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Abstract 11 

 12 

Regional and sectoral economic decision and policy rely on accurate business statistics on sub-13 

national regions and business classes. Unfortunately, estimates based on business sample surveys 14 

can be imprecise due to the small sample sizes available for sub-populations. When this is the case, 15 

small area estimation methods can be helpful. We propose a small area technique for the estimation 16 

of totals for skewed target variables, which are typical of business data. We adopt a Bayesian 17 

approach to inference. We use a prior distribution for the random effects based on the idea of local 18 

shrinkage, which is particularly suitable when auxiliary variables with strong predictive power are 19 

available, another feature often displayed by business survey data. The proposed method is easily 20 

implemented using MCMC software. We discuss an application based on data from the Italian 21 

survey on Small and Medium Enterprises, where we estimate the total value added for subsets of a 22 

firm population obtained by cross-classifying industry, region and firm size. A simulation exercise 23 

explores the frequentist properties of the proposed estimator. 24 

 25 

Keywords: robust estimation, Log-Normal distribution, local shrinkage priors, regional studies, 26 

Variance Gamma distribution. 27 

 28 

 29 

1. Introduction 30 

Regional economic decisions and policies rely on accurate business information regarding 31 

sub-national regions and business categories. The relevance of regional estimates of business 32 

aggregates and the interest in regional disparities in terms firm competitiveness and productivity is 33 
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demonstrated by the growing number of scientific articles in this field (see Breinlich et al., 2014 for 1 

a review). 2 

Regional statistics are produced by the National Statistical Institutes, and governments use 3 

them to coherently allocate funds (for examples of this, see OECD, 2013, Eurostat, 2011, Eurostat, 4 

2015a). For instance, the (gross) value added, that is, the total value of new goods produced and 5 

services provided in a given time period, is routinely estimated at the national and sub-national 6 

levels. For the EU, Eurostat releases regional estimates of the value added at levels as detailed as 7 

the EU NUTS 3 regions (following the Nomenclature of Territorial Units for Statistics, Eurostat, 8 

2015b) and industries (NACE Rev. 2, 1 digit, following the Statistical classification of economic 9 

activities in the European Community). Sub-national estimates of value added would be even more 10 

informative if they were disaggregated both in terms of industry and firm size for the purpose of 11 

measuring the relative contribution of an industry and of certain firm-size classes to the regional 12 

economy. Unfortunately,  sample sizes of official business surveys are too small for the standard 13 

design-based estimators (known as “direct estimators”) to be sufficiently precise in small domains. 14 

This limitation can be overcome by model-based small area estimation methods. The small 15 

area estimation literature has until very recently focused largely on the analysis of social surveys, 16 

with estimation goals such as the poverty mapping (see Pfeffermann, 2014 and Pratesi, 2016 for a 17 

review) and few applications for business statistics. In the last few years, awareness of this field of 18 

application has grown (Burgard et al. 2014; Ferrante and Trivisano, 2010; Militino et al., 2015), as 19 

well as the availability of reliable administrative archives for firms that can be used to obtain 20 

auxiliary information.  21 

Small area models may be broadly classified into area level and unit level. In area level 22 

models, survey weighted (direct) estimates obtained for each domain are related with auxiliary 23 

information at the same level of population disaggregation. In unit level models, the target variables 24 

and auxiliary variables are related at the statistical unit level. Area level models straightforwardly 25 

incorporate information on the sampling design and non-response re-weighting adjustments, leading 26 

to design-consistent estimators whenever direct estimators are design-consistent (Rao, 2003, p. 27 

117). Design consistency is a general purpose form of protection against model failures, as it 28 

guarantees that, at least for large domains, estimates make sense even if the assumed model 29 

completely fails. Area level modelling is less demanding in terms of data disclosure and overcomes 30 

potential problems of record linkage between the survey sample and the administrative archive. For 31 

these reasons, area level models will be considered in this paper. 32 

 Many business survey variables are positive and positively skewed (Rivière, 2002), so 33 

normality is not a tenable assumption in most of the cases.  Log transformation can then be 34 
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introduced in order to apply normal linear mixed models on the log scale. Predictions on the 1 

original data scale require back-transformation that is a potential source of bias. Positive skewness 2 

of survey variables may cause estimators of means and totals to have non-normal (positively 3 

skewed) sampling distributions, when calculated on small samples. Literature on area level 4 

modelling on the log scale include Fay and Herriot (1979) and Slud and Maiti (2006) that both 5 

consider an empirical Bayes approach to inference.  6 

In this paper we propose a full Bayes approach, accounting for all sources of uncertainty, 7 

effectively dealing with back-transformation bias and implementable with widely available MCMC 8 

software. 9 

When predicting means or totals for business survey variables, strong covariates from 10 

administrative archives are often available. For instance, in our application, aimed at predicting 11 

gross value added at the domain level, we can exploit the knowledge of turnover for each firm in 12 

the population. Area level totals of turnover are strongly correlated with those of value added. 13 

Nonetheless, a minority of the areas will typically deviate from the relationship that characterize 14 

most of the others. If we think of modelling in terms of mixed models, we have that random effects 15 

would be needed for a subset of the areas (Datta, 2011) or alternatively that there are subsets of 16 

random effects characterized by different variances.  The specification of spike-and-slab priors can 17 

be useful in this case (Datta and Mandal, 2015).  18 

This paper contributes to the small area literature by proposing an approach based on local 19 

shrinkage priors for the random effects (Frühwirth-Schnatter and Wagner,  2010). where spike-and-20 

slab priors are replaced by continuous gamma scale mixture of normal distributions (Griffin and 21 

Brown, 2010) that lead to marginal variance-gamma distributions for the random effects. This 22 

flexible modelling of random effects lead to predictions close to those we can obtain  using standard 23 

priors for non-outlying areas, and to less biased predictors for the areas that can be labelled as 24 

outliers. 25 

 The strategy we propose may be applied to estimating business totals based on any 26 

positively skewed variables: value added, turnover, labor cost, and income from sales and services 27 

as well as the components of these main aggregates. We discuss the proposed model with reference 28 

to real survey data and, more specifically, to the estimation of the total value added, giving 29 

consideration to the fact that the value added is the input for calculating important economic 30 

aggregates and performance indicators. We address the sub-populations of Italian small- and 31 

medium-sized manufacturing firms classified according to sub-national region, industry and firm-32 

size classes. We limit our attention to small and medium enterprises, that is, on firms with less than 33 

100 employees because in general, as well as in Italy, larger firms are censused, and small area 34 
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estimation is therefore not needed. We use data on the Small and Medium Enterprises sample 1 

survey (1-99 employees) conducted by the Italian National Statistical Institute (ISTAT), which 2 

provided us with this information within the framework of the BLUE-ETS project; this project has 3 

been financially supported by the EU Commission within the 7th Framework Programme.  4 

The paper is organized as follows. Model specification is described in section 2. Specifically 5 

in section 2.1 closed formulas for posterior means conditionally on variance components are 6 

illustrated as posterior means are proposed as point predictors. In section 3, we apply our 7 

methodology on real survey data,. We motivate the recourse to log normal likelihood for the direct 8 

estimators. In section 4, we introduce a simulation exercise to explore the frequentist properties of 9 

the proposed predictor in comparison with some alternatives, including the estimator of Slud and 10 

Maiti (2006). Section 5 presents the study’s conclusions. 11 

 12 

 13 

 14 

2. Small Area Estimation Model 15 

Let Y be the target variable, which we assume positive with a positively skewed distribution. 16 

Assume that Y is defined on a population U of N units, partitioned into a set of m non-overlapping 17 

domains of size 
dN  ( 1,...,d m= ;

1=
=∑

m

dd
N N ). A random sample of overall size n is taken using a 18 

possibly complex design: samples of sizes dn  are drawn from each domain. The small area nature 19 

of the problem lies in 
dn  being too small to allow for reliable inference for most of the domains. 20 

We assume that individual weights 
djw  1,...,

d
j n=  are attached to responses 

djy  to account for 21 

unequal selection probabilities and possibly other selection adjustments. 22 

The normal distribution is not suitable to describe either the distribution of Y in the 23 

population nor the sampling distribution of the domain totals’ direct estimators 
1

ˆ
=

=∑ dn

d dj djj
Y w y . 24 

Although these are linear combinations of individual observations and can be assumed to be 25 

approximately normally distributed in large samples, in samples of small size, the sum of a few 26 

positively skewed variables remains positively skewed. We assume that the total direct estimators 27 

are log-normally distributed:  28 

[ ] [ ]( )ˆ , ,d d d d dY V LN Vθ θ∼        [1] 29 

where [ ]i  is used to denote a parametrization in terms of mean and variance of the distribution. 30 

Exact or approximate design-unbiasedeness of totals’ estimators is typical in survey sampling. The 31 

distributional assumption in [1] can be motivated directly assuming the log-normality of Y. Log-32 
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normal approximations of sums of independent log-normals are justified by several authors (e.g., 1 

Fenton, 1960; Cobb et al., 2012). Moreover, Mazmanyan et al. (2009) proposed a log-normal 2 

central limit theorem for the approximation of the sum of positively skewed random variables, 3 

although not necessarily log-normal. Eventually, the assumption of normality on the log scale when 4 

dealing with mean or total estimators of skewed variables is common in the small area literature (as 5 

in Fay and Herriot, 1979). 6 

On the log-scale, a specification consistent with the sampling model [1] is given by: 7 

( ) ( )ˆlog | , 2,d d d d d dY Nη δ η δ δ−∼       [2] 8 

where ( )ln
d d

η θ=  and ( ){ }ˆlog
d d

Var Yδ = . ( ){ }ˆlog 2
d d d

E Y η δ= −  is in line with assuming the 9 

availability of an unbiased estimator on the original scale of the data: if ( )ˆ
d dE Y θ= , then 10 

( ){ } ( )ˆlog logd dE Y θ< . Note that { } { }exp 2 exp 1d d d dV θ δ δ= + −    will depend on both parameters 11 

of the lognormal distribution.  12 

In the small area literature, variances associated with direct estimators are usually treated as 13 

known constants. In practice, estimates obtained with methods such as linearization or bootstrap are 14 

smoothed using a model involving unknown parameters. In line with the literature on area-level 15 

models, we will assume that variances on the log-scale are known and denote them as ˆ
d

δ . 16 

We assume a multiplicative linking model for 
d

θ  that links the outcome parameter to the 17 

auxiliary information in order to improve the direct estimators: 18 

( )exp t

d d duθ = +x β         [3] 19 

The p-row vector t

d
x contains the covariates known for domain d from external sources, and 

d
u  is a 20 

random intercept associated to 
d

θ . Let us assume that ( )0,
d d

u N ψ∼ , which implies 21 

( ),θ ψ∼
t

d d dLN x β          [4] 22 

or, equivalently, ( ),η ψ∼
t

d d dN x β . We denote the model defined by sampling model [1] and linking 23 

[4] as the LN-LN model.  24 

 25 

 26 

2.1 Analysis conditional on the variance components 27 

To analyze the model defined by [1] and [4], note first that, assuming δ
d

 as known 28 

ˆ( )
d d

δ δ=  we can re-write [2] as ( )ˆˆ ,d d dZ N η δ∼ , where 
1 ˆˆ ˆlog
2

d d d
Z Y δ= + . We can use standard 29 
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results from the analysis of linear mixed models (see Rao 2003, chapter 5) to prove that, 1 

conditionally on the regression coefficients β  and the variances 
d

ψ : 2 

( )1

1,d
ˆ| , , ,

B

d d ddata N gη ψ ηβ ∼   3 

where ( )1 ˆˆB t t

d d d d dZη γ= + −x β x β , 
1,d

ˆ
d d

g γ δ= and 
ˆ

d
d

d d

ψ
γ

ψ δ
=

+
. Note that, as a function of the 4 

shifted direct estimates ˆ
d

Z , 1ˆB

dη  is a convex linear combination of a direct ( ˆ
d

Z ) and a synthetic 5 

component ( t

d
x β ), known as the linear composite estimator in the small area literature. If we 6 

assume quadratic loss and define ( )1ˆ | , ,
B

d d dE dataθ θ ψ= β  as the point predictor for 
d

θ , we have 7 

that 8 

( )

( ){ }

1 1ˆ ˆˆexp
2

ˆˆ     exp log

B t t

d d d d d d d

t t

d d d d d d

Z

Y

θ γ γ δ

γ γ δ

 
= + − + 

 

= + − +

x β x β

x β x β

    [5] 9 

This predictor is the product between ( )1ˆexp
B

dη  and a factor that corrects for the main bias term in 10 

the back-transformation; it is in line with formula (4) of Slud and Maiti (2006).  11 

It can also be shown that  12 

( ) ( )1 1ˆ exp
2

B t

d d d M d
E Eθ ψ θ

 
= + = 

 
x β       [6] 13 

where ( )1ˆB

dE θ  is the expectation taken with respect to both linking and sampling models, while 14 

with ( )ME i , we denote the expectation with respect to linking model [4]. This latter result means 15 

that 1ˆB

d
θ  is an unbiased predictor of 

d
θ  in the same sense that BLUP predictors are unbiased: the 16 

unconditional frequentist expectation of the estimator and the expectation of the estimand under the 17 

linking model are the same. A proof of [6] can be found in Appendix 1. 18 

If we remove the conditioning on β  and assume a non-informative flat prior on β , i.e., 19 

