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Sustainable Method for Alzheimer
Dementia Prediction in Mild Cognitive
Impairment: Electroencephalographic

Connectivity and Graph Theory Combined
with Apolipoprotein E
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Objective: Mild cognitive impairment (MCI) is a condition intermediate between physiological brain aging and demen-
tia. Amnesic-MCI (aMCI) subjects progress to dementia (typically to Alzheimer-Dementia = AD) at an annual rate which
is 20 times higher than that of cognitively intact elderly. The present study aims to investigate whether EEG network
Small World properties (SW) combined with Apo-E genotyping, could reliably discriminate aMCI subjects who will con-
vert to AD after approximately a year.
Methods: 145 aMCI subjects were divided into two sub-groups and, according to the clinical follow-up, were classified
as Converted to AD (C-MCI, 71) or Stable (S-MCI, 74).
Results: Results showed significant differences in SW in delta, alpha1, alpha2, beta2, gamma bands, with C-MCI in the
baseline similar to AD. Receiver Operating Characteristic(ROC) curve, based on a first-order polynomial regression of
SW, showed 57% sensitivity, 66% specificity and 61% accuracy(area under the curve: AUC=0.64). In 97 out of 145 MCI,
Apo-E allele testing was also available. Combining this genetic risk factor with Small Word EEG, results showed: 96.7%
sensitivity, 86% specificity and 91.7% accuracy(AUC=0.97). Moreover, using only the Small World values in these 97
subjects, the ROC showed an AUC of 0.63; the resulting classifier presented 50% sensitivity, 69% specificity and 59.6%
accuracy. When different types of EEG analysis (power density spectrum) were tested, the accuracy levels were
lower (68.86%).
Interpretation: Concluding, this innovative EEG analysis, in combination with a genetic test (both low-cost and widely
available), could evaluate on an individual basis with great precision the risk of MCI progression. This evaluation could
then be used to screen large populations and quickly identify aMCI in a prodromal stage of dementia.
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Mild cognitive impairment (MCI) is a clinical and
neuropsychological state in the elderly brain that is

intermediate between normal cognition and dementia. It
is mainly characterized by objective evidence of memory

impairment during a neuropsychological examination
that does not yet encompass the definition of demen-
tia.1,2 Epidemiological research suggests that amnesic
MCI (aMCI) is a precursor to Alzheimer dementia
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(AD),3 based on the high rate of progression from this
state to AD.2 About 50% of all MCI subjects convert to
dementia.4–7 The others will either remain in the MCI
condition or return to a fully normal one and never pro-
gress to dementia.

To plan optimal and early therapeutic, organiza-
tional, lifestyle, and rehabilitative interventions, aMCI
diagnosis should be combined with the most reliable prog-
nosis on the likelihood and time of progression to demen-
tia. Growing evidence suggests that early diagnosis reduces
the health and social costs associated with dementia man-
agement.8,9 Moreover, prodromal MCI to AD is becom-
ing the preferred target for clinical trials with potentially
disease-modifying experimental drugs. Because such a high
risk is associated with the MCI condition, it is important
to increase the success rate of the trials conducted. The
early diagnosis of prodromal MCI to AD can presently be
reached with a high degree of sensitivity and specificity by
combining a number of tests (eg, hippocampal volumetric
magnetic resonance imaging [MRI], positron emission
tomography [PET], or PET integrated with beta-amyloid
and tau radioligands and lumbar puncture for cerebrospi-
nal fluid beta and tau metabolites). Due to their high
costs, limited availability, and/or body invasiveness, how-
ever, these tests cannot be used to screen a large popula-
tion sample.

Electroencephalogram (EEG) is an ideal candidate
for such screening, because it is a widely available, non-
invasive, and low-cost10 procedure. Moreover, a great
deal of research has been conducted on EEG abnormali-
ties in pathological brain aging.11 AD patients show
more delta and fewer posterior alpha EEG rhythms than
cognitively intact elderly (Nold) subjects.12 Similarly,
MCI show less alpha power than Nold subjects.13 Fur-
thermore, a reduction in EEG spectral coherence in the
alpha band in AD has been reported,14,15 and EEG theta
power was found to be higher in aMCI subjects who will
convert to AD. High predictive accuracy between base-
line EEG features and the probability of a future decline
was found.16 Furthermore, EEG coherence has been
shown to contribute to the differentiation of AD from
Nold15 and to the prediction of aMCI conversion to
AD.14 However, findings were usually significant only at
a group level17; moreover, relatively small samples were
investigated, with a briefer than required follow-up.
Despite such limitations, the progression of the diagnosis
of AD has been summarized in a review,18 showing gen-
eralized slowing of the rhythms contained in the spectral
profile, reduced complexity, and perturbations in EEG
organization. Furthermore, the corticocortical connectiv-
ity and network properties of EEG have been addressed
in several studies.11,19–21 Many of the studies have also

explored the idea that dementias—particularly in the
very early, namely prodromal, stages—mainly affect syn-
aptic transmission and therefore represent “disconnec-
tion syndromes.”22

Network science tends to model the brain as an
intricate amalgamation of networks; a network is a mathe-
matical representation of a real-world complex system,
which is defined by a collection of nodes (vertices) and
links (edges) between pairs of nodes. Nodes usually repre-
sent brain regions, whereas links represent anatomical,
functional, or effective connections, depending on the
dataset.23 Anatomical connections typically correspond to
white matter fiber tracts between pairs of gray matter
brain regions (cortical areas or subcortical relays). Connec-
tions between neuronal assemblies reflect segregation and
integration processes, as revealed by local clustering (segre-
gation) and path length (integration). Brain connections
are organized in a network topology characterized by a
high degree of local clustering (segregation) and long-
distance connections (integration). A “small world”
(SW) concept was introduced as a model of network orga-
nization, allowing for an optimal balance between local
specialization and global integration.24 This approach
could be used to model brain functional architecture25

and correlate it with behavior (ie, neuropsychological test
performance). This evaluates whether functional connec-
tivity patterns between brain areas reproduce the organiza-
tion of more or less strictly bound networks based on the
strength of oscillatory firing synchronizations between
adjacent/remote neuronal assemblies in a time frame of
milliseconds.26–30 In recent literature, several studies have
utilized graph theory analysis of connectivity from EEG
signals combined with apolipoprotein E (ApoE) genotyp-
ing to discriminate between healthy elderly and AD
patients.31,32 No previous studies utilized such an
approach to distinguish prodromal to AD from nonpro-
dromal MCI subjects.

