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Abstract In many research fields, scientific questions

are investigated by analyzing data collected over space
and time, usually at fixed spatial locations and time
steps and resulting in geo-referenced time series. In this
context, it is of interest to identify potential partitions

of the space and study their evolution over time. A fi-

nite space-time mixture model is proposed to identify
level-based clusters in spatio-temporal data and study
their temporal evolution along the time frame. We an-

ticipate space-time dependence by introducing spatio-
temporally varying mixing weights to allocate observa-

tions at nearby locations and consecutive time points

with similar cluster’s membership probabilities. As a

result, a clustering varying over time and space is ac-
complished. Conditionally on the cluster’s membership,
a state-space model is deployed to described the tempo-

ral evolution of the sites belonging to each group. Fully
posterior inference is provided under a Bayesian frame-

work through Monte Carlo Markov Chain algorithms.

Also, a strategy to select the suitable number of clus-
ters based upon the posterior temporal patterns of the

clusters is offered. We evaluate our approach through

simulation experiments and we illustrate using air qual-
ity data collected across Europe from 2001 to 2012.
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1 Introduction

In many research fields, scientific questions are investi-
gated by analyzing data collected over space and time,

i.e., spatio-temporal data. Customarily, data gathered

at fixed spatial locations and regular time steps is re-

ferred to as point-referenced time series. In order to
understand complex systems, it is important to extract
useful information from such spatio-temporal datasets.

In this work, extracting useful information is referred
to as identifying spatial and temporal patterns in the

observed phenomenon, with the main assumption that

the temporal patterns are relatively small in number.
This might be helpful to understand the problem at
hand and, eventually, to make decisions on the basis of

concise information.

When the interest is on the temporal evolution of an
observed phenomena, geo-referenced time series can be

pooled over space to look at the overall temporal pat-

tern, ignoring the spatial dependence across time series
at different locations. However, this approach yields to
bias results if the data-generating process differs be-

tween the time series. Rather, at each time, informa-
tion can be pooled over space within a small number of
groups according to the underlying process driving the

data. Moreover, such spatial partition can vary dynami-
cally along time depending upon the temporal evolution

of the underlying process.

When dealing with spatio-temporal data, statistical
models are widely adopted to understand and predict

responses of interest across space and over time. Cus-

tomary, spatio-temporal modeling (Cressie and Wikle,
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2 Lucia Paci, Francesco Finazzi

2011; Banerjee et al, 2014) relies on an implicit idea
of grouping which depends upon model choices (e.g.
neighborhood structure, covariance function). Spatial

clustering within the Bayesian framework is often per-

formed via nonparametric approaches; see, for instance,

methods based on the spatial Dirichlet process (Gelfand
et al, 2005; Duan et al, 2007), the spatial stick-breaking
process (Reich and Fuentes, 2007), the Dirichlet label-

ing process (Nguyen and Gelfand, 2011) and the recent
spatial product partition model (Page and Quintana,

2016). Although these approaches are quite appealing,

their benefit can be limited when covariates are avail-
able to help cluster’s identification. With regard to time
series clustering, Nieto-Barajas and Contreras-Cristán

(2014) proposed a Bayesian semiparametric mixture model
centered in a state-space to induce clustering of time

series. Finazzi et al (2015) developed a modified ver-

sion of the state-space model to study the temporal

coherence of ecological time series assuming that the
observed time series share common temporal patterns
along the entire temporal frame of observation.

Model-based clustering of spatio-temporal data can

be described within the class of finite mixture mod-

els under a Bayesian perspective. In this framework,
Fernández and Green (2002) developed a spatial mix-

ture model for areal data with a variable number of mix-

ing components and spatially dependent mixing weights.

Frühwirth-Schnatter and Kaufmann (2008) proposed a
clustering approach based on finite mixtures of dynamic

regression models that allows for pooling within clus-

ters. In Viroli (2011), a finite mixture model is employed
to study three-way data which includes, among others,
spatio-temporal data. Neelon et al (2014) used a finite

mixture model to analyze multivariate areal-referenced
data, introducing spatial random effects for each mix-

ture component, as well as for the mixing weighs. Hos-

sain et al (2014) used a space-time mixture of Pois-
son regression models to investigate relabeling algo-

rithms and model selection issues. However, there is
little work in the spatio-temporal setting for clustering

point-referenced time series with spatial partitions that
are allowed to vary dynamically over time.