( )p ∝β 1 , then we have that 20 

( )2

1,d 2,d
ˆ| , ,B

d d ddata N g gη ψ η +∼  21 

where ( )2 ˆ ˆˆˆB t t

d d gls d d d glsZη γ= + −x β x β , 

1

1 1ˆ ˆlog
ˆ ˆ

t t

gls d d d d

d dd d d d

Y
ψ δ ψ δ

−
 

=   + + 
∑ ∑β x x x , 22 

( )
1

2

2,d

1
1

ˆ
t t

d d d d d

d d d

g γ
ψ δ

−
 

= −   + 
∑x x x x . As a consequence, the point predictor under quadratic 23 

loss will be given by 24 
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( ) ( )2

1,d 2,d

1ˆ ˆ ˆˆexp
2

B t t

d d gls d d d gls
Z g gθ γ

 
= + − + + 

 
x β x β    [7] 1 

(see Appendix 1 for a proof). Unlike the empirical Bayes approach advocated by Slud and Maiti 2 

(2006), who plug estimates of unknown parameters into [7], a full Bayes approach accounts for the 3 

effect that the extra-variation implied by the estimation of β  has on the point predictor; in fact, the 4 

expectation of a log-normal variable depends on both the expectation and variance on the log scale.  5 

To fully account for all sources of uncertainty, we should remove the conditioning on the 6 

variance components 
d

ψ ; unfortunately, for sensible choices of the prior, this leads to posterior 7 

distributions for 
d

θ  that cannot be written in closed form and should therefore be explored by 8 

means of computational algorithms such as the Markov Chain Monte Carlo considered in this 9 

paper.  10 

 11 

 12 

2.2 The distribution for the random effects and specification of hyperpriors  13 

The main difference between [4] and the linking model adopted by most of the small area 14 

literature on Fay-Herriot type models (Jiang and Lahiri, 2005; Pfeffermann, 2014) is that the 15 

variances associated with random intercepts are in [4] domain-specific, implying local shrinkage 16 

instead of the ordinary global shrinkage that we would have had assuming 
d

ψ ψ= , d∀  . In a 17 

different context, the specification of a distribution for random intercept based on local shrinkage is 18 

discussed in Frühwirth-Schnatter and Wagner (2010). 19 

Datta et al. (2011) note that in the presence of good covariates, the variability of the small 20 

area parameters may be accounted for by a synthetic estimator, and the inclusion of a random effect 21 

term may be unnecessary. When random effects are needed for a subset of the areas, the 22 

specification of spike-and-slab priors can be useful (see Datta and Mandal, 2015). Spike-and-slab 23 

priors amount to assuming that random intercepts are sampled from a mixture of two normal 24 

distributions. 25 

When analyzing business data, it is quite likely that auxiliary variables with strong 26 

predictive power are available. When this is the case, the bulk of the direct estimates will be well 27 

fitted by the synthetic model (without random intercepts), so the associated 
d

ψ  are likely to be 28 

small, with a minority of areas that require larger area-specific intercepts (and thereby larger 
d

ψ ).  29 

Our specification for the distribution of 
d

u , 1,...,d m=  is based on infinite mixtures of 30 

normal distributions. Following Griffin and Brown (2010), our specification uses Gamma mixtures 31 

of normal distributions. Specifically, we assume:  32 
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( )0,
ind

d d d
u Nψ ψ∼          [8] 1 

( ), ,
ind

d a Gamma aψ λ λ∼         [9] 2 

( )0 0 0 0, ,b c Gamma b cλ ∼         [10] 3 

This leads to spiked priors for the random effects that at the same time have tails that are 4 

heavier than those of the normal distribution. Griffin and Brown (2010) observe that for small 5 

values of the shape parameter a, the prior specification [8]-[10] leads to a marginal prior 6 

distribution for 
d

u  that mimics the behavior of spike-and-slab priors based on finite mixtures. This 7 

infinite mixture specification is computationally easier to deal with.  8 

Other choices for the mixing distribution such as the popular Inverse Gamma would lead to 9 

platikurtic distributions with heavy tails, such as those in the t family; this contrasts with the idea of 10 

severe shrinkage for most of the areas, which is consistent with a large probability mass close to 0.  11 

Specifically, prior specification [8]-[10] implies that ,
d

u a λ  follows a Variance Gamma 12 

distribution, i.e., 13 

( ),~ 2 ,0,0d Vu aG λ  14 

(see Bibby and Sørensen, 2003 for more details on this distribution). This marginal prior 15 

distribution is symmetric and has expectation ( ) 0
d

E u =  and variance ( ) /
d

V u a λ= . It belongs to 16 

the family of generalized hyperbolic distribution (Barndorff-Nielsen, 1977). The conjugate 17 

hierarchy in [8]-[10] also facilitates MCMC sampling.  18 

In line with Frühwirth-Schnatter and Wagner (2010), we set the shape parameter a to a fixed 19 

(small) value, while we specify a prior on the global parameter λ . As far as a is concerned, we 20 

focus on two choices, 1a = , 0.5a = .  21 

The choice 1a =  implies that 
d

u is a priori distributed as a double-exponential or Laplace, 22 

which, combined with the normal prior conditional on 
d

ψ , recalls the Bayesian lasso of Park and 23 

Casella (2008). 24 

 25 

Page 8 of 52

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

9 

 

 1 

Figure 1: density (left) and log-density (right) functions of the Variance Gamma distribution. 2 

( )2 ,0, ,0G aV λ  for 1λ =  and various values of a. 3 

 4 

The case 0.5a =  represents a more peaked prior distribution and encourages more shrinkage 5 

towards 0 of small random intercepts (see Figure 1). Moreover, it leads to a half-t marginal prior on 6 

dψ . The half-t prior for standard deviations is discussed in Gelman (2006) and recommended 7 

whenever it makes sense to put a sizeable mass of prior probability close to 0. It can be shown that 8 

once { }d
ψ=ψ  and { }dψ=τ , 1,...,d m= , are defined, under prior [8]-[10] and 0.5a = , 9 

0
0 0 0

0

2
| , 0, , 2

b
b c Mht b

c

 
 
 

τ I∼ .         [11] 10 

With ( )Mht i  we denote the multivariate distribution (with support n+
ℝ ) that is obtained from a 11 

multivariate t distribution applying the absolute value transformation on each component of the 12 

random variable. We can also prove that each prior 0 0| ,d b cψ  is a (univariate) half-t and the priors 13 

for two different variance components are uncorrelated, i.e. ( )* 0 0, | , 0
d d

Co bv cψ ψ =  whenever 14 

*
d d≠ . See appendix 1 for a proof of [11] and the other statements.  15 

As for the prior specification of the remaining parameters, diffuse independent normal priors 16 

can be specified for the components of β . We can set 
0

2b = , which implies that ( )1

0E cλ− = . This 17 

helps to interpret 
0c  as a scaling constant for the random effects variance ( ) /

d
V u a λ= . The choice 18 

of 
0

c  depends on the scale for the random effects in the problem being considered. According to 19 
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[11], the parameter 
0b  can be interpreted in terms of degrees of freedom of the marginal prior 1 

( ) ,p τ  so the choice of 
0

2b =  is in line with selecting half-t priors with a very small number of 2 

degrees of freedom (Gelman, 2006).  3 

 4 

 5 

3. An Application for Italian Small and Medium Enterprise Survey Data 6 

In this section, we illustrate the methodology we discussed using real survey data. We use 7 

data on the Small and Medium Enterprises (SME) sample survey, wave 2008, conducted by the 8 

Italian National Statistical Institute (ISTAT). Specifically, we target the estimation of the total value 9 

added (VA) for small domains of the population of Italian small and medium manufacturing firms 10 

(less than 100 employees). The domains we focus on are smaller than those for which ISTAT 11 

provides reliable estimates. Specifically, our domains are defined by cross-classifying: the 20 Italian 12 

NUTS 2 administrative regions, the economic industrial sector (NACE Rev. 2, 2 digit, 22 13 

industries) and firm size (4 classes: less than 10 employees, 10 to 19 employees, 20 to 49 14 

employees, 50 to 99 employees). As anticipated, for domains as small as those that we target, 15 

standard design-based estimators are characterized by unacceptably large variances. 16 

 17 

3.1 Direct estimators and sampling model 18 

The SME survey sampling design is stratified and strata are defined by cross-classifying 19 

NACE Rev. 2 (4 digits) Italian administrative regions and company size in the four classes defined 20 

above. The domains we are interested in are planned because they are unions of sampling strata. 21 

Let ˆ
ijrY  be the direct estimator of the parameter θ

ijr
, where i indexes the economic activity 22 

( 1,..., 22)i = , j the size classes ( 1,...,4j = ) and r the regions ( 1,..., 20r = ). The potential number of 23 

1760 domains falls to 1165, as some of the populations obtained by cross-classification are empty 24 

and some very small. We excluded all the domains characterized by a sampling rate over 0.75.  25 

The actual sample sizes for the domains we consider ranges from 2 to 184, with a median of 26 

8, a mean of 13.5 and .75 and .9 quantiles equal to 16 and 30 respectively. 27 

Direct estimates can be obtained using the calibration estimator that ISTAT adopts for the 28 

SME survey. Calibration estimators can be written as weighted sums. ISTAT’s published weights 29 

are obtained by multiplying base weights (the inverse of the inclusion probabilities) by factors 30 

adjusting for non-response and calibrating to known totals. Let the estimated total be denoted as 31 

, ,
ˆ

ijr

ijr ijr k ijr k

k d

Y w y
∈

= ∑ , where ,ijr k
y  is the value added of the k-th firm in sector i, size class j, region r. 32 
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We assume that ( )ˆ
ijr ijr

E Y θ=  with ( )ˆ
ijr ijr

Var Y V= . We estimate 
ijr

V  using linearization-based 1 

variance estimators and denote these estimates as ˆ
ijrV . 2 

In our sampling model we assume log-normality according to [1]. To justify this assumption 3 

for our data we proceed in two steps: first, we check whether log-normality is a sensible assumption 4 

for domain specific sample data, then we use a simple simulation exercise to assess whether log-5 

normality is to be preferred to normality as the sampling distribution  of total estimators given the 6 

sample sizes we have in our analysis. 7 

For all the domains with 3
ijr

n ≥ , we tested normality and log-normality using the Shapiro-8 

Wilk test. Results are reported in table 1 below.  In reporting the results we consider separately the 9 

smallest 90% of the domains 30
ijr

n ≤  and the largest 10%. In the smaller domains, for which the 10 

test is relatively less powerful, both normality and log-normality tend to be not rejected, but 11 

normality fails clearly more often. In larger domains, when the test has more power, normality is 12 

rejected in the large majority of cases, while log-normality is accepted in more than 70% of the 13 

cases. 14 

 15 

Table 1: Checking normality and log-normality within domain-specific samples using Shapiro-Wilk 16 

test. Percentage of non-rejections at the 0.01  significance level 17 

ijrn   normality log-normality 

30≤   0.733 0.959 

30>   0.087 0.713 

overall 0.672 0.943 

 18 

From table 1 we conclude that log-normality is a sensible assumption for the distribution of 19 

VA within domains. We actually assume that direct estimators are log-normally distributed 20 

according to the arguments illustrated in previous section. To check this, we consider a set of log-21 

normal populations: ( ),i i iY LN µ σɶ ɶ∼ , 1,...,i L=  where 77L =  is the number of domains with 22 

30
ijr

n >  for which log-normality was not rejected and  ,
i i

µ σɶ ɶ  are the parameters according to 23 

maximum likelihood for these domains. For each of these populations we generated simple random 24 

samples of sizes 10,000R =  for each of the following sample sizes: 5,10,15, 20
i

n = . Note that 20 25 

represent the 0.8 quantile of the sample size distribution in our application.  26 

We evaluate how far is the empirical sampling distribution of the sample mean from the 27 

normal and the log-normal distributions in terms of Kolmogorov-Smirnov distance averaging over 28 
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the L  populations. In fact, formal hypothesis testing of distributional assumptions with a sample of 1 

replicates as large as 10,000 would lead to rejections even in presence of negligible departures from 2 

the null. Results, summarized in table 2, show how log-normality is to be preferred to normality for 3 

all sample sizes. We can also note that as the sample size grows larger, the difference between the 4 

two distances decreases. 5 

 6 

Table 2: Kolmogorov-Smirnov distances between the Monte Carlo ( 10,000R =  ) distribution of the 7 

sample mean and two reference distributions, for various sample sizes.  8 

 sample size (
i

n )  

Reference distribution 5 10 15 20 

Log-normal 0.012 0.014 0.015 0.015 

Normal 0.119 0.097 0.081 0.073 

 9 

  10 

In order to obtain more stable direct variance estimates, we smooth them through the 11 