The primary aim of the present study was to inves-
tigate brain connectivity using a SW approach for the
analysis of EEG-related neural networks. Moreover, as
the ε4 allele of the APOE gene is a genetically deter-
mined risk factor for the pathogenesis of late onset and
sporadic AD, a secondary endpoint is to investigate
whether EEG connectivity markers along with geneti-
cally determined risk indicators for dementia, as repre-
sented by ApoE testing, can reach a greater sensitivity/
specificity for the stage of MCI prodromal to AD.33,34

Our purpose is to provide a reliable, low-cost, widely
available, and noninvasive method for discrimination of
high-risk aMCI subjects, namely those who, on an indi-
vidual basis, will rapidly (ie, after 1 or 2 years) con-
vert to AD.
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Patients and Methods
Participants
The ages of the 145 aMCI subjects at the time of the
EEG recordings were 71.83 ± 0.56 standard error of the
mean (SEM) years, Mini-Mental State Examination
(MMSE) was 25.87 ± 0.18, and gender distribution was
82 females (F) and 63 males (M). The participants, all of
whom were affected by aMCI, had been referred to the
Memory Clinic of the Catholic University, Policlinic
A. Gemelli Foundation in Rome.4,35,36 They were
divided into 2 subgroups according to their clinical evo-
lution, classified as converted to AD or stable aMCI
(aMCI-S) after a follow-up from time 0 (diagnosis of MCI).
At the end of the follow-up, it was shown that at the time of
the EEG recordings, the patient group included 74 aMCI-S
(age = 70.72 ± 0.77 SEM years, MMSE = 26.33 ± 0.27,
months of follow-up = 38.17 ± 3.48, M/F = 33/41)
and 71 converted aMCI (aMCI-C; age = 73.05 ± 0.81
SEM years, MMSE = 25.32 ± 0.23, months of follow-
up = 18.29 ± 1.60, M/F = 35/36). The time interval
between aMCI diagnosis and EEG recording was <1 month
in both groups and at an individual level. As an EEG con-
trol group, 175 AD age-matched patients were selected
(age = 72.23 ± 0.55 years, MMSE = 20.12 ± 0.31 years,
M/F = 81/94).

All subjects were right-handed, according to the
Handedness Questionnaire. Individual informed consent
was obtained, and the study was approved by a local ethics
committee. Experimental procedures conformed to the
Declaration of Helsinki and national guidelines.

Inclusion and Exclusion Criteria
All subjects took part in a battery of neuropsychological
tests assessing attention, memory, executive functions,
visuoconstruction abilities, and language. Memory was
assessed via the immediate and delayed recall of the Rey
Auditory Verbal Learning Test, the delayed recall of Rey
figures, the delayed recall of a 3-word list, and the delayed
recall of a story. An MCI amnesic diagnosis hinged upon
an impairment in an at least 1 episodic memory test. The
abnormal threshold for performances on the memory tasks
was set below the 5th percentile of the healthy population.
The exclusion criteria included traumatic head injuries,
epilepsy, alcoholism, and the occurrence of any other past
neurological or psychiatric diseases. The patients were
carefully screened for medical conditions that could poten-
tially be associated with cognitive disturbances (ie, renal or
hepatic failure, thyroid dysfunction, and folate and/or vita-
min B12 deficits).

Each subject also underwent brain MRI and single
photon emission computed tomography (SPECT),
MMSE, Clinical Dementia Rating, and an assessment of

their Geriatric Depression Scale (GDS), Hachinski Ische-
mic Score, and Instrumental Activities of Daily Living
scale to confirm the diagnosis and to exclude other causes
of dementia, such as frontotemporal dementia, vascular
dementia, extrapyramidal syndromes, reversible dementias,
and Lewy body dementia. This was performed to ensure
the creation of clinically homogeneous groups.

AD was diagnosed according to the National Insti-
tute on Aging–Alzheimer’s Association workgroups36 and
the Diagnostic and Statistical Manual of Mental Disor-
ders, 4th edition, text revision criteria. Moreover, the
affected individuals showed a significant reduction in hip-
pocampal volume and an increase in the width of the tem-
poral horn and choroidal fissure (ranging between 2 and
4 on the Likert scale). The pattern of blood flow and oxy-
gen consumption on SPECT was abnormal as well.

The exclusion criteria for AD focused upon any evi-
dence of (1) frontotemporal dementia, (2) behavioral vari-
ants of frontotemporal dementia, (3) vascular dementia,
(4) extrapyramidal syndromes, (5) reversible dementias
(including pseudodementia of depression), and (6) Lewy
body dementia.

aMCI was diagnosed according to guidelines and
clinical standards.2,37,38 The exclusion criteria for aMCI
were: (1) mild AD, as diagnosed by standard protocols,
including the National Institute on Aging–Alzheimer’s
Association workgroups36; (2) clinicoinstrumental evi-
dence of concomitant dementia, such as frontotemporal,
vascular, and reversible dementias (including pseudode-
pressive dementia), marked fluctuations in cognitive per-
formance compatible with Lewy body dementia and/or
features of mixed dementias; (3) evidence of concomitant
extrapyramidal symptoms; (4) clinical and indirect evi-
dence of depression, as revealed by the GDS (scores < 14
[no depression]); (5) other psychiatric diseases, including
epilepsy, drug addiction, alcohol dependence, or the use
of neuro-/psychoactive drugs (including acetylcholinester-
ase inhibitors); and (6) current or previously uncontrolled
or complicated systemic diseases (including diabetes melli-
tus) or traumatic brain injuries.

