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High blood pressure (BP) is a major risk factor for coro-
nary artery disease, heart failure, stroke, renal failure, and 

premature mortality.1 High BP has been estimated to cause 
10.7 million deaths worldwide in 2015.2,3 Pharmacological 
interventional trials of BP-lowering therapies in patients with 
hypertension have demonstrated reductions in cardiovascular 
complications, including mortality.4 Although several antihy-
pertensive drug classes exist, variability in treatment response 
by individual patients and ethnic/racial groups, and residual 
risks, suggests that identification of previously unrecognized 
BP regulatory pathways could identify novel targets and 
pave the way for new treatments for cardiovascular disease 
prevention.

See Editorial by Morris 
See Clinical Perspective

Genetic association studies have identified >400 loci at 
P<5×10−8 that influence BP.5–11 Two recent reports indepen-
dently performed discovery analyses, in sample sizes of up 
to ≈146 000 (CHARGE Exome BP consortium [The Cohorts 
for Heart and Aging Research in Genomic Epidemiology 
Consortium]) and ≈192 000 individuals (the European-led 
Exome consortia [contributory consortia, CHD Exome+, 
ExomeBP, and GoT2D:T2DGenes]).8,9 All samples were 
genotyped on the Illumina Exome array that was designed 
to interrogate rare and low frequency nonsynonymous and 
other putative functional variants and noncoding variants 
for association with biomedical traits. They each identified 
≈80 promising single nucleotide variant (SNV) associations 
with systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), pulse pressure (PP), or hypertension and took 
them forward for replication in the reciprocal consortium8,9 
resulting in the identification of 56 novel BP-associated loci 
across the 2 reports, including associations with coding and 

rare SNVs. A total of 100 SNVs remained of interest, but 
did not achieve genome-wide significance. Increasing the 
sample size is likely to identify additional BP-associated 
SNVs among these variants.

In the current report, we augmented the sample size of these 
studies with up to 140 886 European individuals from the UK 
Biobank and analyzed 77 SNVs available in the UK Biobank 
for association with SBP, DBP, and PP, in a total sample size of 
up to ≈475 000 individuals (up to ≈423 000 European [EUR]).

Materials and Methods
Samples
These analyses consisted of a meta-analysis of results from 3 in-
dependent publications, the CHARGE Exome BP consortium,8 
European-led Exome consortia (contributory consortia, CHD 
Exome+, ExomeBP, and GoT2D:T2DGenes),9 and the BP analyses 
from the UK Biobank Cardiometabolic consortium.11

The CHARGE Exome BP consortium included 120 473 individu-
als of EUR descent from 15 cohorts, 21 503 individuals of African 
descent from 10 cohorts, and 4586 individuals of Hispanic ancestry 
from 2 cohorts as described previously.8 The European-led consor-
tia included 165 276 individuals of EUR descent from 51 cohorts 
and 27 487 individuals of South Asian descent from 2 cohorts.9 The 
UK Biobank data included 140 886 unrelated individuals of EUR 
descent.11

All samples from the CHARGE and European-led Exome con-
sortia were genotyped on Exome arrays that includes ≈242 000 
markers >90% of which are nonsynonymous or splice variants, with 
enrichment for variants with minor allele frequency (MAF)<0.05. 
The UK Biobank used the Affymetrix UK Biobank Axiom Array 
(approximately 100 000) or the Affymetrix UK BiLEVE Axiom 
Array (approximately 50 000) to genotype ≈800 000 SNVs with 
subsequent imputation based on UK10K sequencing and 1000 
Genomes reference panels. SNVs with an imputation thresh-
old INFO score of <0.10 were filtered by the Warren et al11 UK 
Biobank Nature Genetics 2017 article, from which the SNV as-
sociation statistics for UK Biobank were provided.11 Imputation 
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The Data Supplement is available at http://circgenetics.ahajournals.org/lookup/suppl/doi:10.1161/CIRCGENETICS.117.001778/-/DC1.
Correspondence to Aldi T. Kraja, DSc, PhD, Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems 

Biology, Washington University in St. Louis School of Medicine, 4444 Forest Park Ave, 6th Floor, Room 6314, Campus Box 8506, St. Louis, MO 63108. 
E-mail aldi@wustl.edu

Background—Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants 
that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) 
associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive 
evidence of association.