Generalized Variance Function approach (Wolter, 1986). To begin with, we consider that under the 12 

log-normality assumption introduced in [1], we have that  13 

( ){ } ( ){ }2ˆ ˆlog log 1
ijr ijr

Var Y CV Y= + .      [12] 14 

Thus, the smoothing can be conducted on ( )2

2

ˆ
ˆ

ˆ
ijr

ijr

ijr

V
CV Y

Y
= . After careful explorative analysis, we 15 

assume that ( )2 ˆ
ijrCV Y  varies with the size class (j) but not with economic activity (i) or with 16 

regions (r). This leads to the following smoothing equation for the direct estimate of 
ijr

V , ˆ
ijr

V : 17 

2ˆ
ˆ 1

ijr ijr

ijr j ijr

ijr ijr

Y n
V

n N
φ υ

 
= − +  

 
       [13] 18 

with ( ) 0υ =ijrE , ( )ijrV υ κ=  and where a finite population correction factor is also considered to 19 

account for varying and occasionally non-negligible sample rates. The parameter φ
j

 can be 20 

interpreted as the smoothed squared coefficient of variation multiplied for the size of the domain 21 

ijr
n . The domain sample size 

ijr
n  in the denominator of [13] allows for the decrease in the 22 

coefficient of variation when the sample size increases. Smoothed squared estimated coefficient of 23 

variations are given by ( )2

,
ˆ 1

j ijr

smooth ijr k

ijr ijr

n
CV Y

n N

φ  
= −  

 
; the first, second and third quartiles of 24 
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( )2

,
ˆ

smooth ijh kCV Y  estimated on our data set are 31%, 45% and 65%, respectively. These results 1 

confirm the need to adopt a small area model approach. 2 

 We can then adapt the sampling model [1] to our problem as 3 

1ˆ ˆ ˆˆlog , ,
2

ijr ijr ijr ijr ijr ijr
Y Nη δ η δ δ

 
− 

 
∼        [14] 4 

where ( )logijr ijrη θ=  and ( ){ }2ˆ ˆlog 1
ijr smooth ijr

CV Yδ = +  according to [12]. 5 

 6 

 7 

3.2 Auxiliary information and linking model 8 

As an auxiliary variable, the log total turnover in each domain is available. This auxiliary 9 

information refers to the Italian firms’ population and it is provided by the Italian Statistical 10 

Register of Active Enterprises-ASIA archive. The predictive power of this covariate is quite strong: 11 

the squared correlation coefficient is equal to 0.87 when calculated on variables on their original 12 

scale, and it is equal to 0.79 for the log transformations. In the original scale the high correlation 13 

level is influenced by few observations with a larger scale with respect to most of the others. 14 

We assume the multiplicative linking model [4] for 
ijrθ  to link the outcome parameter to the 15 

auxiliary information 16 

( )0 1,ijr ijr ijrN xη β β ψ+∼        [15] 17 

where 
ijrx is the log-total turnover for the domain in question. Equivalently, we can write 18 

0 1ijr ijr ijr
ltt uη β β= + + . The prior for the vector of domain-specific random intercepts ijru  is 19 

specified according to [8]-[10]. As for the prior specifications not already discussed, we set 20 

( )5

0 0,10Nβ ∼ , ( )5

1 0,10Nβ ∼ , 
0 2b =  ,

0 1c = . We chose these values as they provide a reasonable 21 

scale for the random effects variance in our problem. 22 

We also consider the LN-LN model with an alternative choice for the prior distribution on 23 

ijr
u : 24 

( )2 20,
ijr

u Nσ σ∼ , ( )2 ,InverseGamma c dσ ∼      [16] 25 

This prior specification, which implements global shrinkage, can be considered as a 26 

benchmark for evaluating the effects of prior specification approximating spike-and-slab introduced 27 

in the previous section, and it represents a routine choice in many applications. We set 0.01c = , 28 

0.01d = . 29 

 30 
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 1 

3.3 Markov Chain Monte Carlo computational issues 2 

Parameter estimates are obtained by summarizing the posterior distributions approximated 3 

by the output of Markov Chain Monte Carlo (MCMC) integration via the Gibbs sampling 4 

algorithm. By assuming a quadratic loss, the posterior means are adopted as estimates of the area 5 

specific parameters. Posterior variances are used as a measure of uncertainty. To carefully assess 6 

the convergence, we run three parallel chains of 25,000 runs each, the starting point being drawn 7 

from an over-dispersed distribution. The convergence of the Gibbs sampler was monitored by visual 8 

inspection of the chains’ plots and autocorrelation diagrams and by means of the potential scale 9 

reduction known as the Gelman-Rubin statistic (Carlin and Louis, 2000, ch. 5). Both models 10 

displayed fast convergence; we discarded the first 5,000 iterations from each chain. To obtain 11 

estimates, we used the OpenBugs software package, which can be downloaded for free on the 12 

internet and it is open source.  13 

 14 

 15 

3.4 Comparing alternative models 16 

In order to choose among competing models, we compute the Deviance Information 17 

Criterion (DIC) and the logarithm of the pseudo-marginal likelihood (LPLM, Ibrahim et al., 2001). 18 

A model is preferred if it displays a lower DIC value. Table 3 reports the DIC results for the whole 19 

set of small area models estimated. DIC values show that, in line with expectations, the log-20 

normality assumption at the sampling level performs better in terms of DIC with respect to the 21 

model assuming normality. The ordering of alternative models using LPLM is consistent with that 22 

obtained using the DIC. The adoption of the Variance Gamma for the random intercepts 
ijr

u  leads 23 

to a further reduction in DIC with respect to the more common specification [16].  24 

 25 

Table 3: Comparison of alternative assumptions on the distributions of the random effects 26 

Shrinkage 
Prior on random 

intercepts 
ijr

u  
a  DIC LPLM median CVR 

global [16] - 15340 -7846 0.391 

local [10]-[12] 1 15230 -7808 0.421 

local [10]-[12] 0.5 15220 -7798 0.455 

 27 

 28 
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We also compare the median reduction of the coefficient of variation of estimators with 1 

respect to the direct ones, defined as ( ).h

kmedian CVR  h

kCVR  is defined as 1h h DIR

k k kCVR CV CV= − , 2 

where the h

k
CV  is the coefficient of variation calculated on the posterior of 

k
θ  (k being a generic 3 

index for the areas) under model h, while DIR

k
CV  is the coefficient of variation of the direct 4 

estimators calculated from the randomization distribution. 5 

The posterior predictive approach can be used to assess the fit of a model (Gelman et al., 6 

1996). We consider a discrepancy measure suggested in the context of small area estimation byYou 7 

and Rao (2002) and considered also in Fabrizi and Trivisano (2016): 8 

( )*ˆdis = <ijr ijr ijrP Y Y   9 

where *

ijr
Y  is generated from the posterior predictive distribution. The discrepancy measure is aimed 10 

at checking whether, for each area, the posterior predictive distribution is centered around the direct 11 

estimate. Values of dis
ijr

 far from 0 and 1 would provide evidence of systematic under or over 12 

estimation. For the log-normal model endowed with priors [10]-[12] and 0.5a =  (i.e. the best 13 

model in terms of DIC and LPLM), we have that the average of the discrepancy measure over the 14 

set of areas is 0.499 with 0.25 and 0.75 quantiles equal 0.32 and 0.68 respectively, which means an 15 

adequate fit. Less than 10% of the areas shows dis
ijr

 out of the range (0.2, 0.8). Similar summaries 16 

can be obtained for the other models considered in table 3. 17 

Results on ( )h

kmedian CVR , reported in table 3, highlight that the whole set of considered 18 

small area estimators considerably reduce the variability of direct estimators, which is consistent 19 

with the availability of a strongly predictive auxiliary variable. Nonetheless, even if exploiting the 20 

same auxiliary information, the models perform differently, as the prior specification has a non-21 

negligible impact. Prior specifications mimicking the spike and slab behavior allow for a further 22 

gain in efficiency with respect to priors ordinarily used in this type of analysis. 23 

 24 
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 1 

Figure 2: Left panel: kernel densities of ( )|ijrE u data  over the set of small areas under Normal and 2 

VG priors. Right panel: ( )|ijrE u data  under Normal prior vs ( )|ijrE u data  under VG prior. For VG 3 

priors, 0.5a =  is assumed. 4 

 5 

To evaluate the improvements allowed by the model-based proposed predictor we can 6 

compare the number of small areas with values of the coefficient of variation CV less than 16.6%, 7 

between 16.6% and 33.3% and over 33.3% for the direct and the model-based predictor. These 8 

thresholds for CV were suggested by Statistics Canada (2007) to provide quality level guidelines for 9 

publishing small area estimates; those with a coefficient of variation less than 16.6% are considered 10 

reliable for general use. Estimates with a coefficient of variation between 16.6% and 33.3% should 11 

be accompanied by a warning to users. Estimates with coefficients of variation larger than 33.3% 12 

are deemed to be unreliable. Less than 25% of the direct estimates have associated CV below the 13 

33.3% threshold, while for the model based ones this number grows to 70%. Although the 14 

uncertainty around the small area estimates remain sizeable and not all estimates would be 15 

publishable, the application of the proposed method endows most sub-population with a publishable 16 

estimate in spite of the small sample sizes. 17 

Figure 2 displays the impact of alternative prior specifications on the ensemble of the 18 

random intercepts’ posterior means ( )|ijrE u data  under the Normal prior [16] and Variance Gamma 19 

priors ( )0.5,~ 2 ,0,0ijr Vu G λ . Based on the left panel, it is clear that the Variance Gamma leads to 20 
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a more peaked distribution of estimated random intercepts, as predicted by theory. As tail behavior 1 

is difficult to read from density estimates, in the right panel of Figure 2, we plotted the point 2 

posterior expectation under the Normal prior vs those obtained under the Variance Gamma. The 3 

peak around 0 is still apparent from the inflection of the points’ cloud approximately at 0; heavier 4 

tails under Variance Gamma can also be appreciated: under the Normal prior, ( )|ijrE u data  lies 5 

within the interval ( 4, 2)− , while they do not under the Variance Gamma specification. 6 

As the purpose of small area estimators is to complement the direct estimates obtained using 7 

ordinary survey weighted methods, robustness with respect to modelling assumptions is a major 8 

concern. As anticipated, the recourse to area-level model-based methods entails design consistency. 9 

When the area-specific sample sizes are large (and occasionally they are) the small area estimate 10 

will be close to that obtained under standard design-based methods. This offers, at least for the 11 

larger domains, protection against model misspecifications; moreover, it automatically guarantees 12 

that, in the case of large domains, model-based and design-based estimates are automatically in 13 

agreement.  14 

 15 

 16 

4. A simulation assessment of the frequentist properties of the proposed point estimators 17 

 In this section we introduce a simulation exercise with the aim of investigating the 18 

frequentist properties of point estimators (i.e. posterior means) introduced in section 4. We study 19 

bias, mean square error and frequentist coverage of posterior probability intervals.  20 

The simulation is design-based and we do not assume any parametric distribution when 21 

generating the data. We create a synthetic population merging the samples of the 2007 and 2008 22 

SME survey discussed in previous section. We drop from the 2007 wave those firms sampled also 23 

in the 2008. We obtain a population of size 30451N = . Domains are defined by cross-classifying 24 

the population by firm size and industry sector; with respect to the data analysis of previous section 25 

we collapse the regions. By reducing the number of domains we create sub-populations large 26 

enough to be sampled using reasonable sampling rates. Collapsing by region has a milder impact on 27 

sub-population skewness with respect to firm size or industry sector. Thereby our synthetic 28 

population is divided into 88m =  domains whose sizes 
d

N  ( 1,...,d m= ) range from 14 to 1339 with 29 

an average of 346. The same target parameters (total VA) and auxiliary variable (turnover) studied 30 

in section 4 are considered.  31 

We keep this synthetic population as fixed and we repeatedly stratified samples with 32 

proportional allocation and a 4% sampling rate. Resulting domain-specific sample sizes 
d

n  are 33 
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adjusted so that min( ) 3
d

n = . The resulting average domain-specific sample sizes is 14.05, with a 1 

maximum of 54. The mean sample size is very close to that of the application. 2 

The Monte Carlo exercise is based on 2000S =  repeated samples. Direct estimates and their 3 

variances are calculated using analytic formulas. The point estimators we compare in the simulation 4 

are:  5 

i) the posterior mean associated to the Fay-Herriot model specified on the un-transformed scale 6 

(UFH). The unstrasformed Fay-Herriot model can be described as follows: ( )ˆ ,
d d d

Y N Vθ∼ , 7 

where 
d

V is the variance of the direct estimator ˆ
d

Y , ( )2

0 1
,

d d v
N xθ β β σ+∼  , (0, )

v
Unif Aσ ∼ , 8 

1000A = , ( )50,10
i

Nβ ∼  0,1i =  . We consider the UFH model  as it is probably the most 9 

“basic” Bayesian model a practitioner would think of for analyzing these data. 10 

ii) the predictor proposed by Slud and Maiti (2006), we denote as SM;  11 

iii) the posterior mean obtained from the log-normal model [1]-[3] endowed with the global 12 

shrinkage prior [16]. We denote the estimator as LNGS (“Log-Normal with Global 13 

Shrinkage”)   14 

iv) the posterior mean associated to the model [1]-[3] but endowed with local shrinkage prior 15 

described in [8]-[10]; we label the estimator as LNLS (“Log-Normal with Local Shrinkage”).   16 