Follow-up visits, including neuropsychological tests,
were carried out every 6 months to intercept the epoch of
an eventual MCI-to-AD conversion.

Data Recordings and Preprocessing
The EEG recording was performed at rest, on individuals
with closed eyes and in no-task conditions (for at least
5 minutes). The subjects were seated and relaxed in a
sound-attenuated and dimly lit room. EEG signals were
recorded with a standard montage from 19 electrodes
(Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, T5, T6, P3,
P4, O1, O2, Fz, Cz, and Pz) positioned on the scalp,
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according to the international 10-20 system. Eye move-
ments were monitored from 2 different channels with ver-
tical and horizontal montages. Skin/electrode impedances
were lowered to <5kΩ.

Data were analyzed with MATLAB R2011b soft-
ware (MathWorks, Natick, MA) using scripts from the
EEGLAB 11.0.5.4b toolbox (Swartz Center for Computa-
tional Neurosciences, La Jolla, CA; sccn.ucsd.edu/eeglab).
The EEG recordings were band-pass filtered from 0.2 to
47Hz using a finite impulse response filter and a 256Hz
sampling rate. Ocular, muscular, cardiac, and other types
of artifacts were inspected on imported data fragmented in
2-second duration epochs. The procedure was as follows:
(1) the data were reviewed, and the epochs with aberrant
waveforms or with evident artifactual activity were manu-
ally discarded by an expert in EEG; and (2) the detection
and rejection of artifacts were completed through an inde-
pendent component analysis (ICA) using the Infomax
ICA algorithm, as implemented in EEGLAB. ICA is a
blind source decomposition algorithm that enables the
separation of statistically independent sources from multi-
channel data. It is considered an effective method for sepa-
rating ocular movements and blink artifacts from EEG
data. The components were visually inspected, and if arti-
fact contamination was found, they were manually
rejected by the investigator.

Functional Connectivity Analysis
EEG functional connectivity analysis was performed using
low-resolution brain electromagnetic tomography (eLOR-
ETA) exact low-resolution electromagnetic tomography
software.26,27,39,40 The eLORETA algorithm is a linear
inverse solution for EEG signals with no localization error
that can indicate sources under ideal (noise-free) condi-
tions.41 According to the scalp-recorded EEG potential
distribution, eLORETA software was used to compute a
discrete, 3-dimensionally distributed linear, weighted,
minimum-norm inverse solution. The particular weights
used in eLORETA endow the tomography with the prop-
erty of exact localization necessary to test point sources,
yielding images of the current density with exact localiza-
tion, albeit with a low spatial resolution (ie, the neighbor-
ing neuronal sources are highly correlated).

To obtain a topographic view of the whole brain,
brain connectivity was computed with eLORETA soft-
ware in 84 regions, positioning the center in the 42 avail-
able Brodmann areas (BAs; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, and 47) in the left and right hemispheres.

Regions of interest (ROIs) are needed for estimation
of the electric neuronal activity that is used to analyze

brain functional connectivity. The signal at each cortical
ROI consisted of the average electric neuronal activities of
all voxels belonging to that ROI, as computed with
eLORETA. For each hemisphere, among the eLORETA
current density time series of the 84 ROIs, the intracorti-
cal lagged linear coherence, extracted via the “all nearest
voxels” method,42 was computed between all possible
pairs of the 84 ROIs for each of the 7 independent EEG
frequency bands of delta (2–4Hz), theta (4–8Hz), alpha
1 (8–10.5Hz), alpha 2 (10.5–13Hz), beta 1 (13–20Hz),
beta 2 (20–30Hz), and gamma (30–45Hz) for each
subject.

Starting with the definition of the complex valued
coherence between time series x and y in the frequency
band ω—which is based on the cross-spectrum given by
the covariance and variance of the signals—the lagged lin-
ear coherence in the frequency band ω is reported in
accordance with the following equation,42

LagR2
xyw =

½ImCovðx ,yÞ�2
VarðxÞ*VarðyÞ− ½ReCovðx ,yÞ�2

where Var and Cov are the variance and covariance of the
signals.

This was developed as a measure of true physiologi-
cal connectivity not affected by volume conduction and
low spatial resolution.42 The values of lagged linear con-
nectivity computing between all pairs of ROIs for each
frequency band were used as weights of the networks built
in the graph analysis.

Graph Analysis
As previously stated, a network is a mathematical repre-
sentation of a real-world complex system. It is defined by
a collection of nodes (vertices) and links (edges) between
pairs of nodes. Nodes usually represent brain regions,
whereas links represent anatomical, functional, or effective
connections,23 depending on the dataset. Anatomical con-
nections typically correspond to white matter fiber tracts
between pairs of gray matter brain regions (cortical areas
or subcortical relays). Functional connections correspond
to magnitudes of temporal correlations in activity and
may occur between pairs of anatomically unconnected
regions.

A weighted graph is a mathematical representation
of a set of elements (vertices) that may be linked through
connections of variable weights (edges).

In the present study, the weighted and undirected
networks were built (the vertices of the network were the
estimated cortical sources in the BAs) and the edges were
weighted by the lagged linear value within each pair of
vertices. The software instrument used here for the graph
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analysis was the Brain Connectivity Toolbox (http://www.
brain-connectivity-toolbox.net/), adapted with our own
MATLAB scripts.