Our contribution is to propose a space-time model-
based approach to identify dynamic clusters in spatio-

temporal data. Our approach builds upon the finite

mixture modeling, where each mixture component de-

scribes a cluster with a level-based meaning. Within
finite mixture modeling, space-time dependence is an-

ticipated by introducing spatio-temporally varying mix-

ing weights. Indeed, we envision a latent spatial process
that evolves dynamically over time and drives the mix-
ing probabilities. Also, spatial and temporal covariates

can be easily included in the mixing weights to facili-

tate groups’ identification. As a result, data observed

at nearby locations and consecutive time points is as-
signed with similar cluster membership’s probabilities.

According to such probabilities, data collected at spa-
tial locations are partitioned into K mutually exclusive

groups at each time. In other words, a clustering vary-
ing over time and space is accomplished. Conditionally
on the cluster’s membership, a state-space model is de-

ployed to described the temporal evolution of the sites
belonging to each cluster. Hence, we borrow strength of

information of all sites belonging to a given cluster at a

given time to estimate the average level of the cluster at
that time. We interpret the cluster level, varying over
time, as the temporal pattern of the cluster.

Fully posterior inference is provided under a Bayesian
framework through Monte Carlo Markov Chain (MCMC)
algorithms. Moreover, we offer a strategy to select the

suitable number of clusters using the posterior inference
on the temporal pattern of the clusters.

Our application is the assessment of air quality trends

from 2001 to 2012 over Europe. We illustrate our model-
ing approach by analyzing the annual mean of daily par-
ticulate matter to provide dynamic grouping of moni-

toring sites according to pollution levels.

The remainder of the manuscript is organized as fol-

lows. In Section 2 we describe our model developments,
including mixing weights specification and state-space
modeling. Section 3 outlines model fitting and discusses

prior specification, posterior computation and posterior

classification, with details deferred to the Appendix.
Section 4 presents a simulation study while in Section
5 we illustrate our approach with an application on air

quality data. Finally Section 6 provides a brief review

and indications for future work. Supplementary mate-
rials are available online.

2 A Bayesian space-time mixture model

Let yt(s) be a response variable observed at time t

(t = 1, ..., T ) and location s ∈ R
2. We assume that

observation yt(s) comes from a finite mixture model,

that is

f (yt(s) | π,Θ) =
K
∑

k=1

πt,k(s)f (yt(s) | Θk) (1)

where K is the number of components. The distribu-
tion under the k-th component (k = 1, . . . ,K) is de-

noted by f(· | Θk) where f is a density function of
specified form and Θk denotes the set of parameters of
each component distribution. The mixing probability

πt,k(s) is the probability that the location s belongs to

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Dynamic model-based clustering for spatio-temporal data 3

component k at time t and it satisfies πt,k(s) > 0 with
∑K

k=1 πt,k(s) = 1 for each s and t.

As usual in Bayesian analysis, a hierarchical formu-
lation of the mixture model is exploited to facilitate

the computation. For each observation, we introduce
a latent allocation variable, wt(s), that identifies the

component membership of yt(s), that is Pr(wt(s) =

k) = πt,k(s). In other words, we assume that the allo-
cation variables wt(s) are conditionally independently

distributed given πt,k(s) and they come from a multi-
nomial distribution. Given the latent wt(s), the obser-
vations yt(s) are independent with

f
(

yt(s) | wt(s) = k,Θ
)

= f
(

yt(s) | Θk

)

. (2)

The allocation variables wt(s) define a random parti-
tion of the data in the sense of Lau and Green (2007),

as yt(s) and yt′(s
′) belong to the same component if and

only if wt(s) = wt′(s
′). As customary in model-based

clustering, we interpret each mixture component as a

cluster, such that observations are partitioned into mu-
tually exclusiveK groups. Alternatively, clusters can be

determined by merging mixture components according
to some criterion (Hennig, 2010; Melnykov, 2016).

2.1 Spatio-temporally varying mixture weights

The mixing probabilities, πt,k(s), are allowed to vary
from observation to observation, i.e., across space and

over time. In particular, we introduce space-time depen-

dence in the observations through the prior distribution
of the weights such that observations corresponding to

nearby locations and consecutive time points are more
likely to have similar allocation probabilities than ob-
servations that are far apart in space and time.