 17 

Let’s denote with 
ds

est  the generic estimator calculated for the domain d  in the replication s . We 18 

compare alternative estimators in terms of relative bias, relative root mean square error and 19 

frequentist coverage of probability intervals based on the posterior distribution.  Specifically we 20 

consider the frequentist coverage defined by the / 2α  and (1 / 2)α−  quantiles posterior distribution 21 

of the target parameter (w.r.t. the coverage probability 1 α− ) and set 0.05α = . Comparison tools are 22 

defined as follows:  23 

1

1

1

1

S

ds dm
s

d d

est Y
S

RABIAS
m Y

=

=

−

=
∑

∑ ,  24 

( )
2

1

2
1

1

1

S

ds dm
s

d d

est Y
S

RRMSE
m Y

=

=

−

=
∑

∑ ,  25 

( ){ }| |

1 1

1 1
95 1 (0.025), (0.975)

ds ds

m S

d data data

d s

COV Y p p
m S

θ θ
= =

= ∈∑ ∑   26 

 27 
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As we are interested in the frequentist coverage of Bayes estimators, 95COV  is calculated 1 

only for i, iii, iv. Results are summarized in table 4. 2 

 3 

Table 4: Comparison of alternative predictors based on the Monte Carlo experiment 4 

est RABIAS  RRMSE  95COV  

UFH 0.1573   0.2026 0.708 

SM 0.1263 0.1733 -- 

LNGS 0.1240 0.1719 0.929 

LNLS 0.1113 0.1723 0.941 

 5 

 Results from table 4 show how the posterior means based on the log-normal model with 6 

either local or global shrinkage priors and the predictor of Slud and Maiti (2006) perform very 7 

closely in terms of mean square error. In terms of bias LNLS is better, but its variance is somewhat 8 

bigger, as we can expect from a more flexible, richly parametrized model. Actually, they are based 9 

on similar ideas and models, only the priors or the way hyper-parameters are dealt with are 10 

different, so the results are in line with expectation. We did not expect the bias to be close to 0: in 11 

small area estimation you compromise between the efficiency of a biased synthetic predictor and 12 

the unbiasedeness of large variance direct estimators; to some extent estimators associated to areas 13 

with very small area-specific sample sizes are naturally biased.  14 

The naïve Fay-Herriot model, specified on the un-transformed scale, performs worse in 15 

terms of both bias and mean square error; the frequentist coverage of the posterior intervals is well 16 

below the 0.95 nominal level. This relatively poor performances reflect the misspecifcation of the 17 

model, based on the assumption of normality of the direct estimators. It also assumes a linear 18 

relationship between direct estimators and the auxiliary variable on the original scale of the data 19 

(instead of a linear relationship on the log scale); we already noted that this assumption is not 20 

completely unrealistic, so misspecification of the sampling model can be held as responsible for the 21 

not completely satisfying results.  22 

The two hierarchical models lead to close performances also in terms of frequentist 23 

coverage of posterior intervals. The advantage of using local shrinkage priors can be appreciated if 24 

we consider the performance for outlying areas, that is those characterized by a deviation from the 25 

synthetic component much larger than most of the remaining areas. We investigate performances 26 

separataly for the areas characterized by the larger (on average) model residual. Results related to 27 

the “worst case” area are presented in table 5. We note that this area-specific sample is 34=
d

n , well 28 

above the average sample size of the simulation. 29 
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 1 

Table 5: Comparison of alternative predictors for area 3, characterized by the largest model 2 

residual  3 

est RABIAS  RRMSE  95COV  

SM 0.4763 0.4790 -- 

LNGS 0.4414 0.4453 0.505 

LNLS 0.0144 0.2515 0.947 

 4 

The LNGS and the SM predictor are based on a similar global shrinkage idea. Results in 5 

table 5 show how the common variance parameter assumed for the random effects cannot 6 

accommodate the “outlier”; the associated model based estimators are severely shrunken towards 7 

the synthetic component: this implies large bias and poor frequentist coverage of the posterior 8 

intervals. Local shrinkage prior associated to LNLS is more flexible and leads to an almost unbiased 9 

predictor and good coverage. 10 

 11 

 12 

5. Conclusions 13 

 We introduced a Bayesian methodology that is useful for small area estimation of means and 14 

totals of variables that are positively skewed. This type of variable is often encountered in business 15 

surveys. We devote special attention to the specification of a prior distribution for the random 16 

effects; our proposal, based on the idea of local shrinkage, is well suited when auxiliary variables 17 

with strong predictive power is available, a feature often displayed in business survey data.  18 

The proposed methodology can be easily implemented using widely available MCMC 19 

software. Openbugs codes, as well as formulas for the full conditional distributions needed for an 20 

independent implementation of the algorithm, are available upon request from the authors. 21 

In summary, we showed that the predictor based on local shrinkage prior has overall 22 

acceptable frequentist properties, comparable to the alternatives we consider in the exercise. We 23 

introduce this prior specification to deal with situations where powerful auxiliary information is 24 

available, most of the areas are well fit by the assumed model and only a minority are outlying, 25 

characterized by larger model residuals. For these areas, local shrinkage priors can lead to 26 

estimators with reduced bias and thereby more efficient. 27 

  28 

 29 

 30 
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Appendix 1 1 

 2 

Proof of [6] 3 

To start with we note that 4 

( ) ( )1 1 1ˆ ˆ ˆˆ ˆexp exp 1
2 2

θ γ γ δ γ γ γ δ
   

= + − + = + − +   
   

B t t t

d d d d d d d d d d d d dZ Zx β x β x β  so 5 

( ) ( ) { }1 1ˆ ˆˆ ˆE exp 1 exp 1 E exp
2 2

γ γ γ δ γ γ δ γ
      + − + = − +          

t t

d d d d d d d d d d d dZ Zx β x β . 6 

We note that ( ) ( ){ } { }ˆ ˆ |η η= = = t

d M d d M d dE Z E E Z E x β ; analogously 7 

( ) ( ){ } ( ){ } ˆˆ ˆ ˆ| |η η ψ δ= + = +d M d d M d d d dV Z V E Z E V Z . As a consequence ( )ˆγ γ= t

d d d dE Z x β , 8 

( ) ( )2 ˆˆγ γ ψ δ ψ γ= + =d d d d d d dV Z  and { } 1ˆE exp exp
2

γ γ ψ γ
   = +    

t

d d d d d dZ x β . This leads to  9 

( ) ( )1 1 1ˆ ˆexp exp
2 2

θ γ ψ δ ψ
   

= + + = +   
   

B t t

d d d d d d dE x β x β  that coincides with ( )θ
M d

E . 10 

 11 

 12 

Proof of [7] 13 

Let’s introduce some matrix notation. Let ( )ˆ= dvec Zz  is the vector containing, ( )ψ=
d

diagΨ  , 14 

( )δ̂= ddiag∆  the diagonal matrixes containing the variance components; let X  be the matrix with 15 

rows t

d
x , 1,...,=d m . 16 

Standard Bayesian analysis of normal linear mixed model lead to ( )( )ˆ| , ,glsNβ z ψ β V Ψ∼   where 17 

( ) ( )
1

1 1ˆ t t

gls

−
− − = + +

 
β X Ψ ∆ X X Ψ ∆ z , ( ) ( )

1
1t

−
− = +

 
V Ψ X Ψ ∆ X . We can calculate 18 

( ) ( )| ,
| , | , ,E E E=

β z Ψ
η z Ψ η z β Ψ  where ( )η=

d
vecη .  ( ) ( )| , | ,

ˆ| , ,
z z gls

E E z E X Xβ βη β βΨ ΨΨ = = β . 19 

Analogously ( ) ( ) ( )| , | ,
| , | , , | , ,V V E E V= +

β z Ψ β z Ψ
η z Ψ η z β Ψ η z β Ψ . If we denote  the vector of small 20 

area predictors (on the log scale) conditional on β  as ( ) ( )1 | , ,B E= = + −η η z β Ψ Γz I Γ Xβ  with 21 

( )
1−

= +Γ Ψ Ψ ∆  we have that ( ) ( )| , | , 1
| ,V V E= + − +

β z Ψ β z Ψ
η z Ψ Γz I Γ Xβ G  with ( )

1

1

−
= +G Ψ Ψ ∆ ∆22 

. Taking expectation with respect to ( )| ,p β z Ψ  we get  23 
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( ) ( ) ( ) ( ) 1 2 1
| , tV = − − + = +η z Ψ I Γ X βV Ψ X I Γ G G G . We note that ( )| ,p η z Ψ  is a multivariate 1 

normal distribution. If we consider an individual η
d

 have that  ( ) ˆ| ,η = t

ijr d glsE z Ψ x β ,  2 

( ) ( )
1

2

1, 2,

1

1ˆ| , 1
ˆ

η γ δ γ
ψ δ

−

=

 
= + − = + 

+ 
∑

m
t t

d d d d d d d d d d

d d d

V g gz Ψ x x x x . 3 

As ( )expθ η=
d d

 formula [7] follows. 4 

 5 

 6 

Proof of [11] and subsequent statements 7 

From [9] we have that ( )
( )

1 11 1

1 1

|
λ ψ λ ψλ

λ ψ λ ψ= =
− −− −

= =

∑ ∑= ∝
Γ

∏ ∏
m m

d dd d

am m
a ma a

d d

d d

p e e
a

ψ   8 

Conditioning on a is omitted as it is treated as a known constant; m is a shortcut notation for the 9 

overall number of areas.  10 

We can obtain the marginal prior ( )p ψ using the integral ( ) ( ) ( )|p p p dλ λ λ
+

= ∫ψ ψ

ℝ

. As 11 

( )0 0
,Gamma b cλ ∼  we straightforwardly get 12 

( )
( )

0

0 1

1

0

1

ψ

ψ

−

+
=

=

Γ +
∝
 

+ 
 

∏
∑

m
a

dma b
m

d

d

d

ma b
p

c

ψ  13 

Applying the transformation 
d dτ ψ=  on each component of ψ  we obtain 14 

( )
( )0

2 2 1

0

1 1

τ τ
− +

−

= =

 
∝ + 
 
∑ ∏

ma b
mm

a

ijr d

d d

p cτ  15 

For the special case 
1

2
a =  the density of ( )p τ  simplifies to ( )

( )0

2

0

1

τ
− +

=

 
∝ + 
 
∑

ma b
m

d

d

p cτ  or 16 

equivalently to 17 

( )
0

2
2

10

1
1 τ

 
− + 
 

=

 
∝ + 
 

∑

m
b

m

d

d

p
c

τ , 18 

0
d

τ > , d∀ . This expression can be recognized as the kernel of the density of a multivariate half-t 19 

distribution with mean vector 0 and diagonal scale matrix. A multivariate half-t is a multivariate t 20 

for which we apply the absolute value transformation on each component. We can then write 21 

formula [13]. 22 

 23 
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To prove that univariate priors ( )τ
d

p  let’s start from ( ) ( )...τ −= ∫ ∫d dp p dτ τ . We can represent as 1 

( )p τ  as the result of applying the absolute value transformation on a multivariate t distribution, i.e 2 

*=τ τ  with ( ) ( ) ( )* * |p p p dξ ξ ξ= ∫τ τ  where ( )* 0

0

2
| , m

b
p MVN

c
ξ ξ

 
 
 

τ 0 I∼  and 3 

( ) ( )0 0,p IGamma b bξ ∼ . We use the fact that a random vector distributed according to a 4 

multivariate t distribution can be represented as an inverse Gamma mixture of a multivariate 5 

normal.  6 

As the variance covariance matrix of *τ  is diagonal ( ) ( ) ( )* *

1

|τ ξ ξ ξ
=

= ∏∫
m

d

d

p p p dτ .  7 

Horrace (2005) studies truncated multivariate normal distributions and shows that univariate 8 

marginal distributions from a multivariate half-Normal (obtained applying the absolute value 9 

transformation on each component) are univariate half-Normals if and only the variance-covariance 10 

matrix of the parent multivariate normal is diagonal. As a consequence 11 

( ) ( ) ( )
1

... |τ τ ξ ξ ξ −
=

 
=  

 
∏∫ ∫ ∫

m

d d d

d

p p p d dτ  12 

where each ( )|τ ξ
d

p  is distributed as an half-Normal distribution. 13 

If we change the order of integration and use conditional independence of ( )|τ ξ
d

p  we obtain that 14 

( )τ
d

p  are marginally half-t distributed. 15 

To prove that τ
d
 are linearly independent of each other we write  16 

( ) ( ){ } ( ){ }| |V E V V Eξ ξξ ξ= +τ τ τ   17 

and note that ( )|E ξ =τ 0  while ( ){ } ( ) 0

0

2
| m

b
E V E

c
ξ ξ ξ=τ I , which is of course diagonal. 18 
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 10 