Methods and Results—Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 
of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We 
performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, 
≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-
wide significant (P<5×10−8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), 
rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-
associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. 
Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One 
SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

Conclusions—We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. 
This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential 
follow-up.   (Circ Cardiovasc Genet. 2017;10:e. DOI: 10.1161/CIRCGENETICS.117.001778.)

Key Words:  blood pressure ◼ exome ◼ genetics ◼ genotype ◼ sample size

D
ow

nloaded from
 http://ahajournals.org by on A

pril 15, 2021

mailto:aldi@wustl.edu


3    Kraja et al    New Blood Pressure–Associated Loci

scores in the UK Biobank samples for the variants presented in 
the Table had INFO>0.6. SNVs that produced significant results 
are highlighted in green in Tables I and II in the Data Supplement, 
with a median INFO of 1. The studies by Surendran et al,9 Liu et 
al,8 and Warren et al11 examined genomic inflation factors in the 
contributing studies and the combined meta-analyses for each of 
the traits analyzed. Genomic inflation ranged between 1.04 and 
1.11 in these contributing studies and therefore did not suggest 
that there were significant issues with population stratification. In 
the current analyses, 77 nonvalidated BP-associated SNVs were 
available for analysis across all 3 data sets.

Institutional review board approval was obtained from each par-
ticipating cohort, and informed consent was obtained from all sub-
jects.8,9 The UK Biobank study has approval from the North West 
Multi-Centre Research Ethics Committee and has Research Tissue 
Bank approval.

Phenotypes
Three BP traits were examined: SBP, DBP, and PP, where PP was 
calculated as the difference between SBP and DBP. For individuals 
taking antihypertensive therapies, 15 mm Hg and 10 mm Hg were 
added to the observed SBP and DBP, respectively, to estimate the 
BP that would be observed off antihypertensive therapy.12,13 The traits 
were approximately normally distributed, and no transformations of 
the traits were performed.

Statistical Analyses
In the CHARGE Exome BP consortium, in cohorts of unrelated in-
dividuals, single SNV association tests were implemented via lin-
ear regression in R/PLINK/SNPTEST. For family-based cohorts 
linear mixed-effects models in R was used to estimate kinship via 
R KINSHIP2 package and using the LMEKIN function, to account 
for familial correlations (https://cran.r-project.org/web/packages/
coxme/vignettes/lmekin.pdf; Supplemental Table 21 of Liu et 
al8). The component studies of the European-led consortia (CHD 
Exome+, ExomeBP, and GoT2D:T2D genes) used linear regres-
sion as implemented in PLINK14 or linear mixed models as imple-
mented in Genome-Wide Efficient Mixed Model Association15 or 
EPACTS (the Efficient Mixed-Model Association eXpedited,16 to 
test variants for association with BP traits. The UK Biobank study 
used linear regression models as implemented in SNPTEST.17 All 
studies assumed an additive allelic effects model.

All studies adjusted for age, age2, sex, body mass index, and ad-
ditional cohort-specific covariates including (where appropriate) 
principal components of genetic ancestry, field centers, genotyping 
array, or case/control status for samples ascertained on case/control 
status for a non-BP trait. Both study-level QC and central QC were 
performed before the meta-analyses being performed. Full details are 
given in the reports from the component consortia.8,9,11

At the consortium level, meta-analyses of cohort-level associa-
tion results were performed independently within CHARGE-Exome 
and the European-led Exome consortia using inverse variance-
weighted fixed effects meta-analysis. These meta-analyses results 
were combined with the UK Biobank association results using fixed-
effects inverse variance-weighted meta-analysis as implemented in 
METAL.18 Two meta-analyses were performed, one pan-ancestry 
(PA; AA, European ancestry [EUR], Hispanic, South Asian) and the 
other of EUR ancestry. Statistical significance was set at genome-
wide significance, P<5×10−8.