The SW parameter was evaluated on the brain net-
works, as it measures the balance between local connect-
edness and the global integration of a network,
representing brain network organization. SW architec-
ture is intermediate between that of random networks
(associated with a short overall path length but a low
level of local clustering) and regular networks or lattices
(which have a high level of clustering but a high overall
path length); specifically, SW networks have a relatively
high level of clustering and a short path length.43 The
measure of network small-worldness was defined as the
ratio of the normalized clustering coefficient (Cw) and
the normalized path length (Lw). We used data normali-
zation (ie, relativization) before performing the SW mea-
surements. The normalized characteristic path length
was obtained dividing the parameter by a mean value.
The mean value is the average of the characteristic path
length values of each subject within the 7 EEG fre-
quency bands. The same procedure was applied to com-
pute the normalized clustering coefficient. As we
computed from weighted networks, it was difficult to
evaluate disgraphs with the same number of nodes and
connections (all connections were available), so we
decided to use relative values within bands.11,19–21

ApoE Testing
In a subgroup of 97 subjects (age = 71.46 ± 0.66 SEM
years, MMSE = 25.98 ± 0.22)—52 aMCI-S (age = 69.85
± 0.89 years, MMSE = 26.74 ± 0.29, months of follow-
up = 45.87 ± 3.94, M/F = 22/30) and 45 aMCI-C
(age = 73.33 ± 0.92 years, MMSE = 25.11 ± 0.27,
months of follow-up = 19.75 ± 1.82, M/F = 19/26)—
blood genotyping was performed. The ApoE genotype
was determined following the well-established method
pioneered by Hixson and Vernier.44 During a further clas-
sification process, we considered the MCI subjects to be
ApoE4 noncarriers (absence of the ε4 allele) or ApoE4
carriers (presence of at least 1 ε4 allele).

Statistical Evaluation
The eLORETA statistical evaluation was performed using
a graph analysis pattern extracted with sLORETA/eLOR-
ETA from the brain network. The normality of the data
was tested using the Kolmogorov–Smirnov test, and the
hypothesis of Gaussianity could not be rejected. To con-
firm the working hypothesis, a statistical analysis of vari-
ance (ANOVA) design was addressed for the SW between
the factors Group (aMCI-C, aMCI-S) and Band (delta,
theta, alpha 1, alpha 2, beta 1, beta 2, and gamma). An

ANOVA design was also incorporated for the SW
between the factors Group (AD, aMCI-C, aMCI-S) and
Band (delta, theta, alpha 1, alpha 2, beta 1, beta
2, gamma).

Polynomial Regression and Receiver Operating
Characteristic Curve and 10-Fold Cross-
Validation
The dataset contains the SW value of the brain network
for the 145 subjects at the 7 given EEG frequency bands:
delta, theta, alpha 1, alpha 2, beta 1, beta 2, and gamma.
Each subject has been assigned a label according to
whether he or she developed AD at the follow-up.

A simple polynomial regression has been chosen, cal-
culated using the MATLAB built-in function “fitlm”; the
function fits, using the least squares method, a given poly-
nomial. The polynomial contains 8 coefficients: the con-
stant term and a coefficient for each of the frequency
bands. The residuals plot showed an almost normal distri-
bution, suggesting that an appropriate polynomial was
chosen for the approximation.

The data were randomly distributed across the
10 groups in accordance with the 10-fold cross-validation
technique, and the classifier was tested against all of the
groups while being trained on the other 9. The resulting
performances and areas under the receiver operating char-
acteristic (ROC) curve (AUC) were averaged to compute
the final value.

The following indexes measured the performance of
the conversion binary classification: (1) sensitivity, which
measures the rate of the positives (aMCI-C) who were
correctly classified as positives (ie, they were assigned a
“true positive rate” using the signal detection theory);
(2) specificity, which measures the rate of the negatives
(aMCI-S) who were correctly classified as negatives (ie,
they were assigned a “true negative rate” using the signal
detection theory); (3) accuracy of the classifier (subjects
correctly classified); and (4) AUC. We reported sensitivity,
specificity, and accuracy only for the “optimal” values
(with the cutoff point corresponding to the maximal
accuracy).

Finally, we included ApoE genotyping in the data-
set. The dataset contained the same SW value of the
brain network for the 97 subjects at the 7 given EEG
frequency bands: delta, theta, alpha 1, alpha 2, beta
1, beta 2, and gamma. Added to the code of APOE-ε4
noncarrier or APOE-ε4 carrier was a polynomial con-
taining 9 coefficients: the constant term, the ApoE, and
a coefficient for each of the frequency bands. Each sub-
ject was assigned a label corresponding to the outcome
(ie, whether the individual had converted to AD at the
follow-up).
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Results
Clinical Data
The clinical and demographic data of the whole group of
subjects are reported in Table 1, showing that the 2 groups
present no differences.

Graph Theory Parameter Analysis
ANOVAs for the evaluation of both Cw and Lw showed
statistically significant interactions (Cw: F6, 858 = 3.7042,
p = 0.00122; Lw: F6, 858 = 4.1535, p < 0.0004) between
the Group (aMCI-C, aMCI-S) and EEG Band (delta,
theta, alpha 1, alpha 2, beta 1, beta 2, gamma) factors.
Duncan-planned post hoc testing showed higher values in
both coefficients in the delta (p < 0.04) band, and lower
values in alpha 1 (p < 0.004) and alpha 2 bands
(p < 0.011) in aMCI-C, with respect to the aMCI-S
subjects.

The ANOVA for the evaluation of the SW showed
a statistically significant interaction (F6, 858 = 7.6633,
p < 0.00001) between the Group (aMCI-C, aMCI-S)
and EEG Band (delta, theta, alpha 1, alpha 2, beta
1, beta 2, gamma) factors. Duncan-planned post hoc
testing showed lower values of SW coefficients in the
delta (p < 0.034), beta 2 (p < 0.032), and gamma
(p < 0.0001) bands and vice versa for the higher SW in
the alpha 1 (p < 0.011) and alpha 2 frequency bands
(p < 0.0005) in aMCI-C, with respect to the aMCI-S
subjects.