Abstract 11 

 12 

In business surveys, estimates of means and totals for sub-national regions, industries and business 13 

classes can be too imprecise due to the small sample sizes available for sub-populations. We 14 

propose a small area technique for the estimation of totals for skewed target variables, which are 15 

typical of business data. We adopt a Bayesian approach to inference. We specify a prior distribution 16 

for the random effects based on the idea of local shrinkage, which is suitable when auxiliary 17 

variables with strong predictive power are available, another feature often displayed by business 18 

survey data. This flexible modelling of random effects lead to predictions in agreement with those 19 

based on global shrinkage for most of the areas, but allows to obtain less shrunken and thereby less 20 

biased estimates for areas characterized by large model residuals. We discuss an application based 21 

on data from the Italian survey on Small and Medium Enterprises. By means of a simulation 22 

exercise, we explore the frequentist properties of the proposed estimators. They are good, and with 23 

difference to methods based on global shrinkage remain so also for areas characterized by large 24 

model residuals. 25 

 26 

Keywords: robust estimation, Log-Normal distribution, local shrinkage priors, regional studies, 27 

Variance Gamma distribution. 28 

 29 

 30 

1. Introduction 31 

Regional economic decisions and policies rely on accurate business information regarding 32 

sub-national regions and business categories. The relevance of regional estimates of business 33 
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aggregates and the interest in regional disparities in terms firm competitiveness and productivity is 1 

demonstrated by the growing number of scientific articles in this field (see Breinlich et al., 2014 for 2 

a review). 3 

Regional statistics are produced by the National Statistical Institutes, and governments use 4 

them to coherently allocate funds (for examples of this, see OECD, 2013, Eurostat, 2011, Eurostat, 5 

2015a). For instance, the (gross) value added, that is, the total value of new goods produced and 6 

services provided in a given time period, is routinely estimated at the national and sub-national 7 

levels. For the EU, Eurostat releases regional estimates of the value added at levels as detailed as 8 

the EU NUTS 3 regions (following the Nomenclature of Territorial Units for Statistics, Eurostat, 9 

2015b) and industries (NACE Rev. 2, 1 digit, following the Statistical classification of economic 10 

activities in the European Community). Sub-national estimates of value added would be even more 11 

informative if they were disaggregated both in terms of industry and firm size for the purpose of 12 

measuring the relative contribution of an industry and of certain firm-size classes to the regional 13 

economy. Unfortunately,  sample sizes of official business surveys are too small for the standard 14 

design-based estimators (known as “direct estimators”) to be sufficiently precise in small domains. 15 

This limitation can be overcome by model-based small area estimation methods. The small 16 

area estimation literature has until very recently focused largely on the analysis of social surveys, 17 

with estimation goals such as the poverty mapping (see Pfeffermann, 2014 and Pratesi, 2016 for a 18 

review) and few applications for business statistics. In the last few years, awareness of this field of 19 

application has grown (Burgard et al. 2014; Ferrante and Trivisano, 2010; Militino et al., 2015), as 20 

well as the availability of reliable administrative archives for firms that can be used to obtain 21 

auxiliary information.  22 

Small area models may be broadly classified into area level and unit level. In area level 23 

models, survey weighted (direct) estimates obtained for each domain are related with auxiliary 24 

information at the same level of population disaggregation. In unit level models, the target variables 25 

and unit level information on auxiliary variables are related at this micro level. Area level models 26 

straightforwardly incorporate information on survey weights, leading to design-consistent 27 

estimators whenever direct estimators are design-consistent (Rao, 2003, p. 117). Design consistency 28 

is a general purpose form of protection against model failures, as it guarantees that, at least for large 29 

domains, estimates make sense even if the assumed model completely fails. Area level modelling is 30 

less demanding in terms of data disclosure and overcomes potential problems of record linkage 31 

between the survey sample and the administrative archive. For these reasons, area level models will 32 

be considered in this paper. 33 
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 Many business survey variables are positive and positively skewed (Rivière, 2002), so 1 

normality is not a tenable assumption in most of the cases.  Log transformation can then be 2 

introduced in order to apply normal linear mixed models on the log scale. Predictions on the 3 

original data scale require back-transformation that is a potential source of bias. Positive skewness 4 

of survey variables may cause estimators of means and totals to have non-normal (positively 5 

skewed) sampling distributions, when calculated on small samples (see Fay and Herriot, 1979; 6 

Karlberg, 2000). Literature on area level modelling on the log scale include Fay and Herriot (1979) 7 

and Slud and Maiti (2006) that both consider an empirical Bayes approach to inference. In this 8 

paper we propose a full Bayes approach, accounting for all sources of uncertainty, effectively 9 

dealing with back-transformation bias and implementable with widely available MCMC software. 10 

When predicting means or totals for business survey variables, strong covariates from 11 

administrative archives are often available. For instance, in our application, aimed at predicting 12 

gross value added at the domain level, we can exploit the knowledge of turnover for each firm in 13 

the population. Area level totals of turnover are strongly correlated with those of value added. 14 

Nonetheless, a minority of the areas will typically deviate from the relationship that characterize 15 

most of the others. If we think of modelling in terms of mixed models, we have that random effects 16 

would be needed for a subset of the areas (Datta, 2011) or alternatively that there are subsets of 17 

random effects characterized by different variances. The specification of spike-and-slab priors can 18 

be useful in this case (Datta and Mandal, 2015).  19 

We contribute to the small area literature by proposing an approach based on local shrinkage 20 

priors for the random effects (Frühwirth-Schnatter and Wagner,  2010) where spike-and-slab priors 21 

are replaced by continuous gamma scale mixture of normal distributions (Griffin and Brown, 2010) 22 

that lead to marginal variance-gamma distributions for the random effects. This flexible modelling 23 

of random effects lead to predictions close to those we can obtain  using standard priors for non-24 

outlying areas, and to less biased predictors for the areas that can be labelled as outliers.  25 

The paper is organized as follows. Model specification is described in section 2. Specifically 26 

in section 2.1 closed formulas for posterior means conditionally on variance components are 27 

illustrated as posterior means are proposed as point predictors. In section 3, we apply our 28 

methodology on real survey data. We use data on the Small and Medium Enterprises sample survey 29 

(1-99 employees) conducted by the Italian National Statistical Institute (ISTAT), which provided us 30 

with this information within the framework of the BLUE-ETS project; this project has been 31 

financially supported by the EU Commission within the 7th Framework Programme. For these data 32 

we motivate the recourse to log normal likelihood for the direct estimators. In section 4, we 33 

introduce a simulation exercise to explore the frequentist properties of the proposed predictor in 34 
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comparison with some alternatives, including the estimator of Slud and Maiti (2006). Section 5 1 

presents the study’s conclusions. 2 

 3 

 4 

 5 

2. Small Area Estimation Model 6 

Let Y be the target variable, which we assume positive with a positively skewed distribution. 7 

Assume that Y is defined on a population U of N units, partitioned into a set of m non-overlapping 8 

domains of size 
d

N  ( 1,...,d m= ;
1=

=∑
m

dd
N N ). A random sample of overall size n is taken using a 9 

possibly complex design: samples of sizes 
dn  are drawn from each domain. The small area nature 10 

of the problem lies in 
d

n  being too small to allow for reliable inference for most of the domains. 11 

We assume that individual weights 
dj

w  1,...,
d

j n=  are attached to responses 
dj

y  to account for 12 

unequal selection probabilities and possibly other selection adjustments. 13 

The normal distribution is not suitable to describe either the distribution of Y in the 14 

population nor the sampling distribution of the domain totals’ direct estimators 
1

ˆ
=

=∑ dn

d dj djj
Y w y . 15 

Although these are linear combinations of individual observations and can be assumed to be 16 

approximately normally distributed in large samples, in samples of small size, the sum of a few 17 

positively skewed variables remains positively skewed. We assume that the total direct estimators 18 

are log-normally distributed:  19 

[ ] [ ]( )ˆ , ,d d d d dY V LN Vθ θ∼        [1] 20 

where [ ]i  is used to denote a parametrization in terms of mean and variance of the distribution. 21 

Exact or approximate design-unbiasedeness of totals’ estimators is typical in survey sampling. The 22 

distributional assumption in [1] can be motivated directly assuming the log-normality of Y. Log-23 

normal approximations of sums of independent log-normals are justified by several authors (e.g., 24 

Fenton, 1960; Cobb et al., 2012). Moreover, Mazmanyan et al. (2009) proposed a log-normal 25 

central limit theorem for the approximation of the sum of positively skewed random variables, 26 

although not necessarily log-normal. Eventually, the assumption of normality on the log scale when 27 

dealing with mean or total estimators of skewed variables is common in the small area literature (as 28 

in Fay and Herriot, 1979). 29 

On the log-scale, a specification consistent with the sampling model [1] is given by: 30 

( ) ( )ˆlog | , 2,d d d d d dY Nη δ η δ δ−∼       [2] 31 
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where ( )ln
d d

η θ=  and ( ){ }ˆlogd dVar Yδ = . ( ){ }ˆlog 2d d dE Y η δ= −  is in line with assuming the 1 

availability of an unbiased estimator on the original scale of the data: if ( )ˆ
d dE Y θ= , then 2 

( ){ } ( )ˆlog log
d d

E Y θ< . Note that { } { }exp 2 exp 1d d d dV θ δ δ= + −    will depend on both parameters 3 

of the lognormal distribution.  4 

In the small area literature, variances associated with direct estimators are usually treated as 5 

known constants. In practice, estimates obtained with methods such as linearization or bootstrap are 6 

smoothed using a model involving unknown parameters. In line with the literature on area-level 7 

models, we will assume that variances on the log-scale are known and denote them as ˆ
d

δ . 8 

We assume a multiplicative linking model for 
d

θ  that links the outcome parameter to the 9 

auxiliary information in order to improve the direct estimators: 10 

( )exp
t

d d duθ = +x β         [3] 11 

The p-row vector t

d
x contains the covariates known for domain d from external sources, and 

d
u  is a 12 

random intercept associated to 
d

θ . Let us assume that ( )0,
d d

u N ψ∼ , which implies 13 

( ),θ ψ∼
t

d d dLN x β          [4] 14 

or, equivalently, ( ),η ψ∼
t

d d dN x β . We denote the model defined by sampling model [1] and linking 15 

[4] as the LN-LN model.  16 

 17 

 18 

2.1 Analysis conditional on the variance components 19 

To analyze the model defined by [1] and [4], note first that, assuming δ
d

 as known 20 

ˆ( )
d d

δ δ=  we can re-write [2] as ( )ˆˆ ,d d dZ N η δ∼ , where 
1 ˆˆ ˆlog
2

d d d
Z Y δ= + . We can use standard 21 

results from the analysis of linear mixed models (see Rao 2003, chapter 5) to prove that, 22 

conditionally on the regression coefficients β  and the variances 
d

ψ : 23 

( )1

1,d
ˆ| , , ,

B

d d ddata N gη ψ ηβ ∼   24 

where ( )1 ˆˆB t t

d d d d dZη γ= + −x β x β , 
1,d

ˆ
d d

g γ δ= and 
ˆ

d
d

d d

ψ
γ

ψ δ
=

+
. Note that, as a function of the 25 

shifted direct estimates ˆ
d

Z , 1ˆB

dη  is a convex linear combination of a direct ( ˆ
d

Z ) and a synthetic 26 

component ( t

d
x β ), known as the linear composite estimator in the small area literature. If we 27 
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assume quadratic loss and define ( )1ˆ | , ,
B

d d dE dataθ θ ψ= β  as the point predictor for 
d

θ , we have 1 

that 2 

( )

( ){ }

1 1ˆ ˆˆexp
2

ˆˆ     exp log

B t t

d d d d d d d

t t

d d d d d d

Z

Y

θ γ γ δ

γ γ δ

 
= + − + 

 

= + − +

x β x β

x β x β

    [5] 3 

This predictor is the product between ( )1ˆexp
B

dη  and a factor that corrects for the main bias term in 4 

the back-transformation; it is in line with formula (4) of Slud and Maiti (2006).  5 

It can also be shown that  6 

( ) ( )1 1ˆ exp
2

B t

d d d M d
E Eθ ψ θ

 
= + = 

 
x β       [6] 7 

where ( )1ˆB

dE θ  is the expectation taken with respect to both linking and sampling models, while 8 

with ( )ME i , we denote the expectation with respect to linking model [4]. This latter result means 9 

that 1ˆB

d
θ  is an unbiased predictor of 

dθ  in the same sense that BLUP predictors are unbiased: the 10 

unconditional frequentist expectation of the estimator and the expectation of the estimand under the 11 

linking model are the same. A proof of [6] can be found in Appendix 1. 12 

If we remove the conditioning on β  and assume a non-informative flat prior on β , i.e., 13 

( )p ∝β 1 , then we have that 14 

( )2

1,d 2,d
ˆ| , ,B

d d ddata N g gη ψ η +∼  15 

where ( )2 ˆ ˆˆˆB t t

d d gls d d d glsZη γ= + −x β x β , 

1

1 1ˆ ˆlog
ˆ ˆ

t t

gls d d d d

d dd d d d

Y
ψ δ ψ δ

−
 

=   + + 
∑ ∑β x x x , 16 

( )
1

2

2,d

1
1

ˆ
t t

d d d d d

d d d

g γ
ψ δ

−
 

= −   + 
∑x x x x . As a consequence, the point predictor under quadratic 17 

loss will be given by 18 

( ) ( )2

1,d 2,d

1ˆ ˆ ˆˆexp
2

B t t

d d gls d d d glsZ g gθ γ
 

= + − + + 
 
x β x β    [7] 19 

(see Appendix 1 for a proof). Unlike the empirical Bayes approach advocated by Slud and Maiti 20 