For each location s and time t, the weights take the
form

πt,k(s) =
exp (x′t(s)βk + φt,k(s))

∑K

l=1 exp (x
′

t(s)βk + φt,l(s))
(3)

where xt,k(s) is a p × 1 vector of covariates, φt,k(s)

are spatio-temporal random effects and β1 = 0 and
φt,1(s) = 0 (t = 1, . . . , T ) to ensure identifiability. The
logistic-type transformation in (3) guarantees that the

two conditions mentioned in Section 2 are satisfied (Fernández
and Green, 2002). When available, covariates may help

in predicting group membership’s probabilities, yield-
ing useful insights into the factors that determine group

membership. Moreover, random effects provide adjust-

ment in space and time to the explanation provided by
covariates. Therefore, the response distribution is al-
lowed to vary in flexible ways across time, space and

covariate profiles.

To allow for dynamics over time and dependence
over space we assume, for k = 2, . . . ,K,

φt,k(s) = ρkφt−1,k(s) + ζt,k(s) (4)

where ζt,k(s) are independent-in-time spatially corre-

lated errors coming from a zero-mean Gaussian pro-
cess equipped with a spatial covariance function, i.e.,

ζt,k(s)
ind
∼ GP

(

0, λ2
kC(· ; θ)

)

. Several function can be
employed to describe the spatial correlation between

sites. For instance, a popular example of isotropic cor-

relation function is provided by the exponential func-
tion that is, C(si, sj ; θ) = exp{−θ ‖si − sj‖} where θ

describes the decay rate of correlation as a function of
the distance between locations.

The space-time structure of random effects φt,k(s)
induces space-time dependence among the mixing prob-
abilities, allowing to borrow strength information from
nearby sites and consecutive time steps. As a result,

similar outcomes at near space and time points are as-

signed with similar cluster membership’s probabilities.
Finally, model simplifications can be easily achieved as-

suming only spatially or only temporally varying mix-

ing weights π’s.

2.2 State-space modeling

Model (1) requires the specification of the sampling
density f (yt(s) | Θk). The approach pursued in this

work is based on dynamic linear modeling, often re-
ferred to as state-space models (West and Harrison,
1997). In particular, we assume a dynamic linear model

to describe the temporal dynamic evolution of all the

sites within component k.
Let yt = (yt(s1), . . . , yt(sn))

′

be the n × 1 obser-
vation vector at time t, where n is the number of lo-

cations. Conditionally on the allocation variables, the
space-state model is provided by

yt = Htzt + εt
zt = Gzt−1 + ηt

(5)

where zt = (zt,1, . . . , zt,K)
′

is the K × 1 state vector,
Ht is a n×K matrix defined below, and G is a K ×K

stable transition matrix. Finally, εt ∼ N(0, σ2In) is the

n × 1 measurement error vector and ηt ∼ N(0, Ση) is
the K × 1 innovation vector. This formulation is very

general and flexible and it allows to handle different
time series analysis problems in a single framework.

We now turn to matrix Ht. Suppose that site s be-
longs to component k at time t. Then, the i-th row of
matrix Ht contains a single element equal to one at po-

sition k, while all the other elements are filled with zeros
(Inoue et al, 2007; Finazzi et al, 2015). Note that, the
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4 Lucia Paci, Francesco Finazzi

one-zero structure of matrix Ht is allowed to vary over
time according to mixing probabilities πt,k(s). More-
over, we benefit from the borrowing strength of infor-

mation of all sites belonging to component k at time

t, since they all contribute in estimating the common
latent state zt,k. Given the specification in (5), the de-
sired temporal pattern of cluster k is represented by
latent state zt,k.

3 Model fitting

3.1 Prior distributions

We complete the hierarchy of the model by specify-
ing the prior distribution for all the hyperparameters.

In particular, we place flat normal priors on the re-
gression coefficients of the mixing weights, i.e., βk ∼
N(0, 104), k = 2, . . . ,K. We assume a diagonal matrix
G = diag(g1, . . . , gK) and we specify flat normal priors

on its diagonal entries restricted in the interval (−1, 1).
Similarly, for ρk (k = 2, . . . ,K), we place a flat normal
prior distribution truncated in (−1, 1). We assume a di-

agonal matrix Ση = diag(τ21 , . . . , τ
2
K) and independent

inverse gamma distributions, IG(a, b), on its diagonal
entries. Moreover, variance components λ2

k and σ2 are

assumed to follow an inverse gamma distribution, in-
dependently. In our implementation we take a = 2 and
b = 1 to have a proper vague prior specification for each

of these variance components.