To evaluate eventual differences in the AD condi-
tion, this second analysis was performed. For the evalua-
tion of SW between the factors Group (AD, aMCI-C,
aMCI-S) and Band (delta, theta, alpha 1, alpha 2, beta
1, beta 2, gamma), ANOVA showed a statistical interac-
tion (F12, 1,914 = 7.5748, p < 0.00001), as plotted in
Figure 1. Duncan-planned post hoc testing showed no sta-
tistical differences between AD and aMCI-C subjects,
except in the gamma band (p < 0.00002).

Figure 2 reports the functional coupling distribu-
tion, as revealed by the lagged linear coherence, in all
EEG frequency bands in the 2 subgroups of aMCI sub-
jects. It is evident, as has already been illustrated in sev-
eral previous studies (including one of ours), that aMCI-
C presents greater coupling in delta and lower in alpha
than aMCI-S.

ApoE Testing
Among the 97 subjects with the ApoE classification, of
the 66 ApoE4 noncarriers (lacking the ε4 allele), 29 con-
verted (43.9%). Meanwhile, among the 31 ApoE4 car-
riers (with at least 1 ε4 allele), 16 (51.6%) converted.
The ROC (red line in Fig 3) curve showed an AUC
of 0.51.

Classification between Stable and Converted
Individuals Based on SW
In the classification process considering only the SW
values (145 subjects), the ROC (green line in Fig 3) curve

TABLE 1. Clinical Data of the 2 Groups of Amnesic
Mild Cognitive Impairment

Stable Converted

Mean SE Mean SE

Educational level 10.15 0.71 10.02 0.70

RAVLT immediate
recall

26.95 1.19 24.50 0.99

RAVLT delayed recall 3.87 0.49 2.32 0.34

RAVLT recognition
correct

10.34 0.53 9.06 0.72

RAVLT recognition
false

4.97 0.97 4.31 1.00

RAVLT recognition
accuracy

0.85 0.02 0.81 0.03

Constructional praxis 9.26 0.36 8.59 0.41

Constructional praxis
landmarks

66.26 0.75 64.85 1.03

MFTC accuracy 0.96 0.01 0.90 0.02

MFTC false alarms 0.43 0.18 1.55 0.65

MFTC time 95.96 5.04 96.52 9.29

Raven Matrices 047 24.53 0.99 25.13 2.84

Phonological verbal
fluency

30.57 1.94 25.09 1.38

Categorical verbal
fluency

10.96 0.83 10.52 0.65

Stroop SF interference
time

33.71 3.93 55.52 9.19

Stroop SF Interference
errors

1.89 0.58 5.19 1.56

Corsi forward 4.69 0.26 3.71 0.39

Corsi backward 3.50 0.29 3.60 0.24

Clock-drawing 3.13 0.44 2.43 0.53

Prose memory 3.63 1.08 1.43 0.57

Span forward 5.23 0.30 5.22 0.32

Span backward 4.00 0.41 3.17 0.40

MFTC = Multiple Features Target Cancellation; RAVLT = Rey
Auditory Verbal Learning Test; SE = standard error; SF = short form.
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showed an AUC of 0.64 (indicating moderate classifica-
tion accuracy). The resulting classifier showed 57% sensi-
tivity, 66% specificity, and 61% accuracy for the
classification of the aMCI state as a prodromal indicator
of AD. This result was obtained when all subjects were
included.

When adding ApoE genotyping to the classification
process (using 97 subjects), the ROC curve (blue line in
Fig 3) showed an AUC of 0.97; the resulting classifier pre-
sented 96.7% sensitivity, 86% specificity, and 91.7%
accuracy, indicating very high accuracy for the classifica-
tion of the aMCI state as prodromal to AD. Using only
the SW values in these 97 subjects, the ROC curve
showed an AUC of 0.63; the resulting classifier presented
50% sensitivity, 69% specificity, and 59.6% accuracy.

Of note, it is possible to consider the point density
in the ROC curve as a measure of stability to threshold
changes; in that regard, it is clear that the most stable
(although not the highest performing) classifier is the one
that relies only on ApoE, as it evaluates only one variable
with 1 and 0 as possible values. Comparing SW to SW +

ApoE, it is possible to state that, by adding genotype
information, classification performance increases and sta-
bility improves.

Control Analyses
Figure 4 illustrates the connection matrices related to the
2 groups aMCI-C and aMCI-S (indicating the baseline
functional network topology).

To understand whether the difference in the baseline
could influence the results, we selected 2 subgroups that
were perfectly homogeneous in terms of their demo-
graphic and cognitive parameters. The subgroups included

FIGURE 1: Small world characteristics across
electroencephalographic frequency bands in stable and
converted amnesic mild cognitive impairment (MCI) subjects
with respect to Alzheimer dementia patients.

FIGURE 2: Functional coupling in stable and converted subjects. An arbitrary threshold was used to illustrate these patterns. It is
evident that converted amnesic mild cognitive impairment presented more coupling in delta and beta and gamma, and less
coupling in alpha than stable mild cognitive impairment.

FIGURE 3: Average receiver operating characteristic (ROC)
curves and their confidence intervals, illustrating the
classification of the stable and converted amnesic mild
cognitive impairment individuals based on the apolipoprotein
E (ApoE; red line, 97 patients), small world (green line,
145 patients), and ApoE + electroencephalographic (EEG; blue
line, 97 patients) values. The area under the ROC curves was,
respectively, 0.52, 0.64, and 0.97, indicating an optimal
classification accuracy.
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42 aMCI-S and 43 aMCI-C subjects. Furthermore,
27 aMCI-S and 30 aMCI-C subjects also presented ApoE
testing values (demographic data are reported in Table 2).
For these groups, we performed the same classifier proce-
dures as in the main analyses of the present study. Our
results were in line with the main results, but were not as
statistically significant, probably because of the small num-
ber of patients, who showed an AUC of 0.62. The result-
ing classifier showed 52% sensitivity, 90% specificity, and
61% accuracy. When adding ApoE genotyping to the
classification process, the ROC curve showed an AUC of
0.7; the resulting classifier presented 67% sensitivity, 93%
specificity, and 65% accuracy.