(2006), who plug estimates of unknown parameters into [7], a full Bayes approach accounts for the 21 

effect that the extra-variation implied by the estimation of β  has on the point predictor; in fact, the 22 

expectation of a log-normal variable depends on both the expectation and variance on the log scale.  23 
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To fully account for all sources of uncertainty, we should remove the conditioning on the 1 

variance components 
d

ψ ; unfortunately, for sensible choices of the prior, this leads to posterior 2 

distributions for 
d

θ  that cannot be written in closed form and should therefore be explored by 3 

means of computational algorithms such as the Markov Chain Monte Carlo considered in this 4 

paper.  5 

 6 

 7 

2.2 The distribution for the random effects and specification of hyperpriors  8 

The main difference between [4] and the linking model adopted by most of the small area 9 

literature on Fay-Herriot type models (Jiang and Lahiri, 2005; Pfeffermann, 2014) is that the 10 

variances associated with random intercepts are in [4] domain-specific, implying local shrinkage 11 

instead of the ordinary global shrinkage that we would have had assuming 
d

ψ ψ= , d∀  . In a 12 

different context, the specification of a distribution for random intercept based on local shrinkage is 13 

discussed in Frühwirth-Schnatter and Wagner (2010). 14 

Datta et al. (2011) note that in the presence of good covariates, the variability of the small 15 

area parameters may be accounted for by a synthetic estimator, and the inclusion of a random effect 16 

term may be unnecessary. When random effects are needed for a subset of the areas, the 17 

specification of spike-and-slab priors can be useful (see Datta and Mandal, 2015). Spike-and-slab 18 

priors amount to assuming that random intercepts are sampled from a mixture of two normal 19 

distributions. 20 

When analyzing business data, it is quite likely that auxiliary variables with strong 21 

predictive power are available. When this is the case, the bulk of the direct estimates will be well 22 

fitted by the synthetic model (without random intercepts), so the associated 
d

ψ  are likely to be 23 

small, with a minority of areas that require larger area-specific intercepts (and thereby larger 
d

ψ ).  24 

Our specification for the distribution of 
d

u , 1,...,d m=  is based on infinite mixtures of 25 

normal distributions. Following Griffin and Brown (2010), our specification uses Gamma mixtures 26 

of normal distributions. Specifically, we assume:  27 

( )0,
ind

d d d
u Nψ ψ∼          [8] 28 

( ), ,
ind

d a Gamma aψ λ λ∼         [9] 29 

( )0 0 0 0
, ,b c Gamma b cλ ∼         [10] 30 

This leads to spiked priors for the random effects that at the same time have tails that are 31 

heavier than those of the normal distribution. Griffin and Brown (2010) observe that for small 32 
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values of the shape parameter a, the prior specification [8]-[10] leads to a marginal prior 1 

distribution for 
d

u  that mimics the behavior of spike-and-slab priors based on finite mixtures. This 2 

infinite mixture specification is computationally easier to deal with.  3 

Other choices for the mixing distribution such as the popular Inverse Gamma would lead to 4 

platikurtic distributions with heavy tails, such as those in the t family; this contrasts with the idea of 5 

severe shrinkage for most of the areas, which is consistent with a large probability mass close to 0.  6 

Specifically, prior specification [8]-[10] implies that ,
d

u a λ  follows a Variance Gamma 7 

distribution, i.e., 8 

( ),~ 2 ,0,0d Vu aG λ  9 

(see Bibby and Sørensen, 2003 for more details on this distribution). This marginal prior 10 

distribution is symmetric and has expectation ( ) 0
d

E u =  and variance ( ) /
d

V u a λ= . It belongs to 11 

the family of generalized hyperbolic distribution (Barndorff-Nielsen, 1977). The conjugate 12 

hierarchy in [8]-[10] also facilitates MCMC sampling.  13 

In line with Frühwirth-Schnatter and Wagner (2010), we set the shape parameter a to a fixed 14 

(small) value, while we specify a prior on the global parameter λ . As far as a is concerned, we 15 

focus on two choices, 1a = , 0.5a = .  16 

The choice 1a =  implies that 
d

u is a priori distributed as a double-exponential or Laplace, 17 

which, combined with the normal prior conditional on 
d

ψ , recalls the Bayesian lasso of Park and 18 

Casella (2008). 19 

 20 

 21 

-4 -2 0 2 4

0
.0

0
.5

1
.0

1
.5

2
.0

u

d
e

n
s
it
y

a=.5

a=.75

a=1

a=1.5

Normal

-4 -2 0 2 4

-6
-4

-2
0

u

lo
g

-d
e
n

si
ty

a=.5

a=.75

a=1

a=1.5

Normal

Page 34 of 52

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

9 

 

Figure 1: density (left) and log-density (right) functions of the Variance Gamma distribution. 1 

( )2 ,0, ,0G aV λ  for 1λ =  and various values of a. 2 

 3 

The case 0.5a =  represents a more peaked prior distribution and encourages more shrinkage 4 

towards 0 of small random intercepts (see Figure 1). Moreover, it leads to a half-t marginal prior on 5 

dψ . The half-t prior for standard deviations is discussed in Gelman (2006) and recommended 6 

whenever it makes sense to put a sizeable mass of prior probability close to 0. It can be shown that 7 

once { }d
ψ=ψ  and { }dψ=τ , 1,...,d m= , are defined, under prior [8]-[10] and 0.5a = , 8 

0
0 0 0

0

2
| , 0, , 2

b
b c Mht b

c

 
 
 

τ I∼ .         [11] 9 

With ( )Mht i  we denote the multivariate distribution (with support n+
ℝ ) that is obtained from a 10 

multivariate t distribution applying the absolute value transformation on each component of the 11 

random variable. We can also prove that each prior 
0 0| ,d b cψ  is a (univariate) half-t and the priors 12 

for two different variance components are uncorrelated, i.e. ( )* 0 0
, | , 0

d d
Co bv cψ ψ =  whenever 13 

*d d≠ . See appendix 1 for a proof of [11] and the other statements.  14 

As for the prior specification of the remaining parameters, diffuse independent normal priors 15 

can be specified for the components of β . We can set 
0

2b = , which implies that ( )1

0E cλ− = . This 16 

helps to interpret 
0

c  as a scaling constant for the random effects variance ( ) /
d

V u a λ= . The choice 17 

of 
0c  depends on the scale for the random effects in the problem being considered. According to 18 

[11], the parameter 
0b  can be interpreted in terms of degrees of freedom of the marginal prior 19 

( ) ,p τ  so the choice of 
0

2b =  is in line with selecting half-t priors with a very small number of 20 

degrees of freedom (Gelman, 2006).  21 

 22 

 23 

3. Estimation for Italian Small and Medium Enterprise Survey Data: An application 24 

In this section, we illustrate the methodology we discussed using real survey data. We use 25 

data on the Small and Medium Enterprises (SME) sample survey, wave 2008, conducted by the 26 

Italian National Statistical Institute (ISTAT). Specifically, we target the estimation of the total value 27 

added (VA) for small domains of the population of Italian small and medium manufacturing firms 28 

(less than 100 employees). The domains we focus on are smaller than those for which ISTAT 29 

provides reliable estimates. Specifically, our domains are defined by cross-classifying: the 20 Italian 30 
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NUTS 2 administrative regions, the economic industrial sector (NACE Rev. 2, 2 digit, 22 1 

industries) and firm size (4 classes: less than 10 employees, 10 to 19 employees, 20 to 49 2 

employees, 50 to 99 employees). As anticipated, for domains as small as those that we target, 3 

standard design-based estimators are characterized by unacceptably large variances. 4 

 5 

3.1 Direct estimators and sampling model 6 

The SME survey uses stratified sampling design and strata are defined by cross-classifying 7 

NACE Rev. 2 (4 digits) Italian administrative regions and company size in the four classes defined 8 

above. The domains we are interested in are planned because they are unions of sampling strata. 9 

Let ˆ
ijr

Y  be the direct estimator of the parameter θ
ijr

, where i indexes the economic activity 10 

( 1,..., 22)i = , j the size classes ( 1,...,4j = ) and r the regions ( 1,..., 20r = ). Given this peculiar 11 

structure of the data the domain index d used in section 2 is now replaced by the triplet ijr . The 12 

potential number of 1760 domains falls to 1165, as some of the populations obtained by cross-13 

classification are empty and some very small. We excluded all the domains characterized by a 14 

sampling rate over 0.75.  15 

The actual sample sizes for the domains we consider ranges from 2 to 184, with a median of 16 

8, a mean of 13.5 and .75 and .9 quantiles equal to 16 and 30 respectively. 17 

Direct estimates can be obtained using the calibration estimator that ISTAT adopts for the 18 

SME survey. Calibration estimators can be written as weighted sums. ISTAT’s published weights 19 

are obtained by multiplying base weights (the inverse of the inclusion probabilities) by factors 20 

adjusting for non-response and calibrating to known totals. Let the estimated total be denoted as 21 

, ,
ˆ

ijr

ijr ijr k ijr k

k d

Y w y
∈

= ∑ , where ,ijr k
y  is the value added of the k-th firm in sector i, size class j, region r. 22 

We assume that ( )ˆ
ijr ijrE Y θ=  with ( )ˆ

ijr ijrVar Y V= . We estimate 
ijr

V  using linearization-based 23 

variance estimators and denote these estimates as ˆ
ijr

V . 24 

In our sampling model we assume log-normality according to [1]. To justify this assumption 25 

for our data we proceed in two steps: first, we check whether log-normality is a sensible assumption 26 

for domain specific sample data, then we use a simple simulation exercise to assess whether log-27 

normality is to be preferred to normality as the sampling distribution  of total estimators given the 28 

sample sizes we have in our analysis. 29 

For all the domains with 3
ijr

n ≥ , we tested normality and log-normality using the Shapiro-30 

Wilk test. Results are reported in table 1 below.  In reporting the results we consider separately the 31 
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smallest 90% of the domains 30ijrn ≤  and the largest 10%. In the smaller domains, for which the 1 

test is relatively less powerful, both normality and log-normality tend to be not rejected, but 2 

normality fails clearly more often. In larger domains, when the test has more power, normality is 3 

rejected in the large majority of cases, while log-normality is accepted in more than 70% of the 4 

cases. 5 

 6 

Table 1: Checking normality and log-normality within domain-specific samples using Shapiro-Wilk 7 

test. Percentage of non-rejections at the 0.01  significance level 8 

ijrn   normality log-normality 

30≤   0.733 0.959 

30>   0.087 0.713 

overall 0.672 0.943 

 9 

From table 1 we conclude that log-normality is a sensible assumption for the distribution of 10 

VA within domains. We actually assume that direct estimators are log-normally distributed 11 

according to the arguments illustrated in previous section. To check this, we consider a set of log-12 

normal populations: ( ),d d dY LN µ σɶ ɶ∼ , 1,...,d L=  where 77L =  is the number of domains with 13 

30
ijr

n >  for which log-normality was not rejected and  ,
d d

µ σɶ ɶ  are the parameters according to 14 

maximum likelihood for these domains. For each of these populations we generated simple random 15 

samples of sizes 10,000R =  for each of the following sample sizes: 5,10,15, 20
d

n = . Note that 20 16 

represent the 0.8 quantile of the sample size distribution in our application.  17 

We evaluate how far is the empirical sampling distribution of the sample mean from the 18 

normal and the log-normal distributions in terms of Kolmogorov-Smirnov distance averaging over 19 

the L  populations. In fact, formal hypothesis testing of distributional assumptions with a sample of 20 

replicates as large as 10,000 would lead to rejections even in presence of negligible departures from 21 

the null. Results, summarized in table 2, show how log-normality is to be preferred to normality for 22 

all sample sizes. We can also note that as the sample size grows larger, the difference between the 23 

two distances decreases. 24 

 25 

 26 

 27 

 28 

Page 37 of 52

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

12 

 

Table 2: Kolmogorov-Smirnov distances between the Monte Carlo ( 10,000R =  ) distribution of the 1 

sample mean and two reference distributions, for various sample sizes.  2 

 sample size (
i

n )  

Reference distribution 5 10 15 20 

Log-normal 0.012 0.014 0.015 0.015 

Normal 0.119 0.097 0.081 0.073 

 3 

  4 

In order to obtain more stable direct variance estimates, we smooth them through the 5 