The dynamic structure of the mixing weights re-
quires an initial condition for the initial states of ran-
dom effects φ1,k =

(

φ1,k(s1), . . . , φ1,k(sn))
′; and we as-

sume φ1,k ∼ N
(

0, λkC(θ)
)

. Similarly, the autoregres-
sive state equation requires a prior distribution for the

initial states z1,k that are assumed to be independent
normal distributions centered in zero with large vari-

ance 104.

Finally, a prior distribution for the spatial decay pa-
rameter of the exponential correlation function is needed
to provide its full posterior inference. Customary choices

are vague gamma priors or uniform prior distributions.
However, under weak prior distributions, the MCMC
algorithm for λ2

k and θ is often poorly behaved due to
the weak identifiability and the slow-mixing of the as-
sociated Markov chains. Hence, we adopt an empirical
Bayes approach by setting the value of parameter θ as
suggested by standard exploratory spatial analysis (e.g.
variogram) and then we infer about the variance con-
ditional on this value. Moreover, with no updating of θ
in the MCMC, the covariance matrix of ζt,k(s) and its

inversion needs to be calculated only once, expediting
substantially the computation.

3.2 Posterior computation

Recalling allocation variables wt(s) and using the con-

ditional independence assumption, the joint posterior
distribution is expressed as

p
(

w,β,φ,ρ,λ2, z,G, Ση, σ
2 | y

)

∝

×
∏K

k=1

∏T

t=1

∏n

i=1

[

πt,k(si) N
(

yt(si); zt,k, σ2
)

]I(wt(s)=k)

×
∏K

k=2

∏T

t=2 N
(

φt,k; ρk φt,k, λ2
kC(θ)

)

×
∏K

k=1

∏T

t=1 N
(

zt,k; gk zt−1,k, τ2k
)

I(zt,1 < · · · < zt,K)

×
∏K

k=2 p(βk) p(ρk) p(λ
2
k) p(φ1,k)

×
∏K

k=1 p(gk) p(τ
2
k ) p(z1,k)

(6)

where bold symbols represent all the elements associ-
ated with the corresponding parameter, I(·) denotes

the indicator function and p(·) represents the prior dis-
tributions for their respective parameters, as described

in the previous subsection. The order constraint in the

distribution of the latent state z’s is imposed to ensure
identifiability of the estimates as discussed in Subsec-

tion 3.3.

We employ MCMC algorithms to evaluate the joint
posterior distribution, using Metropolis steps for updat-

ing the mixing parameters and Gibbs steps for updating
all the other parameters. In particular, after assigning
initial values to the model parameters, the sampling
scheme is given by the following steps:

1. for k = 2, . . . ,K, sample coefficients βk using a
random-walk Metropolis step;

2. for k = 2, . . . ,K, update φt,k =
(

φt,k(s1), . . . , φt,k(sn)
)

′

using a Metropolis step with a conditional prior pro-

posal (Knorr-Held, 1999);
3. for k = 2, . . . ,K, update ρk and λ2

k from their closed
form full conditional distribution;

4. for t = 1, . . . , T and i = 1, . . . , n, sample alloca-
tion variables wt(si) from a multinomial distribu-
tion taking values {1, . . . ,K} with posterior proba-
bilities πt,k(s)

⋆ described in the Appendix;
5. for t = 1, . . . , T , sample latent state zt from its

closed form full conditional distribution and apply
the order restriction I(zt,1 < · · · < zt,K);

6. for k = 1, . . . ,K, update gk and τ2k from their closed

form full conditional distribution;
7. update σ2 from its closed form full conditional dis-

tribution.

The closed form full conditional distributions of the
model parameters are deferred to the Appendix. Con-
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Dynamic model-based clustering for spatio-temporal data 5

vergence of the chains is monitored using standard MCMC
diagnostics.

3.3 Identification and posterior classification

Within the Bayesian analysis, if exchangeable priors are
placed upon the parameters of a mixture model, then

the resulting posterior distribution is invariant to per-

mutations in the labeling of the parameters (Jasra et al,
2005). As a result, the estimates of mixture components

in every iteration of MCMC algorithm are not sensitive
to the estimates of allocation variables.

To perform posterior classification and to estimate
the group-specific parameters, the finite mixture model

must be identified to avoid label switching. Since this

is a common issue in Bayesian mixture modeling, many
ideas has been proposed to deal with label switching

(see e.g. Stephens 2000; Frühwirth-Schnatter 2006; Sper-

rin et al 2010). Here, we elicit the idea of level-based
partitions by assuming that, a priori, the mean level of
the groups, zt,k, are in increasing order at each time.