Is the need for a “graph theoretical” model sup-
ported by the present results? To answer this question, we
compared the same type of classifier to other methods of
EEG analysis currently used for AD studies and applied
what was found to the same EEG epochs utilized for
graph valuation, namely spectral coherence and power
spectrum in combination with ApoE. Our most signifi-
cant result was obtained when analyzing the power density
spectrum on all available subjects. We used sLORETA
software to solve the EEG inverse problem within a
3-shell spherical head model and to find the values of the
voxel current density, to explain the EEG spectral power
density recorded by the scalp electrodes. The current den-
sity at each voxel was then normalized to the power den-
sity averaged across all the frequencies (0.5–45Hz) and
across all 6,239 voxels of brain volume. After this normali-
zation, the current density values lost their original physi-
cal dimension and were represented by an arbitrary unit
scale. This procedure also reduced intersubject variability.

In line with the low spatial resolution of the adopted
technique, we used ROI marker sLORETA software to
collapse the voxels of sLORETA solutions at 12 ROIs

(6 for the left and 6 for the right hemispheres; BAs
included in the cortical regions of interest: frontal [8,
9, 10, 11, 44, 45, 46, 47], central [1, 2, 3, 4, 6], parietal
[5, 7, 30, 39, 40, 43], occipital [17, 18, 19], temporal
[20, 21, 22, 37, 38, 41, 42], and limbic [31, 32, 33,
34, 35, 36]) coded according to the Talairach space. The
signal at each cortical ROI consists of the averaged electric
neuronal activities of all voxels belonging to that ROI, as
computed with sLORETA. The current densities at differ-
ent voxels were then grouped to describe the cerebral
activity in the following EEG frequency bands: delta
(2–4Hz), theta (4–8Hz), low alpha (8–10.5Hz), high
alpha (10.5–13Hz), low beta (13–20Hz), high beta
(20–30Hz), and gamma (30–45Hz). The sLORETA
method is a properly standardized, discrete, linear,
minimum-norm, inverse-solution method that computes
the 3-dimensional cortical distribution of the electric neu-
ronal source activity from the EEG recordings on the head
surface.45 A detailed description of the method can be
found in several previous publications.41

In accordance with the data, we performed the clas-
sifier procedures of the main analyses of the present study
and obtained 51.79% sensitivity, 100% specificity, and
68.86% accuracy; these results are promising but show
less significance than those in our proposal.

Discussion
AD is characterized by a progressive loss of memory and
deterioration of other cognitive functions. The illness has
a prolonged and progressive course, and patients—if they
survive long enough to experience the late form of the
disease—die in a nearly vegetative state. The disease char-
acteristics place an enormous emotional and financial bur-
den on patients, their families, and society.46 In 2010,

FIGURE 4: Square image representation lagged linear coherence of each band both before and after. In the axes, there are
reported the single nodes of the network: Brodmann areas 1F, 2P, 3F, 4F, 5P, 6F, 7P, 8F, 9F, 10F, 11F, 13F, 17O, 18O, 19O,
20T, 21T, 22T, 23P, 24F, 25F, 27T, 28T, 29T, 30T, 31P, 32F, 33F, 34T, 35T, 36T, 37T, 38T, 39P, 40P, 41T, 42T, 43P, 44F, 45F,
46F, and 47F first in the left and then in the right hemisphere, where F, T, O and P represent frontal, temporal, occipital, and
parietal, respectively.
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AD cost the United States an estimated $604 billion. This
number is staggering, especially in light of predictions that
the number of AD cases worldwide, currently estimated at
36 million, will triple by 2050.9 The US costs of dementia
were estimated to total $818 billion in 2015, an increase
of 35% since 2010; 86% of the expenses are incurred in
high-income countries. The costs of informal care and the
direct costs of social care represent similar proportions of
the total cost, whereas the costs incurred by the medical
sector are much lower. A threshold of US $1 trillion was
predicted to be crossed by 2018.47

The AD clinical phenotype follows a prodromal
stage known as MCI, which is usually characterized by
memory loss (aMCI). The identification of early bio-
markers of conversion from aMCI to AD are of interest to
researchers and health policy makers when the goal of
early interventions is pursued. Even in the absence (at the
present) of a disease-modifying therapy, it is evident that
the early initiation of pharmacological and nonpharmaco-
logical treatments (including changes in lifestyle) helps to
maintain personal autonomy in daily activities and signifi-
cantly reduces the total costs of disease management.48–50

TABLE 2. Clinical Data of the 2 Homogeneous Subgroups of Amnesic Mild Cognitive Impairment