Generalized Variance Function approach (Wolter, 1986). To begin with, we consider that under the 6 

log-normality assumption introduced in [1], we have that  7 

( ){ } ( ){ }2ˆ ˆlog log 1ijr ijrVar Y CV Y= + .      [12] 8 

Thus, the smoothing can be conducted on ( )2

2

ˆ
ˆ

ˆ
ijr

ijr

ijr

V
CV Y

Y
= . After careful explorative analysis, we 9 

assume that ( )2 ˆ
ijrCV Y  varies with the size class (j) but not with economic activity (i) or with 10 

regions (r). This leads to the following smoothing equation for the direct estimate of 
ijrV , ˆ

ijr
V : 11 

2ˆ
ˆ 1

ijr ijr

ijr j ijr

ijr ijr

Y n
V

n N
φ υ

 
= − +  

 
       [13] 12 

with ( ) 0υ =
ijr

E , ( )ijr
V υ κ=  and where a finite population correction factor is also considered to 13 

account for varying and occasionally non-negligible sample rates. The parameter φ j  can be 14 

interpreted as the smoothed squared coefficient of variation multiplied for the size of the domain 15 

ijrn . The domain sample size ijrn  in the denominator of [13] allows for the decrease in the 16 

coefficient of variation when the sample size increases. Smoothed squared estimated coefficient of 17 

variations are given by ( )2

,
ˆ 1

j ijr

smooth ijr k

ijr ijr

n
CV Y

n N

φ  
= −  

 
; the first, second and third quartiles of 18 

( )2

,
ˆ

smooth ijh kCV Y  estimated on our data set are 31%, 45% and 65%, respectively. These results 19 

confirm the need to adopt a small area model approach. 20 

 We can then adapt the sampling model [2] to our problem changing the index from d to ijr 21 

and ijrδ  with ( ){ }2ˆ ˆlog 1
ijr smooth ijr

CV Yδ = +  defined according to [12]. 22 
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 1 

3.2 Auxiliary information and linking model 2 

As an auxiliary variable, the log total turnover in each domain is available. This auxiliary 3 

information refers to the Italian firms’ population and it is provided by the Italian Statistical 4 

Register of Active Enterprises-ASIA archive. The predictive power of this covariate is quite strong: 5 

the squared correlation coefficient is equal to 0.87 when calculated on variables on their original 6 

scale, and it is equal to 0.79 for the log transformations. In the original scale the high correlation 7 

level is influenced by few observations with a larger scale with respect to most of the others. 8 

We assume the multiplicative linking model [4] for 
ijr

θ  to link the outcome parameter to the 9 

auxiliary information given by the log-total turnover for the domain in question. With reference to 10 

log-scale, we can write 
0 1ijr ijr ijrltt uη β β= + + . The prior for the vector of domain-specific random 11 

intercepts ijru  is specified according to [8]-[10]. As for the prior specifications not already 12 

discussed, we set ( )5

0 0,10Nβ ∼ , ( )5

1 0,10Nβ ∼ , 
0

2b =  ,
0

1c = . We chose these values as they 13 

provide a reasonable scale for the random effects variance in our problem. 14 

We also consider the LN-LN model with an alternative choice for the prior distribution on 15 

ijru : 16 

( )2 20,
ijr

u Nσ σ∼ , ( )2 ,InverseGamma c dσ ∼      [14] 17 

This prior specification, which implements global shrinkage, can be considered as a 18 

benchmark for evaluating the effects of prior specification approximating spike-and-slab introduced 19 

in the previous section, and it represents a routine choice in many applications. We set 0.01c = , 20 

0.01d = . 21 

 22 

 23 

3.3 Markov Chain Monte Carlo computational issues 24 

Parameter estimates are obtained by summarizing the posterior distributions approximated 25 

by the output of Markov Chain Monte Carlo (MCMC) integration via the Gibbs sampling 26 

algorithm. By assuming a quadratic loss, the posterior means are adopted as estimates of the area 27 

specific parameters. Posterior variances are used as a measure of uncertainty. To carefully assess 28 

the convergence, we run three parallel chains of 25,000 runs each, the starting point being drawn 29 

from an over-dispersed distribution. The convergence of the Gibbs sampler was monitored by visual 30 

inspection of the chains’ plots and autocorrelation diagrams and by means of the potential scale 31 

reduction known as the Gelman-Rubin statistic (Carlin and Louis, 2000, ch. 5). Both models 32 
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displayed fast convergence; we discarded the first 5,000 iterations from each chain. To obtain 1 

estimates, we used the OpenBugs software package, which can be downloaded for free on the 2 

internet and it is open source.  3 

 4 

 5 

3.4 Comparing alternative models 6 

In order to choose among competing models, we compute the Deviance Information 7 

Criterion (DIC) and the logarithm of the pseudo-marginal likelihood (LPLM, Ibrahim et al., 2001). 8 

A model is preferred if it displays a lower DIC value. Table 3 reports the DIC results for the whole 9 

set of small area models estimated. DIC values show that, in line with expectations, the log-10 

normality assumption at the sampling level performs better in terms of DIC with respect to the 11 

model assuming normality. The ordering of alternative models using LPLM is consistent with that 12 

obtained using the DIC. The adoption of the Variance Gamma for the random intercepts 
ijru  leads 13 

to a further reduction in DIC with respect to the more common specification [14].  14 

 15 

Table 3: Comparison of alternative assumptions on the distributions of the random effects 16 

Shrinkage 
Prior on random 

intercepts 
ijr

u  
a  DIC LPLM median CVR 

global [14] - 15340 -7846 0.391 

local [10]-[12] 1 15230 -7808 0.421 

local [10]-[12] 0.5 15220 -7798 0.455 

 17 

 18 

We also compare the median reduction of the coefficient of variation of estimators with 19 

respect to the direct ones, defined as ( ).h

kmedian CVR  h

kCVR  is defined as 1h h DIR

k k kCVR CV CV= − , 20 

where the h

kCV  is the coefficient of variation calculated on the posterior of 
k

θ  (k being a generic 21 

index for the areas) under model h, while DIR

kCV  is the coefficient of variation of the direct 22 

estimators calculated from the randomization distribution. 23 

The posterior predictive approach can be used to assess the fit of a model (Gelman et al., 24 

1996). We consider a discrepancy measure suggested in the context of small area estimation byYou 25 

and Rao (2002) and considered also in Fabrizi and Trivisano (2016): 26 

( )*ˆdis = <ijr ijr ijrP Y Y   27 
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where *

ijrY  is generated from the posterior predictive distribution. The discrepancy measure is aimed 1 

at checking whether, for each area, the posterior predictive distribution is centered around the direct 2 

estimate. Values of disijr
 far from 0 and 1 would provide evidence of systematic under or over 3 

estimation. For the log-normal model endowed with priors [10]-[12] and 0.5a =  (i.e. the best 4 

model in terms of DIC and LPLM), we have that the average of the discrepancy measure over the 5 

set of areas is 0.499 with 0.25 and 0.75 quantiles equal 0.32 and 0.68 respectively, which means an 6 

adequate fit. Less than 10% of the areas shows disijr
 out of the range (0.2, 0.8). Similar summaries 7 

can be obtained for the other models considered in table 3. 8 

Results on ( )h

kmedian CVR , reported in table 3, highlight that the whole set of considered 9 

small area estimators considerably reduce the variability of direct estimators, which is consistent 10 

with the availability of a strongly predictive auxiliary variable. Nonetheless, even if exploiting the 11 

same auxiliary information, the models perform differently, as the prior specification has a non-12 

negligible impact. Prior specifications mimicking the spike and slab behavior allow for a further 13 

gain in efficiency with respect to priors ordinarily used in this type of analysis. 14 

 15 

 16 

Figure 2: Left panel: kernel densities of ( )|
ijr

E u data  over the set of small areas under Normal and 17 

VG priors. Right panel: ( )|
ijr

E u data  under Normal prior vs ( )|
ijr

E u data  under VG prior. For VG 18 

priors, 0.5a =  is assumed. 19 

 20 
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To evaluate the improvements allowed by the model-based proposed predictor we can 1 

compare the number of small areas with values of the coefficient of variation CV less than 16.6%, 2 

between 16.6% and 33.3% and over 33.3% for the direct and the model-based predictor. These 3 

thresholds for CV were suggested by Statistics Canada (2007) to provide quality level guidelines for 4 

publishing small area estimates; those with a coefficient of variation less than 16.6% are considered 5 

reliable for general use. Estimates with a coefficient of variation between 16.6% and 33.3% should 6 

be accompanied by a warning to users. Estimates with coefficients of variation larger than 33.3% 7 

are deemed to be unreliable. Less than 25% of the direct estimates have associated CV below the 8 

33.3% threshold, while for the model based ones this number grows to 70%. Although the 9 

uncertainty around the small area estimates remain sizeable and not all estimates would be 10 

publishable, the application of the proposed method endows most sub-population with a publishable 11 

estimate in spite of the small sample sizes. 12 

Figure 2 displays the impact of alternative prior specifications on the ensemble of the 13 

random intercepts’ posterior means ( )|
ijr

E u data  under the Normal prior [14] and Variance Gamma 14 

priors ( )0.5,~ 2 ,0,0ijr Vu G λ . Based on the left panel, it is clear that the Variance Gamma leads to 15 

a more peaked distribution of estimated random intercepts, as predicted by theory. As tail behavior 16 

is difficult to read from density estimates, in the right panel of Figure 2, we plotted the point 17 

posterior expectation under the Normal prior vs those obtained under the Variance Gamma. The 18 

peak around 0 is still apparent from the inflection of the points’ cloud approximately at 0; heavier 19 

tails under Variance Gamma can also be appreciated: under the Normal prior, ( )|
ijr

E u data  lies 20 

within the interval ( 4, 2)− , while they do not under the Variance Gamma specification. 21 

As the purpose of small area estimators is to complement the direct estimates obtained using 22 

ordinary survey weighted methods, robustness with respect to modelling assumptions is a major 23 

concern. As anticipated, the recourse to area-level model-based methods entails design consistency. 24 

When the area-specific sample sizes are large (and occasionally they are) the small area estimate 25 

will be close to that obtained under standard design-based methods. This offers, at least for the 26 

larger domains, protection against model misspecifications; moreover, it automatically guarantees 27 

that, in the case of large domains, model-based and design-based estimates are automatically in 28 

agreement.  29 

 30 

 31 

 32 

 33 
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4. A simulation assessment of the frequentist properties of the proposed point estimators 1 

 In this section we introduce a simulation exercise with the aim of investigating the 2 

frequentist properties of point estimators (i.e. posterior means) introduced in section 2 and applied 3 

to the analysis of SME survey in section 3. We study bias, mean square error and frequentist 4 

coverage of posterior probability intervals.  5 

The simulation is design-based and we do not assume any parametric distribution when 6 

generating the data. We create a synthetic population merging the samples of the 2007 and 2008 7 

SME survey discussed in previous section. We drop from the 2007 wave those firms sampled also 8 

in the 2008. We obtain a population of size 30451N = . Domains are defined by cross-classifying 9 

the population by firm size and industry sector; with respect to the data analysis of previous section 10 

we collapse the regions. By reducing the number of domains we create sub-populations large 11 

enough to be sampled using reasonable sampling rates. Collapsing by region has a milder impact on 12 

sub-population skewness with respect to firm size or industry sector. Thereby our synthetic 13 

population is divided into 88m =  domains whose sizes dN  ( 1,...,d m= ) range from 14 to 1339 with 14 

an average of 346. The same target parameters (total VA) and auxiliary variable (turnover) studied 15 

in section 4 are considered.  16 

We keep this synthetic population as fixed and we repeatedly we repeatedly draw stratified 17 

samples with proportional allocation and a 4% sampling rate. Resulting domain-specific sample 18 

sizes dn  are adjusted so that min( ) 3dn = . The resulting average domain-specific sample sizes is 19 

14.05, with a maximum of 54. The mean sample size is very close to that of the application. 20 

The Monte Carlo exercise is based on 2000S =  repeated samples. Direct estimates and their 21 

variances are calculated using analytic formulas. The point estimators we compare in the simulation 22 

are:  23 

i) the posterior mean associated to the Fay-Herriot model specified on the un-transformed scale 24 

(UFH). The unstrasformed Fay-Herriot model can be described as follows: ( )ˆ ,d d dY N Vθ∼ , 25 

where 
d

V is the variance of the direct estimator ˆ
dY , ( )2

0 1
,

d d v
N xθ β β σ+∼  , (0, )v Unif Aσ ∼ , 26 

1000A = , ( )50,10
i

Nβ ∼  0,1i =  . We consider the UFH model  as it is probably the most 27 

“basic” Bayesian model a practitioner would think of for analyzing these data. 28 

ii) the predictor proposed by Slud and Maiti (2006), we denote as SM;  29 

iii) the posterior mean obtained from the log-normal model [1]-[3] endowed with the global 30 

shrinkage prior [14]. We denote the estimator as LNGS (“Log-Normal with Global 31 

Shrinkage”)   32 
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iv) the posterior mean associated to the model [1]-[3] but endowed with local shrinkage prior 1 

described in [8]-[10] and 0.5=a ; we label the estimator as LNLS (“Log-Normal with Local 2 