This order restriction enables to avoid the label switch-
ing problem and to identify the model (Fernández and

Green, 2002).

Once the model has been identified it is possible to

classify the spatio-temporal observations into the dif-
ferent groups. Under the assumption that each mixture

component is interpreted as a cluster, we allocate the

observations using the posterior classification probabil-
ity. Therefore, given the MCMC draws, we register the

cluster membership and we estimate the posterior clas-
sification probability for each observation, Pr(wt(s) =
k|y), as the relative frequency (relative to the num-

ber of posterior samples) corresponding to the event
wt(s) = k. To provide the clustering, we assign each
observations to their most likely group according to the

posterior probabilities of wt(s), that is using the maxi-
mum a posteriori probability (MAP) rule.

3.4 Number of clusters

The number of mixture components K is usually un-
known in practice and needs to be estimated. In this

case, reversible jump (Richardson and Green, 1997; Del-
laportas and Papageorgiou, 2006) or birthdeath (Vi-

roli, 2011) MCMC methods can be employed. Although
these approaches enable full posterior inferences on the
number of components, they are computationally inten-

sive, particularly with big spatio-temporal datasets.

Therefore, when the number of mixing components

is relatively small, a simpler way to estimate the num-
ber of components is by comparing the values of model

selection criteria calculated for various mixture models

with fixed number of components (Hossain et al, 2014).
Recently, Malsiner-Walli et al (2016) proposed the use

of sparse finite mixture models together with standard

MCMC methods to estimate the number of mixture

components and identify cluster-relevant variables, si-
multaneously, for multivariate Gaussian mixtures.

As an alternative, for level-based meaning clusters,

we propose to look at the posterior temporal patterns to
identify the number of clusters. In fact, when the inter-

est is on the temporal evolution of the groups, it seems

sensible to estimate the number of clusters such that the
corresponding posterior temporal patterns show signifi-

cant differences along the observational time frame. For
instance, for a given K, when the analysis provides at
least two temporal patterns that show no significant

differences at most of the time steps, then a smaller

number of clusters would be preferred. Therefore, start-

ing with only two clusters, we proceed by fitting the
model with an increasing fixed number of components

and stop when the posterior inference on the temporal

patterns results in a sensible picture.

Finally, in many real applications it is reasonable to
choose the number of clusters that emerges as mean-

ingful with respect to the phenomena, say relying on a
sort of ‘scientific significance’.

4 Simulation study

We carry out simulation experiments in order to inves-
tigate the performance of our approach in identifying

dynamic clusters. In particular, we consider the num-
ber of the clusters as well as their spatial structure and
evolution over time. In this section, we show the results

of a simulation study designed as follows. At n = 100
sparse locations and T = 20 times, we generate a real-

ization of a dynamic space-time model, that is

O⋆
t (s) = ρ⋆O⋆

t−1(s) + η⋆t (s) (7)

where η⋆t (s) ∼ GP(0, C(θ⋆)) equipped with an expo-

nential correlation function. Then, at each time, we

slice the process realization with respect to K⋆ equidis-
tant levels giving rise to a spatial partition. Locations

within the same partition are assigned to the same clus-

ter. Each cluster is associated with a different tempo-
ral trend z⋆t,k, shown through black lines in Figure 1.
Finally, we simulate data from N(z⋆t,k, σ

2⋆). In our sim-
ulation setting we consider the following factors: small

(K⋆ = 2) and relatively large (K⋆ = 5) number of
clusters; low (ρ⋆ = 0.2) and high (ρ⋆ = 0.9) temporal
correlation; low (θ⋆ = 0.3) and high (θ⋆ = 1.2) spatial

correlation corresponding to roughly 10% and 90% of
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6 Lucia Paci, Francesco Finazzi

the maximum distance between locations, respectively.
For each factor combination, we simulate 50 datasets to
investigate the performance of our approach in recovery

the clusters.