Functional Annotation
Associated variants were annotated using Human Genome Build 38 
dbSNP and Entrez Gene ( The National Center for Biotechnology 
Information). We interrogated publically available gene expression 
regulatory features from the Encyclopedia of DNA Elements con-
sortium and ROADMAP Epigenome projects using HaploReg19 and 
RegulomeDB.20 Expression quantitative trait loci (eQTLs) were as-
sessed using data from Genotype-Tissue Expression consortium,21 
GRASP,22 Westra et al,23 Lappalainen et al,24 and STARNET.25 In 

addition, we used the FHS eQTL results from microarray-based gene 
and exon expression levels in whole blood from 5257 individuals.26 
We queried whether any of the 5 BP-associated SNVs were eQTLs 
for genes in the 5 BP-associated regions or whether they were in LD 
(r2>0.8) with any of the eQTLs for genes in these regions. Where 
putative eQTLs were identified, we verified the BP-associated SNVs 
were in LD (r2>0.8) with the top eQTL for that gene.

We interrogated publicly available GWAS databases through 
PhenoScanner,27 a curated database holding publicly available results 
from large-scale genome-wide association studies facilitating phe-
nome scans. We report results for SNVs with P value≤5×10−8.

Capture HiC interactions were accessed from the Capture HiC 
Plotter (www.CHiCP.org). Javierre et al28 used an interaction confi-
dence score derived using CHiCAGO software.29 The interactions 
with a CHiCAGO score ≥5 in at least 1 cell type were considered as 
high-confidence interactions.

Results
Association results for the 77 SNVs with the 3 BP traits are 
shown in Table I in the Data Supplement for the PA (European, 
South Asian, African, and Hispanic descent) meta-analysis 
and in Table II in the Data Supplement for the EUR meta-
analysis. Twenty-one of the 77 SNVs were associated with 
at least 1 BP trait with genome-wide significance, P<5×10−8 
and concordant directions of effects across the results from all 
contributing data sets (Table). Sixteen SNVs (PKN2, ARH-
GEF3, AFAP1, ANKDD1B, LOC105375508, ZFAT, RAB-
GAP1, DBH, SYNPO2L, BDNF-AS, AGBL2, NOX4, CEP164, 
HOXC4, CFDP1, and COMT) were genome-wide significant 
in both PA and EUR samples. Two SNVs at SLC4A1AP and 
7p15.2, respectively, were significant only in the PA sample, 
and 3 SNVs at STAB1/NT5DC2, KDM5A, and LACTB only 
in the EUR sample. All the significant SNVs were com-
mon (MAFs≥0.19), except the SNV at the DBH locus (PA, 
MAF=0.0043). While this report was in preparation, 17 of 
these loci were published elsewhere.7,10,11 Four loci remain 
novel: rs9678851 (SLC4A1AP, missense), rs7437940 (AFAP1, 
intron), rs13303 (STAB1, missense), and rs1055144 (7p15.2, 
noncoding transcript; Figure IA through ID in the Data 
Supplement). The SLC4A1AP (rs9678851) was associated 
with SBP, and AFAP1 (rs7437940) and 7p15.2 (rs1055144) 
were associated with PP. We also observed a potentially new 
independent BP association (r2=0.001 in 1000G EUR and 
PA samples) at a recently published locus rs34163229 (SYN-
PO2L, missense; Table; Figure IE in the Data Supplement). 
We used a conservative r2<0.1 threshold to minimize the pos-
sibility of an association because of correlation with a strongly 
associated established BP variant. Furthermore, conditional 
analyses within the ≈140 000 UK Biobank participants with 
comprehensive genomic coverage suggested that the associa-
tion with SBP of rs34163229 was independent of the estab-
lished SNV, rs4746172. Regional association plots in UK 
Biobank are provided in Figure IIA through IIE in the Data 
Supplement. Conditional analyses within the full data set was 
not possible given the targeted nature of the Exome array that 
makes claims of independence provisional. Twenty-two of the 
77 SNVs had MAF≤0.01, and 1 rs3025380, a missense variant 
in DBH, was confirmed as a BP-associated locus.