42 Stable 43 Converted 27 Stable 30 Converted

Mean SE Mean SE Mean SE Mean SE

MMSE 26.09 0.34 25.63 0.27 26.60 0.39 25.47 0.36

Age 71.71 0.89 72.02 1.05 71.15 1.00 72.27 1.12

Education level 9.36 0.75 10.07 0.79 9.56 0.91 9.83 0.93

RAVLT immediate recall 25.91 1.23 25.38 1.07 26.24 1.56 25.90 1.42

RAVLT delayed recall 2.97 0.43 2.61 0.44 3.05 0.55 2.92 0.56

RAVLT recognition correct 10.41 0.58 9.73 0.70 9.76 0.81 9.65 1.03

RAVLT recognition false 5.36 1.02 5.35 1.24 5.25 0.93 6.24 1.76

RAVLT recognition accuracy 0.82 0.02 0.83 0.02 0.83 0.02 0.82 0.03

Constructional praxis 9.16 0.28 9.00 0.38 8.87 0.35 8.08 0.35

Constructional praxis landmarks 66.00 0.60 64.55 1.10 65.93 0.82 62.54 1.48

MFTC accuracy 0.97 0.01 0.91 0.02 0.97 0.01 0.90 0.03

MFTC false alarms 1.24 0.72 1.25 0.47 1.44 1.01 1.35 0.58

MFTC time 79.38 5.61 81.64 6.13 83.19 7.14 82.07 8.47

Raven Matrices 047 24.88 1.02 22.44 1.06 25.10 1.35 21.98 1.33

Phonological verbal fluency 29.00 1.55 28.13 1.44 27.80 1.92 28.56 2.00

Categorical verbal fluency 13.30 0.71 10.87 0.74 12.94 0.90 11.69 0.94

Stroop SF interference time 41.54 5.99 42.50 6.86 36.55 5.18 37.54 5.00

Stroop SF interference errors 2.18 0.54 2.55 0.56 3.10 0.56 3.13 0.76

Corsi forward 4.70 0.19 4.25 0.17 5.50 0.47 4.67 0.13

Corsi backward 3.50 0.13 3.33 0.11 3.50 0.16 3.33 0.13

Clock-drawing 3.13 0.23 3.17 0.18 3.14 0.30 3.20 0.24

Span forward 5.20 0.21 5.00 0.23 5.00 0.32 5.00 0.32

Span backward 4.00 0.26 3.50 0.18 3.50 0.47 3.50 0.22

Subjects with apolipoprotein E are shown on the right.
MFTC = Multiple Features Target Cancellation; MMSE = Mini-Mental State Examination; RAVLT = Rey Auditory Verbal Learning Test; SE =
standard error; SF = short form.
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Moreover, many of the clinical trials with potentially
disease-modifying drugs target MCI subjects who are pro-
dromal to AD, because failure has been demonstrated
when the full symptomatology of AD has already been
developed. Therefore, biomarkers that can carefully pre-
dict the evolution of the disease at an early stage could be
instrumental in enabling early diagnosis and intervention
and could be used to identify individuals who could bene-
fit from trials with experimental drugs. This can be partly
accomplished with the presently available diagnostic arma-
mentarium (volumetric MRI, PET, PET + radioligands/
lumbar puncture for amyloid and tau metabolites),
although it has a relatively low sensitivity to synaptic dys-
function (which is associated with a very early stage of pre-
symptomatic AD) and is definitely expensive, limited in
terms of its availability on a territorial level, and relatively
invasive. Because of these limitations, such a diagnostic
combination is not feasible for a large population screen-
ing. A recent survey and meta-analysis yielded a prevalence
of the MCI condition of 5.9% in the > 60-year-old popu-
lation, with a steady progression in the different age
groups (4.5% 60–69, 5.8% 70–79, 7.1% 80–89; Cohort
Studies Memory in an International Consortium).51 These
represent significant numbers for a population-based
screening. In recent years, progressively more attention
has been paid to the electrophysiological substrate of the
disease, which could be used to evaluate whether the anal-
ysis of brain electroencephalographic signals could track
early progression from MCI to mild AD via large popula-
tion screening. There is growing interest in this technique
because of its low cost, widespread availability, and nonin-
vasiveness. This paper aimed to determine whether a spe-
cific analysis of EEG rhythms, exploring brain SW
characteristics, could predict—when combined with a
genetic risk evaluation gleaned from the ApoE genotype—
the risk of conversion from MCI to AD as a first-level
screening method with appropriate specificity/sensitivity.
This type of combined approach (ie, graph theory for
EEG signals and ApoE genotyping) has been previously
utilized with diagnostic purposes to distinguish between
healthy elderly and AD subjects31,32; however, to the best
of our knowledge, such an approach has never been previ-
ously reported for prognostic purposes, namely to discrim-
inate prodromal-to-AD from nonprodromal in a sample of
MCI subjects.

Healthy brain organization reflects an optimal bal-
ance of functional integration and segregation; such a sce-
nario is termed SW. SW characteristics reflect complex
inhibitory and excitatory brain circuits consisting of func-
tionally specialized regions that continuously and mutually
cooperate to acquire, share, and integrate information in a
constant state of dynamic fluctuations that is also

governed by a number of variables—including attention,
emotion, motivation, and arousal—influencing network
performance. Connections between neuronal assemblies
reflect segregation and integration processes, as revealed by
local clustering (segregation) and path length (integration).

Here, a statistically significant difference in the SW
organization of converted subjects (particularly among
rapid—i.e. within 1–2 years—converters) was found, and
the SW distributions in the EEG frequency bands of
interest corresponded to aMCI-S; however, it was also
shown that aMCI-C subjects do have SW characteristics
very similar to those of AD patients 1 to 2 years before
conversion (time 0 of the study).

Many studies have looked at topological changes in
the brain networks with different modalities and have
examined the structural and diffusion tensor imaging
MRI, EEG/magnetoencephalography, and functional
MRI reviewed by Xie and He.52 Therefore, AD is more
often considered a disconnection syndrome,49 and brain
topology can be represented by a progressive derangement
of the brain organization in hub regions and long-range
connections causing SW architecture alteration. Due to
decreasing local and global connectivity parameters, the
large-scale functional brain network organization in AD
deviates from the optimal SW architecture toward a more
“ordered” type (as reflected by lower SW values), leading
to less efficient information exchange across brain areas
that is in line with the disconnection hypothesis of AD.49