First, we show our strategy to choose the number
of clusters for a simulated dataset. Such data and the

associated spatial partitions are shown in the Supple-
mentary material. Again, starting with only two groups,
we fit the model with an increasing number of clusters

until the temporal patterns are significant different each
other at most of the time steps. For instance, Figure 1

shows the posterior 95% credible interval of the latent
z’s obtained fitting the model with K = 2, . . . , 5, given

a ‘true’ number of clusters K⋆ = 4. Fitting the model

using K = 2, K = 3 and K = 4, provides significant
differences among the posterior temporal patterns at

most of the time. Rather, with K = 5, yellow and green
clusters in Figure 1 exhibit overlapped trends along the
time frame, suggesting a smaller number of groups. So,

according to our strategy, the ‘true’ number of clusters,
K⋆ = 4, is recovered.

For each simulated dataset, we fit our model set-

ting the number of clusters equal to ‘true’ number of
clusters, i.e., K = K⋆. We offer a comparison of our

approach with a simpler Bayesian mixture model with
spatio-temporally invariant mixing probabilities. We fit,
at each time, a univariate Gaussian mixture model with
standard Dirichlet prior on the mixing weight. The es-

timation via MCMCmethods is provided by the R pack-
age BayesMix (https://cran.r-project.org/package=
bayesmix). Then, an ordering constraint on the com-
ponent’s means is imposed to avoid label switching.

The performance of the two approaches is evaluated

through the misclassification error rate (Ranciati et al,

2016), i.e., the average number of units not correctly al-

located when compared to the known simulated mem-
bership over time. Figures 2 and 3 show the misclassi-
fication error rate for each time for two simulation set-

tings with K = 2 and K = 4, respectively. Identifying
the group to which each observation belongs at the be-

ginning and ending of the time frame is a relatively easy

task because the temporal patterns of clusters are well-
separated. So, both approaches do recover well the spa-

tial partitions. Conversely, as all the latent trends ap-

proach zero, the allocation problem becomes more chal-

lenging. Figures 2 and 3 show that our approach outper-
forms the simpler mixture model. Clearly, the benefit

of considering spatio-temporally varying weights is ap-

preciated when the underlying process generating the
data is strongly correlated over time and space. Indeed,
for the simulation setting with ρ = 0.9 and θ = 1.2

we obtain a reduced misclassification error of roughly

60% and 30% corresponding to K = 2 and K = 4,

respectively.

The interested reader is referred to the Supplemen-
tary material that provides the results for the other two
simulation settings and a second simulation experiment

over a spatial grid.

5 Analysis of air quality trends

Understanding the status and trends of air quality lev-
els is crucial to support policy development and imple-
mentation, as well as to inform about the challenges in
air quality assessment and management that need to be
met (Guerreiro et al, 2014). The assessment of air qual-
ity is based on ambient air measurements collected from

monitoring stations at fixed locations over times. Moni-

toring data is often aggregated over space to estimate a
joint temporal pattern, ignoring the spatial dependence
between locations. Alternatively, information is pooled

over space within a small number of groups according
to specific features of the monitoring stations (Bruno

et al, 2013).

According to the European Ambient Air Quality Di-
rective (AQD, EU 2008), air quality stations for compli-
ance monitoring are classified as traffic (stations located
in proximity to a single major road), industrial (stations

located in proximity to a single industrial source or in-
dustrial area) and background (any location which is

neither to be classified as traffic or industrial). For par-

ticulate matter, for instance, it is expected that con-
centrations collected at traffic stations are higher than

those gathered at background sites. However, such clas-

sification does not always corresponds to similar ob-

served pollution levels within the groups. Moreover, the
classification is fixed over time, despite the environ-
ment surrounding the sites may change considerably

along the time. The Implementing Provisions on Re-
porting of AQD (EU, 2011) has clarified that each sta-
tion should be classified according to the predominant

emission sources relevant for the measurement configu-
ration for each pollutant. In other words, each station

could have a number of different classifications for dif-

ferent pollutants with a classification that may change
over time (Vincent and Stedman, 2013).

We illustrate our approach by modeling the annual
mean of daily fine particulate matter (PM10) gathered

from 523 monitoring sites across western Europe, from
2001 to 2012. Data is free available from the European
air quality database AirBase maintained by the Euro-

pean Environmental Agency (http://www.eea.europa.eu/).
Figure 4 shows the PM10 monitoring stations used in
the analysis. For each site, we also consider its elevation
that we employ as a spatially varying covariate in the
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Fig. 1 Posterior 95% credible interval of the temporal patterns z’s obtained using an increasing number of clusters for a
datasets generated according to the simulation design. Black lines represent temporal patterns z⋆t,k.
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Fig. 3 Misclassification error rate over time resulting from our dynamic space-time clustering (DYSC) and a simple Bayesian
mixture model (BayesMix) for two simulation settings with K = 4.

mixing weights model (3) to help in identifying the clus-

ters. Usually, transformations are applied to PM10 data
in order to make the normality assumption acceptable

to fit customary space-time models (see e.g. Cocchi et al
2007). Here, we benefit from the Gaussian mixture that
is well suited to model not normally distributed data.