Three of the five newly discovered BP-associated SNVs 
are missense variants, mapping to SLC4A1AP, STAB1, and 
SYNPO2L (Table and Table III in the Data Supplement). At 
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SLC4A1AP, rs9678851 (C>A, Pro139Thr) has MAF=0.46 
and the C allele is associated with an increase of 0.23 mm Hg 
in SBP. This variant is correlated with 2 other missense vari-
ants in C2orf16 (rs1919126 and rs1919125, r2=0.81 [EUR] 
based on 1000G,30 for both). At STAB1, the C allele of 
rs13303 (T>C, Met2506Thr, with MAF=0.44) is associated 
with an increase of 0.15 mm Hg in PP per minor allele in 
EUR. This residue is located in a conserved region of the 
protein31 (Table IV in the Data Supplement). The T allele 
of rs34163229, the new association at the SYNPO2L locus 
(G>T, Ser833Tyr, with MAF=0.15), is associated with an 
increase of 0.36 mm Hg in SBP per allele. This variant is in 
LD with another missense variant in SYNPO2L (rs3812629 
r2=1, 1000G EUR).30 Using Polyphen2 (http://genetics.
bwh.harvard.edu/pph2/index.shtml), the SNVs rs9678851 
in SLC4A1AP and rs13303 in STAB1 were predicted to be 
benign, whereas rs34163229 in SYNPO2L was predicted 
to have a possible damaging impact on the corresponding 
human proteins’ structure and function.

We interrogated publicly available eQTL data sets 
through Genotype-Tissue Expression consortium, the 
Encyclopedia of DNA Elements consortium, RoadMap proj-
ects, PhenoScanner,27 STARNET,25 and Framingham Heart 
Study26 to further highlight potential causal genes and mech-
anisms at each of the newly identified BP loci (Table III in 
the Data Supplement). The PP-associated SNV, rs13303, at 
STAB1 is correlated (r2>0.8 1000G EUR) with the top eQTLs 
for NT5DC2 in atherosclerotic lesion-free internal mammary 
artery, atherosclerotic aortic root, subcutaneous adipose, vis-
ceral abdominal fat, and liver tissues (all P<1×10−11).25 The 
rs13303 was also associated with expression levels of NT5DC2 
in EBV-transformed lymphocytes, transformed fibroblasts,25 
and thyroid cells (Table III in the Data Supplement).21 The 
SBP-associated SNV at SYNPO2L (rs34163229) is correlated 
(r2=0.86 in 1000G EUR) with the top eQTL (rs2177843) for 
MYOZ1 in heart atrial appendage tissue (Table III in the Data 
Supplement).21 The 5 new BP associated SNVs were not in 
LD with the top eQTLs for these gene regions in whole blood 
in the Framingham Heart Study eQTL data. We also took 
the opportunity to assess whether the additional 15 recently 
established genome-wide significant BP-associated SNVs 
were eQTLs in the Framingham sample. Among the genome-
wide significant BP SNVs, 3, rs4680 at COMT, rs12680655 at 
ZFAT, and rs10760260 at RABGAP1, were the top eQTL for 
the corresponding genes in whole blood (Table V in the Data 
Supplement). We also examined the 5 BP-associated SNVs 
in endothelial precursor cell Hi-C data (www.chicp.org) 28,32 
to explore long-range chromatin interactions. rs13303 was 
found to contact NISCH (score 17.34) and rs34163229 con-
tacts USP54 (score 33.89)

Finally, we assessed the association of the new 
BP-associated variants and their close proxies (r2>0.8) with 
cardiovascular disease risk factors, molecular metabolic traits, 
and clinical phenotypes using PhenoScanner, the NHGRI-
EBI GWAS catalog and GRASP.27 We observed 5 of the 
newly discovered BP-associated SNVs to have genome-wide 
significant associations with other traits, including height 
(7p15.2),33 waist-to-hip ratio (STAB1 and 7p15.2),34,35 triglyc-
erides (SLC4A1P), adiponectin levels (STAB1),36 and atrial 

fibrillation (rs7915134 which has r2=0.92 in the EUR 1000G 
samples with rs34163229 in SYNPO2L37; Table III in the Data 
Supplement).

Of the 77 analyzed SNVs, from the original Exome array 
analyses, 56 SNVs were not genome-wide significant in the 
current analysis. With ≈300 BP loci reported since the time 
of our analysis, we investigated whether any of the 56 SNVs 
that were not genome-wide significant in our meta-analysis 
have been reported as new BP-associated loci in any of the 
3 recent publications.7,10,11 Twelve SNVs in our data set were 
located within 1 Mb of a recently reported BP locus: CACNA1S, 
TSC22D2, RPL26L1, EDN1, GPRC6A, ACHE, CAV1, NOX5, 
PGLYRP2, NAPB, EDEM2, and KCNB1 (Tables I and II in 
the Data Supplement) although none of the SNVs were in LD 
(r2>0.1 in all 1000G populations) with the published variants 
at these loci.