Shrinkage”).   3 

In all cases we set ( )5

0
0,10Nβ ∼ , ( )5

1
0,10Nβ ∼ , 

0 2b =  ,
0 1c = , as in the application section. 4 

Let’s denote with dsest  the generic estimator calculated for the domain d  in the replication s . We 5 

compare alternative estimators in terms of relative bias, relative root mean square error and 6 

frequentist coverage of probability intervals based on the posterior distribution.  Specifically we 7 

consider the frequentist coverage defined by the / 2α  and (1 / 2)α−  quantiles posterior distribution 8 

of the target parameter (w.r.t. the coverage probability 1 α− ) and set 0.05α = . Comparison tools are 9 

defined as follows:  10 

1

1

1

1

S

ds dm
s

d d

est Y
S

RABIAS
m Y

=

=

−

=
∑

∑ ,  11 

( )
2

1

2
1

1

1

S

ds dm
s

d d

est Y
S

RRMSE
m Y

=

=

−

=
∑

∑ ,  12 

( ){ }| |

1 1

1 1
95 1 (0.025), (0.975)

ds ds

m S

d data data

d s

COV Y p p
m S

θ θ
= =

= ∈∑ ∑   13 

 14 

As we are interested in the frequentist coverage of Bayes estimators, 95COV  is calculated 15 

only for i, iii, iv. Results are summarized in table 4. 16 

 17 

Table 4: Comparison of alternative predictors based on the Monte Carlo experiment 18 

est RABIAS  RRMSE  95COV  

UFH 0.1573   0.2026 0.708 

SM 0.1263 0.1733 -- 

LNGS 0.1240 0.1719 0.929 

LNLS 0.1113 0.1723 0.941 

 19 

 Results from table 4 show how the posterior means based on the log-normal model with 20 

either local or global shrinkage priors and the predictor of Slud and Maiti (2006) perform very 21 

closely in terms of mean square error. In terms of bias LNLS is better, but its variance is somewhat 22 

bigger, as we can expect from a more flexible, richly parametrized model. Actually, they are based 23 

on similar ideas and models, only the priors or the way hyper-parameters are dealt with are 24 
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different, so the results are in line with expectation. We did not expect the bias to be close to 0: in 1 

small area estimation you compromise between the efficiency of a biased synthetic predictor and 2 

the unbiasedeness of large variance direct estimators; to some extent estimators associated to areas 3 

with very small area-specific sample sizes are naturally biased.  4 

The naïve Fay-Herriot model, specified on the un-transformed scale, performs worse in 5 

terms of both bias and mean square error; the frequentist coverage of the posterior intervals is well 6 

below the 0.95 nominal level. This relatively poor performances reflect the misspecifcation of the 7 

model, based on the assumption of normality of the direct estimators. It also assumes a linear 8 

relationship between direct estimators and the auxiliary variable on the original scale of the data 9 

(instead of a linear relationship on the log scale); we already noted that this assumption is not 10 

completely unrealistic, so misspecification of the sampling model can be held as responsible for the 11 

not completely satisfying results.  12 

The two hierarchical models lead to close performances also in terms of frequentist 13 

coverage of posterior intervals. The advantage of using local shrinkage priors can be appreciated if 14 

we consider the performance for outlying areas, that is those characterized by a deviation from the 15 

synthetic component much larger than most of the remaining areas. We investigate performances 16 

separataly for the areas characterized by the larger (on average) model residual. Results related to 17 

the “worst case” area are presented in table 5. We note that this area-specific sample is 34=dn , well 18 

above the average sample size of the simulation. 19 

 20 

Table 5: Comparison of alternative predictors for area 3, characterized by the largest model 21 

residual  22 

est RABIAS  RRMSE  95COV  

SM 0.4763 0.4790 -- 

LNGS 0.4414 0.4453 0.505 

LNLS 0.0144 0.2515 0.947 

 23 

The LNGS and the SM predictor are based on a similar global shrinkage idea. Results in 24 

table 5 show how the common variance parameter assumed for the random effects cannot 25 

accommodate the “outlier”; the associated model based estimators are severely shrunken towards 26 

the synthetic component: this implies large bias and poor frequentist coverage of the posterior 27 

intervals. Local shrinkage prior associated to LNLS is more flexible and leads to an almost unbiased 28 

predictor and good coverage. 29 

 30 
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 1 

5. Conclusions 2 

 We introduced a Bayesian methodology that is useful for small area estimation of means and 3 

totals of variables that are positively skewed. This type of variable is often encountered in business 4 

surveys. We devote special attention to the specification of a prior distribution for the random 5 

effects; our proposal, based on the idea of local shrinkage, is well suited when auxiliary variables 6 

with strong predictive power is available, a feature often displayed in business survey data.  7 

The proposed methodology can be easily implemented using widely available MCMC 8 

software. Openbugs codes, as well as formulas for the full conditional distributions needed for an 9 

independent implementation of the algorithm, are available upon request from the authors. 10 

In summary, we showed that the predictor based on local shrinkage prior has overall 11 

acceptable frequentist properties, comparable to the alternatives we consider in the exercise. If most 12 

of the areas are well fit by the assumed model and only a minority are outlying, characterized by 13 

larger model residuals, we have that, for these areas, local shrinkage priors can lead to estimators 14 

with reduced bias and thereby more efficient. 15 

The strategy we propose may be applied to estimating business totals based on any 16 

positively skewed variables: value added, turnover, labor cost, and income from sales and services 17 

as well as the components of these main aggregates. We discuss the proposed model with reference 18 

to real survey data and, more specifically, to the estimation of the total value added, giving 19 

consideration to the fact that the value added is the input for calculating important economic 20 

aggregates and performance indicators. We address the sub-populations of Italian small- and 21 

medium-sized manufacturing firms classified according to sub-national region, industry and firm-22 

size classes. We limit our attention to small and medium enterprises, that is, on firms with less than 23 

100 employees because in general, as well as in Italy, larger firms are censused, and small area 24 

estimation is therefore not needed. 25 

 This research can be extended and complemented in many directions: One important 26 

problem not considered here is that of benchmarking of small area estimates to known totals for 27 

more aggregate domains. A second aspect to address is the longitudinal extension of the model 28 

specification in order to borrow strength not only from covariates but also information repeated 29 

over time. This also makes it possible to produce estimates at different time points. 30 

 31 

 32 

 33 

 34 
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Appendix 1 1 

 2 

Proof of [6] 3 

To start with we note that 4 

( ) ( )1 1 1ˆ ˆ ˆˆ ˆexp exp 1
2 2

θ γ γ δ γ γ γ δ
   

= + − + = + − +   
   

B t t t

d d d d d d d d d d d d dZ Zx β x β x β  so 5 

( ) ( ) { }1 1ˆ ˆˆ ˆE exp 1 exp 1 E exp
2 2

γ γ γ δ γ γ δ γ
      + − + = − +          

t t

d d d d d d d d d d d dZ Zx β x β . 6 

We note that ( ) ( ){ } { }ˆ ˆ |η η= = = t

d M d d M d d
E Z E E Z E x β ; analogously 7 

( ) ( ){ } ( ){ } ˆˆ ˆ ˆ| |η η ψ δ= + = +
d M d d M d d d d

V Z V E Z E V Z . As a consequence ( )ˆγ γ= t

d d d dE Z x β , 8 

( ) ( )2 ˆˆγ γ ψ δ ψ γ= + =d d d d d d dV Z  and { } 1ˆE exp exp
2

γ γ ψ γ
   = +    

t

d d d d d dZ x β . This leads to  9 

( ) ( )1 1 1ˆ ˆexp exp
2 2

θ γ ψ δ ψ
   

= + + = +   
   

B t t

d d d d d d dE x β x β  that coincides with ( )θM dE . 10 

 11 

 12 

Proof of [7] 13 

Let’s introduce some matrix notation. Let ( )ˆ= dvec Zz  is the vector containing, ( )ψ= ddiagΨ  , 14 

( )δ̂= ddiag∆  the diagonal matrixes containing the variance components; let X  be the matrix with 15 

rows t

dx , 1,...,=d m . 16 

Standard Bayesian analysis of normal linear mixed model lead to ( )( )ˆ| , ,glsNβ z ψ β V Ψ∼   where 17 

( ) ( )
1

1 1ˆ t t

gls

−
− − = + +

 
β X Ψ ∆ X X Ψ ∆ z , ( ) ( )

1
1t

−
− = +

 
V Ψ X Ψ ∆ X . We can calculate 18 

( ) ( )| ,| , | , ,E E E= β z Ψη z Ψ η z β Ψ  where ( )η= dvecη .  ( ) ( )| , | ,
ˆ| , ,

z z gls
E E z E X Xβ βη β βΨ ΨΨ = = β . 19 

Analogously ( ) ( ) ( )| , | ,| , | , , | , ,V V E E V= +β z Ψ β z Ψη z Ψ η z β Ψ η z β Ψ . If we denote  the vector of small 20 

area predictors (on the log scale) conditional on β  as ( ) ( )1 | , ,B
E= = + −η η z β Ψ Γz I Γ Xβ  with 21 

( )
1−

= +Γ Ψ Ψ ∆  we have that ( ) ( )| , | , 1| ,V V E= + − +β z Ψ β z Ψη z Ψ Γz I Γ Xβ G  with ( )
1

1

−
= +G Ψ Ψ ∆ ∆22 

. Taking expectation with respect to ( )| ,p β z Ψ  we get  23 
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( ) ( ) ( ) ( ) 1 2 1| , t
V = − − + = +η z Ψ I Γ X βV Ψ X I Γ G G G . We note that ( )| ,p η z Ψ  is a multivariate 1 

normal distribution. If we consider an individual η
d

 have that  ( ) ˆ| ,η = t

ijr d gls
E z Ψ x β ,  2 

( ) ( )
1

2

1, 2,

1

1ˆ| , 1
ˆ

η γ δ γ
ψ δ

−

=

 
= + − = + 

+ 
∑

m
t t

d d d d d d d d d d

d d d

V g gz Ψ x x x x . 3 

As ( )expθ η=d d  formula [7] follows. 4 

 5 

 6 

Proof of [11] and subsequent statements 7 

From [9] we have that ( )
( )

1 11 1

1 1

|
λ ψ λ ψλ

λ ψ λ ψ= =
− −− −

= =

∑ ∑= ∝
Γ

∏ ∏
m m

d dd d

am m
a ma a

d d

d d

p e e
a

ψ   8 

Conditioning on a is omitted as it is treated as a known constant; m is a shortcut notation for the 9 

overall number of areas.  10 

We can obtain the marginal prior ( )p ψ using the integral ( ) ( ) ( )|p p p dλ λ λ
+

= ∫ψ ψ

ℝ

. As 11 

( )0 0,Gamma b cλ ∼  we straightforwardly get 12 

( )
( )

0

0 1

1

0

1

ψ

ψ

−

+
=

=

Γ +
∝
 

+ 
 

∏
∑

m
a

dma b
m

d

d

d

ma b
p

c

ψ  13 

Applying the transformation 
d d

τ ψ=  on each component of ψ  we obtain 14 

( )
( )0

2 2 1

0

1 1

τ τ
− +

−

= =

 
∝ + 
 
∑ ∏

ma b
mm

a

ijr d

d d

p cτ  15 

For the special case 
1

2
a =  the density of ( )p τ  simplifies to ( )

( )0

2

0

1

τ
− +

=

 
∝ + 
 
∑

ma b
m

d

d

p cτ  or 16 

equivalently to 17 

( )
0

2
2

10

1
1 τ

 
− + 
 

=

 
∝ + 
 

∑

m
b

m

d

d

p
c

τ , 18 

0
d

τ > , d∀ . This expression can be recognized as the kernel of the density of a multivariate half-t 19 

distribution with mean vector 0 and diagonal scale matrix. A multivariate half-t is a multivariate t 20 

for which we apply the absolute value transformation on each component. We can then write 21 

formula [13]. 22 

 23 
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To prove that univariate priors ( )τ dp  let’s start from ( ) ( )...τ −= ∫ ∫d d
p p dτ τ . We can represent as 1 

( )p τ  as the result of applying the absolute value transformation on a multivariate t distribution, i.e 2 

*=τ τ  with ( ) ( ) ( )* * |p p p dξ ξ ξ= ∫τ τ  where ( )* 0

0

2
| , m

b
p MVN

c
ξ ξ

 
 
 

τ 0 I∼  and 3 

( ) ( )0 0,p IGamma b bξ ∼ . We use the fact that a random vector distributed according to a 4 

multivariate t distribution can be represented as an inverse Gamma mixture of a multivariate 5 

normal.  6 

As the variance covariance matrix of *
τ  is diagonal ( ) ( ) ( )* *

1

|τ ξ ξ ξ
=

= ∏∫
m

d

d

p p p dτ .  7 

Horrace (2005) studies truncated multivariate normal distributions and shows that univariate 8 

marginal distributions from a multivariate half-Normal (obtained applying the absolute value 9 

transformation on each component) are univariate half-Normals if and only the variance-covariance 10 

matrix of the parent multivariate normal is diagonal. As a consequence 11 

( ) ( ) ( )
1

... |τ τ ξ ξ ξ −
=

 
=  

 
∏∫ ∫ ∫

m

d d d

d

p p p d dτ  12 

where each ( )|τ ξdp  is distributed as an half-Normal distribution. 13 

If we change the order of integration and use conditional independence of ( )|τ ξdp  we obtain that 14 

( )τ dp  are marginally half-t distributed. 15 

To prove that τ
d
 are linearly independent of each other we write  16 

( ) ( ){ } ( ){ }| |V E V V Eξ ξξ ξ= +τ τ τ   17 

and note that ( )|E ξ =τ 0  while ( ){ } ( ) 0

0

2
| m

b
E V E

c
ξ ξ ξ=τ I , which is of course diagonal. 18 
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