Following our strategy described in Subsection 3.4,

the number of clusters corresponding to significant dif-
ferent posterior temporal patterns would be five. How-

ever, we show here the results obtained by setting K =
3 that represents, according to our experience, a more
sensible choice in understanding air quality trends. Pos-

terior inference is carried out by implementing the al-

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



8 Lucia Paci, Francesco Finazzi

Fig. 4 PM10 monitoring stations across Europe used in our study.

gorithm described in Subsection 3.2 with 100,000 iter-
ations, 60,000 as burn-in period, and keep one of ev-

ery 15th iteration to reduce the autocorrelation of the
chains. Running time on a Intel(R) Core(TM) i7-3537U
CPU (2.50GHz, 8 GB RAM) is roughly 0.05 seconds per

iteration.

Table 1 shows the posterior summaries of model pa-
rameters. The coefficients associated with the elevation
are significant and reveal that the relative probability

of belonging to clusters 2 and 3 rather than being in
cluster 1 is roughly 50% lower for a meter increase in
the elevation. The variances λ’s of the latent space-time
processes show significant differences while all the au-
toregressive coefficients ρ’s and g’s are very close to

one, because of the strong temporal correlation of PM10

concentrations. The posterior average maps of the la-

tent processes φt,k(s) are presented in the Supplemen-
tary materials and show the spatial patterns of the pro-
cesses and their evolution over years. Figure 5 shows the

posterior 95% credible interval of the temporal trends
z’s; following the increasing order of the temporal pat-

terns, we denote the low-level, middle-level and high-
level clusters as the first, second and third clusters, re-

spectively. For each year, the spatial partition is ob-

tained using the maximum a posteriori probability rule
and displayed in Figure 6, that allows to appreciate the
borrowing of strength across space and over time in the

resulting clustering. Overall, we note decreasing levels

of fine particulate matter over the years, with a clearer
drop in the temporal pattern of the third cluster. This
is likely due to the effect of stronger policies for air

pollution reduction that has been applied in particular
regions of Europe over the last years. Indeed, the moni-

toring sites belonging to the third cluster are located in

regions well-known for their bad air quality conditions,

such as the Po Valley (Italy), the eastern Czech Re-
public, the south of Spain and the Benelux, see Figure
6. From Figure 6 we can also extract some interest-

ing stories. For instance, the monitoring sites located
in the north-western of Germany move from the second
to the first cluster, suggesting an improvement of the

air quality status in that part of the country over years.
Similarly, we note that monitoring sites of the north-

ern Spain move from the third cluster to the second one,

showing a reduction of air pollution concentrations over
such region. Conversely, sites located in France (out-
side the center of the country) move from the first to
the second cluster, showing a worsening situation in air

quality over years. Moreover, we look at the composi-
tion of the clusters with respect to the station type. As
expected, the 84% of sites belonging to the first clus-

ter are background stations; however, the third cluster
does not contain only traffic sites, rather it consists of

a similar number of background and traffic sites, with

changes over time. Finally, we can assess model ade-
quacy by computing the empirical coverage of the 95%
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Dynamic model-based clustering for spatio-temporal data 9

Table 1 Posterior means and 95% credible intervals for
model parameters.

Posterior 95% credible

mean interval

β0,2 0.215 [0.006, 0.422]

β0,3 -1.292 [-1.682, -0.891]

β1,2 -0.761 [-0.830, -0.698]

β1,3 -0.737 [-0.871, -0.606]

ρ2 0.996 [0.987, 0.999]

ρ3 0.998 [0.994, 0.999]

λ2
2 1.081 [1.013, 1.215]

λ2
3 3.137 [2.772, 3.446]

g1 0.992 [0.970, 0.999]

g2 0.991 [0.966, 0.999]

g3 0.993 [0.974, 0.999]

τ2
1 0.874 [0.293, 2.101]

τ2
2 2.620 [1.155, 5.939]

τ2
3 4.408 [1.630, 9.894]

σ2 21.653 [20.780, 22.515]

predictive interval, i.e., generating the replicate obser-
vations under the model and look at the proportion of
predictive intervals containing the observations. Aver-

aging over time and space, we find that 97% contains
the respective observed concentrations.