Discussion
We identified genome-wide significant associations with 
BP for 21 additional SNVs from our original Exome array 
analyses8,9 by including UK Biobank participants to aug-
ment our sample size to ≈475 000 individuals. Four of the 
21 BP-related loci we identified were novel, of which 2 
were missense variants and 1 was a putative new inde-
pendent signal at an established locus and was a missense 
variant.

A missense SNV in SLC4A1AP (rs9678851) marks the 
PP-associated locus on chromosome 2. SLC4A1AP, encodes 
a solute carrier also known as kidney anion exchanger adapter 
protein although it is widely expressed in most Genotype-
Tissue Expression consortium tissues.

At the new locus on chromosome 3 (rs13303), 3 poten-
tial candidate genes are highlighted: STAB1, NT5DC2, and 
NISCH. STAB1 encodes stabilin1, a protein known to endo-
cytose low-density lipoprotein cholesterol, Gram-positive 
bacteria and Gram-negative bacteria, and advanced glyco-
sylation end products.38,39 The gene product is also referred 
to as CLEVER-1, a common lymphatic endothelial and vas-
cular endothelial receptor-1,40 which is expressed in macro-
phages.41 SNX17 interacts with STAB1 and is a trafficking 
adaptor of STAB1 in endothelial cells.38,42 The rs13303 is 
located 500-bp downstream of NT5DC2. This additional 
gene is highlighted through the association of rs13303 with 
expression of NT5DC2 in multiple tissues (Table III in the 
Data Supplement). NT5DC2 encodes the 5′-nucleotidase 
domain containing 2 protein. The gene is widely expressed, 
with higher levels observed in the heart and coronary artery, 
although its function is unknown. Finally, exploration of 
long-range chromatin interaction identified contact of the 
SNV region with the genetic sequence including the gene 
NISCH, which encodes the nonadrenergic imidazoline-1 
receptor protein localized to the cytosol and anchored to the 
inner layer of the plasma membrane. This protein binds to the 
adapter insulin receptor substrate 4 (IRS4) to mediate translo-
cation of α5 integrin from the cell membrane to endosomes. 
In human cardiac tissue, this protein has been found to affect 
cell growth and death.43

The PP-associated variant, rs7437940, on chromosome 4 
is intronic to AFAP1 and is located in promoter histone marks 
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Table.   Variants Associated With Systolic Blood Pressure, Diastolic Blood Pressure, or Pulse Pressure in the Pan-Ancestry or 
European-Ancestry Meta-Analyses in up to ≈475 000 Individuals

rsID Gene Annotation chr-pos Trait Meta a1/2 Freq1 β (SE) P Value Dir HetP N
UK-BioBank 

INFO

New loci

  �rs9678851 SLC4A1AP Missense 2-27664167 S PA a/c 0.54
−0.23 
(0.04)

1.07E−09 −−− 0.09 474 569 1.0000

  �rs13303* STAB1 Missense 3-52523992 P EUR t/c 0.44
−0.15 
(0.03)

3.72E−08 −−− 0.11 418 405 1.0000

  �rs7437940 AFAP1 Intronic 4-7885773 P EUR, PA t/c 0.47
−0.15 
(0.03)

2.88E−08 −−− 0.007 420 616 0.9974

  �rs1055144 7p15.2 Nc-transcript 7-25831489 P PA a/g 0.19
0.19 

(0.03)
3.47E−08 +++ 0.18 453 880 1.0000

Recently reported loci

 � rs786906 PKN2 Synonymous 1-88805891 S, P EUR, PA t/c 0.44
0.19 

(0.03)
1.29E−12 +++ 0.08 422 556 1.0000

 � rs3772219 ARHGEF3 Missense 3-56737223 S, D EUR, PA a/c 0.68
0.25 

(0.04)
2.00E−10 +++ 0.25 474 558 1.0000

 � rs40060 ANKDD1B 3’UTR 5-75671561 D EUR, PA t/c 0.65
−0.17 
(0.02)

