BLUP.  With large data sets there would be more information from the 

data to condition the hyper-parameters, which may result in more optimal shrinkage, 

thus, higher accuracies in predicting DGV for high and low heritability traits. 

In Chapter VI, selection signatures between Brown Swiss and other 4 dairy, beef or 

dual purpose Italian breeds were explored with the Fst method. Nearly 9000 

significant signals were found (P < 0.05). Contrary to expectation, the highest number 

of signatures were found in the contrast between the two dairy breeds (Brown Swiss 

and Holstein Friesian), rather than between Italian Brown and the beef breeds. This 

could be derived by combined effect of different origin, reduced gene flow and small 

effective population size of Italian Friesian compared to the other breeds 

investigated. Furthermore, ascertainment bias effect is not to be excluded. We used 

different subsets of markers in order to test if this information could be used as a 

method to reduce the number of variables in the prediction equations for GS. 

However, comparable or lower DGV accuracies were obtained when using these pre-

selected markers, rather than the same number of random markers. An association 



between markers carrying significant selection signatures and traits comprised in 

selection indexes was also tested, showing that only a small proportion of these 

markers were significantly associated to production traits. With the approach used 

only the strongest effects of selection could be detected, probably nearby genes 

having a major effect on traits that have been strongly selected since Italian Brown 

breed formation and today probably close to fixation. This limits the use of the 

selection signature approach to reconstruct the selection history of a breed rather 

than in detecting markers useful for genomic selection. 

Genomic information is the present (and future) not only for breeding but for research 

as well. In the last few years, increasing effort has been input to find signatures of 

selection in the genome, genomic regions affecting one or more traits, searching 

genes controlling  expression of interesting traits. Further investigation on other 

issues is ongoing as well. In animal breeding, traditional genetic evaluations have 

obtained good results for more than 50 years. Now, the introduction of molecular 

information is expected to further increase this progress. Many countries are 

introducing genome-enhanced evaluations in their breeding programs, although 

progeny test is not being abandoned, at least not yet. Possible future developments 

of this recent convergence between quantitative and molecular genetics can lead to 

bulls routinely sequenced (next-generation sequencing), in order to capture a greater 

amount of variability. However, a greater amount of genetic information is not 

enough. Genetic models will have to evolve in order to capture also the non-additive 

effects, as dominance deviations and/or epistatic interactions. In any case, the 

knowledge of the biological processes behind the expression of a phenotype will 

definitively increase, allowing a whole new series of research programs and 

analyses. 
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The results of this thesis indicate that the genetic gains expected from the analysis of 

simulated data can be obtained on real data. Still, further research is needed to 

optimize the use of genome-wide information and obtain the best possible estimates 

for all traits under selection. 
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