6 Summary and future works

We have proposed a finite mixture model to provide
a dynamic clustering of spatio-temporal data. We have
introduced spatio-temporally varying mixing weights to

accommodate space-time dependence and assign data
observed at nearby locations and consecutive time points

with similar cluster membership’s probabilities. Con-

ditionally on the cluster’s membership, a state-space
model has been employed to describe the temporal evo-

lution of the sites belonging to each cluster. Also, a pro-

cedure to select the number of clusters has been offered.

The approach is very flexible and allows clusters identi-
fication also with geo-referenced time series affected by

missingness.

Currently, we are developing a MATLAB Toolbox,

called DYnamic Spacetime Clustering (DYSC), to pro-
vide easy implementation of our approach. With regard

to the computation, the MCMC algorithm can suffer
of poor mixing with a large K. In this case, alterna-

tive augmentation approaches and sampling schemes
can be employed. For instance, a data augmentation
step based on auxiliary Pólya-Gamma variables (Pol-
son et al, 2013) can be used. Finally, a natural exten-
sion of our approach will move from the univariate to

the multivariate setting, in order to identify clusters in
spatio-temporal multivariate responses, such multiple
pollutants.

Acknowledgements The authors thank the air quality ser-
vice at ARPAE Emilia-Romagna for helpful discussions.

A Appendix

The full conditional distribution of the variances λ2
k, for k =

2, . . . ,K, is

λ2
k | rest ∼ IG

(

a+
Tn

2
, b+

1

2

T
∑

t=1

(

φt,k − ρkφt−1,k

)

′

C(θ)−1

(

φt,k − ρkφt−1,k

)

)

.

The full conditional distribution of the variances τ2
k , for k =

1, . . . ,K, is

τ2
k | rest ∼ IG

(

a+
T

2
, b+

1

2

T
∑

t=1

(zt,k − gkzt−1,k)
2

)

.

The full conditional distribution of the error variance σ2 is
given by

σ2 | rest ∼ IG

(

a+
Tn

2
, b+

1

2

T
∑

t=1

(yt −Htzt)
′ (yt −Htzt)

)

.

The full conditional distribution of ρk, k = 2, . . . ,K, is a uni-
variate normal distribution N(vd, v) restricted in the interval
I(−1 < ρk < 1), where

v−1 =
1

λ2
k

φ′

t−1,kC(θ)−1φt−1,k + 10−4

d =
1

λ2
φ′

t−1,kC(θ)−1φt,k.

The full conditional distribution of gk, k = 1, . . . ,K, is a
univariate normal distribution1 N(vd, v) truncated in the in-
terval I(−1 < gk < 1), where

v−1 =
1

τ2
k

T
∑

t=1

z2t−1,k + 10−4

d =
1

τ2
k

T
∑

t=1

zt−1,kzt,k.

The full conditional distribution of the allocation variables
wt(s) is given by

wt(s) | rest ∼ Multinomial (πt,1(s)
⋆, . . . , πt,K(s)⋆)

where the posterior probabilities are

π⋆
t,k(s) =

πt,k(s)N(zt,k, σ2)
∑

K
l=1

πt,l(s)N(zt,l, σ2)
.

The full conditional distribution of the latent states zt is a
multivariate normal distribution N(V D, V ), where

1 For notation simplicity, same symbols are re-used.
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Fig. 5 Posterior 95% credible interval of the temporal patterns zt,k of PM10 in µgm−3; first, second and third clusters are
displayed in blue, green and red, respectively.
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Fig. 6 Spatial partitions for each year; first, second and third clusters are displayed in blue, green and red, respectively.

• t = 1

V −1 =
1

σ2
H′

tHt +G′Σ−1
η G+ 10−4IK

D =
1

σ2
H′

tyt +G′Σ−1
η zt+1

• t = 2, . . . , T − 1

V −1 =
1

σ2
H′

tHt +G′Σ−1
η G+Σ−1

η

D =
1

σ2
H′

tyt +G′Σ−1
η zt+1 +Σ−1

η Gzt−1

• t = T

V −1 =
1

σ2
H′

tHt +Σ−1
η

D =
1

σ2
H′

tyt +Σ−1
η Gzt−1.
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