3.47E−12 −−− 0.46 422 598 0.9938

 � rs972283 LOC105375508 Intronic 7-130782095 S, D EUR, PA a/g 0.47
−0.23 
(0.04)

9.12E−10 −−− 0.1 474 569 1.0000

 � rs12680655 ZFAT Intronic 8-134625094 S, D EUR, PA c/g 0.6
−0.29 
(0.04)

1.62E−12 −−− 0.18 402 962 1.0000

 � rs10760260 RABGAP1 Intronic 9-122951247 P EUR, PA t/g 0.14
−0.25 
(0.04)

2.88E−10 −−− 0.12 421 223 0.9975

 � rs3025380 DBH Missense 9-133636634 S, D EUR, PA c/g 0.004
−1.14 
(0.19)

1.23E−09 −−− 0.05 400 891 0.8763

  �rs34163229* SYNPO2L Missense 10-73647154 S, P EUR, PA t/g 0.15
0.36 

(0.05)
1.15E−11 +++ 0.32 448 759 1.0000

 � rs925946 BDNF-AS Intronic 11-27645655 D EUR, PA t/g 0.31
−0.16 
(0.02)

7.08E−12 −−− 0.25 474 564 1.0000

 � rs12286721 AGBL2 Missense 11-47679976 S, D EUR, PA a/c 0.56
−0.17 
(0.02)

3.39E−13 −−− 0.05 422 593 1.0000

 � rs10765211 NOX4 Intronic 11-89495257 P EUR, PA a/g 0.38
−0.19 
(0.03)

6.46E−12 −−− 0.05 474 550 0.9964

 � rs8258 CEP164 3’UTR 11-117412960 P EUR, PA a/g 0.37
0.22 

(0.03)
1.95E−15 +++ 0.003 422 546 1.0000

 � rs11062385 KDM5A Missense 12-318409 P EUR a/g 0.73
−0.17 
(0.03)

2.69E−08 −−− 0.84 422 563 1.0000

 � rs7136889† HOXC4 Intronic 12-54043968 S, P EUR, PA t/g 0.69
0.36 

(0.05)
1.58E−13 +++ 0.33 419 905 0.6070

 � rs2729835* LACTB Missense 15-63141567 S EUR a/g 0.68
−0.24 
(0.04)

1.29E−08 −−− 0.25 394 656 1.0000

 � rs2865531 CFDP1 Intronic 16-75356418 S, P EUR, PA a/t 0.6
0.42 

(0.06)
2.14E−13 +++ 0.51 217 419 0.9998

 � rs4680 COMT Missense 22-19963748 P EUR, PA a/g 0.51
0.16 

(0.03)
2.24E−09 +++ 0.005 418 385 1.0000

rsID, SNV name; gene, name of the closest gene or cytogenetic band based on Gene Entrez of NCBI; annotation, SNV annotation based on dbSNP of NCBI; chr-pos, 
chromosome-bp position in Human Genome build 38; trait, the blood pressure trait (diastolic blood pressure, systolic blood pressure, or pulse pressure) the variant is 
associated with; meta, the meta-analysis the variant is associated in, Pan-Ancestry or EURopean; A1/2, allele 1/allele 2; freq1, allele frequency for allele 1; β (SE), effect 
estimate, β and its SE for allele 1 from the corresponding meta-analysis; P value, P from meta-analysis; dir, direction of effect in each of the contributing consortia in 
the following order: EUROPEAN led Exome Consortia, UK-BIOBANK, and CHARGE-BP Consortium; HetP, P value of heterogeneity across the 3 contributing consortia; N, 
sample size for the trait and meta-analysis with the lowest P value; UK-BIOBANK INFO, a quality of imputation score in UK BIOBANK. For more details, see Tables I and 
II in the Data Supplement. D indicates diastolic blood pressure; P, pulse pressure; S, systolic blood pressure; and SNV indicates single nucleotide variant.