Here, an abnormal increase in graph theory parame-
ters in converted subjects, with respect to aMCI-S, has
been observed for the low alpha rhythm, along with a
decrease in the delta and gamma rhythms. Such an effect
should be interpreted in light of the physiological role that
the alpha rhythm plays. Alpha frequencies constitute the
leading characteristic of normal EEG activity at waking
rest, usually defined as the “idling rhythms” of the adult
brain.53 Several studies support the hypothesis that alpha
is a deterministic chaotic signal with several functional
correlates ranging from memory formation to sensory-
motor processing.54 In healthy individuals, alpha rhythm
works as an oscillatory component of brain activity and
can therefore be interpreted as a basic form of information
transmission in the brain.55 Moreover, event-related activ-
ity studies have shown a positive correlation between
alpha frequency and the speed of information processing,
as well as a good cognitive performance.55

For the delta band, it is argued that, in a waking
state, such EEG rhythms are poorly represented, thus
reflecting a condition of likely alpha-delta “reciprocal inhi-
bition.”11 Furthermore, it is well known that the anatomi-
cal or functional disconnection of lesioned cortical areas
generates spontaneous slow oscillations in the delta range
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in virtually all recorded neurons. The SW decrease in the
delta band represents a type of structured behavior that
could be interpreted as an increase in delta activity and a
functional inhibition. The opposite holds true for the
alpha band.

A SW decrease in the gamma band in the converted
MCI subjects is in line with previous evidence26 showing
a decrease of the SW gamma band in AD patients with
respect to MCI and control subjects. The gamma band
(>30Hz) includes high-frequency EEG oscillations that
mediate information transfer between cortical and hippo-
campal structures for memory processes,56 particularly
through feed-forward mechanisms57 and coherent phase-
coupling between oscillations from different structures.58

Both animal and human studies provide evidence that
gamma oscillations play a fundamental role in memory
tasks. Gamma neural activity is involved in numerous cog-
nitive functions—including visual object processing, atten-
tion, and memory59—and is also strongly associated with
behavioral performance (accuracy and reaction time) in
several memory tasks, including tasks probing episodic
memory, encoding, and retrieval.60 Furthermore, micro-
electrode intraneural recordings have demonstrated that
gamma oscillations are pivotal in spike phase synchroniza-
tion, which is at the base of EEG connectivity
mechanisms.61

The ROC curve for EEG SW characteristics showed
a >60% sensitivity (AUC = 0.64, indicating moderate
classification accuracy) for classifying the MCI state as a
prodromal indicator of AD when all subjects were used.
The present findings are in line with those of previous
studies26,39,62 in which SW characteristics were found to
have decreased in patients with AD with respect to MCI
in low-frequency EEG rhythms. In other words, the MCI
connectivity pattern was less random than that of the AD
group. Moreover, significant differences between healthy
elderly MCI subjects and AD patients have been demon-
strated by showing that physiological brain aging presents
greater specialization (although lower values) of SW EEG
rhythm characteristics that are higher than normal in slow
frequencies and lower in alpha bands.28 Finally, the con-
trol analysis, with respect to AD patients, showed that
aMCI-C presented a graph theory pattern that was practi-
cally identical to that of AD. These findings suggest that
EEG connectivity analysis, combined with neuropsycho-
logical evaluation in MCI, could be of great help in early
identification of this condition as a first-line screening
method and a means to intercept those subjects with a
high risk for rapid progression to AD.

ROC curves showed that, when both phenotype and
genotype characteristics (obtained at a low cost with
widely available ApoE technology) were combined, the

accuracy remarkably increased to 91.78% (AUC = 0.97,
indicating an optimal classification accuracy) for classifying
the MCI state as prodromal of AD. This result is in line
with the finding that the ε4 allele of the APOE gene is a
major genetic risk factor for pathogenesis of late onset
AD33,34; it also suggests that SW characteristics and ApoE
contribute to predict outcome in a synergistic way with
little overlap. We also verified that the EEG SW measures
played a particularly relevant role in APOE e4 noncarriers.
Of note, a more homogenous population showed
decreased accuracy, but it should be also noted that the
more homogenous population consisted of a lower num-
ber of subjects.

Altogether, our findings clearly demonstrate that
ApoE genotype and EEG connectivity reflect different
types of “aggressors” responsible for neurodegenerative
mechanisms and that they nicely integrate each other
when considered in combination.

Is the graph theoretical model superior to other
types of EEG analysis in an AD diagnostic context? To
answer this question, we compared the same type of classi-
fier to other methods of EEG analysis currently used for
AD studies; we then applied the results to the same EEG
epochs utilized for graph valuation, namely spectral coher-
ence and power spectrum, still in combination with ApoE
genotyping. The analysis showed 51.79% sensitivity,
100% specificity, and 68.86% accuracy. These results are
promising but less significant than those from our SW
analysis.

The intrinsic characteristics of EEG rhythms contain
relevant information on neurodegenerative processes
underlying AD. These processes begin long before clinical
symptoms manifest, by deranging the synaptic transmis-
sions and the efficacy of brain dynamic connections.49 A
plastic reorganization of the surviving neuronal
circuitries—the neural “reserve”—affects daily living abili-
ties. This is due to prolonged neurodegeneration toward a
network maintenance of functional connections.11,49,63 In
aMCI-C subjects, the SW characteristics provided reliable
predictions of aMCI to AD progression within a relatively
short time frame. Moreover, rapid progression from aMCI
to AD heralds an aggressive type of dementia with a rapid
degradation of daily life skills.

In conclusion, EEG connectivity analysis, combined
with a neuropsychological MCI pattern and ApoE geno-
typing, could represent a combination of biomarkers that
are of great help in the early identification of MCI prodro-
mal to AD. This combination represents a multimodal,
low-cost, and noninvasive approach, one that utilizes
widely available techniques that, when combined, reach
high sensitivity/specificity and good classification accuracy
on an individual basis (>0.97 of AUC). It could therefore
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be used to effectively determine the risk of the progression
to AD in MCI patients and should be considered a first
line of screening.
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