*Potential new signal at a recently reported locus (LD, r2<0.1 with a published BP SNV).
†First report of this variant as genome-wide significant.
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in right atrial tissue, based on regulatory chromatin states 
from DNAse and histone ChIP-Seq in Roadmap Epigenomics 
Consortium (identified with HaploReg, Table IV in the Data 
Supplement).44 AFAP1 encodes actin filament–associated pro-
tein 1. This protein is thought to have a role in the regulation 
of actin filament integrity, and formation and maintenance of 
the actin network.45

At the locus on chromosome 10 (rs34163229), 2 candidate 
genes were highlighted (SYNPO2L and MYOZ1). SYNPO2L 
encodes synaptopodin like 2, which is not well characterized, 
but may play a role in modulating actin-based shape. The lead 
SNV is also associated with expression levels of MYOZ1 in 
heart appendage tissues. MYOZ1 encodes myozenin 1, an 
α-actinin and gamma filamin binding Z line protein predomi-
nantly expressed in skeletal muscle.46

At 2 loci (SLC4A1AP and SYNPO2L), we observed >1 
missense variant in high LD (r2>0.8). Functional follow-up of 
these variants are needed to disentangle the causal variants. 
At the SLC4A1AP locus, there are 3 misssense variants, none 
of which are predicted to be damaging. Two of these are in 
C2orf16 that is predicted to encode an uncharacterized pro-
tein. Current evidence is at the transcriptional level. Cellular 
assays comparing the function of SLC4A1AP with the mis-
sense variant may be developed or an animal model could 
be created and BP can be measured. In the first instance, a 
knockout model may be required, because of the predicted 
weak effects of the BP variants. At the SYNPO2L locus, the 
2 missense variants are both in SYNPO2L, of which 1 is 
predicted damaging, cellular experiments testing functional 
effects of this variant alone or part of a haplotype maybe a 
good starting point.

In conclusion, we identified 4 new loci and 1 potential 
new SNV in a known locus, which influence BP variation and 
highlight specific genes and pathways that could potentially 
facilitate an improved understanding of BP regulation, and 
identify novel therapeutic targets to reduce the burden of car-
diovascular disease.

Appendix
From the Division of Statistical Genomics, Department of 
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MO (A.T.K., M.A.P.); Department of Biostatistics, University 
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Barts and The London School of Medicine and Dentistry, 
Queen Mary University of London, United Kingdom (H.R.W., 
L.L., K.E.S., C.P.C., M.R.B., P.D., M.J.C., P.B.M.); National 
Institute for Health Research Barts Cardiovascular Biomedi-
cal Research Unit, Queen Mary University of London, United 
Kingdom (H.R.W., M.R.B., C.P.C., P.D., M.J.C., P.B.M.); 
MRC/BHF Cardiovascular Epidemiology Centre, Department 
of Public Health and Primary Care (P.S., R.Y., A.S.B., J.D., 
J.M.M.H.), Department of Haematology (K.E.S.), Depart-
ment of Public Health and Primary Care (D.S.), NIHR Blood 
and Transplant Research Unit in Donor Health and Genomics 
(J.D.) and British Heart Foundation, Cambridge Centre for 
Excellence, Department of Medicine (A.S.B., J.D.), Univer-
sity of Cambridge, United Kingdom; The Framingham Heart 

Study, MA (C.L., R.J., D.L.); The Population Sciences 
Branch, Division of Intramural Research, National Heart, 
Lung, and Blood Institute (C.L., D.L.), Mathematical and Sta-
tistical Computing Laboratory, Center for Information Tech-
nology (R.J.), National Institutes of Health, Bethesda, MD; 
Department of Epidemiology and Biostatistics, School of 
Public Health (E.E., I.T., W.Z., H.G., J.C.C., M.-R.J., A.-C.V., 
P.E.), Section of Investigative Medicine, Department of Medi-
cine (A.I.F.B., A.M.Y.), MRC-PHE Centre for Environment 
and Health (I.T., H.G., M.-R.J., P.E.), International Centre for 
Circulatory Health (N.R.P., P.J.S.), National Institute for 
Health Research Imperial College Healthcare NHS Trust Bio-
medical Research Unit (P.E.), Imperial College London, 
United Kingdom; Department of Hygiene and Epidemiology, 
University of Ioannina Medical School, Greece (E.E., I.T.); 
Center for Genomic Medicine (A.K.M., C.N.-C.), Cardiovas-
cular Research Center, Massachusetts General Hospital (C.N.-
C.); Department of Medicine (A.K.M., P.M.R., D.I.C.), 
Institute for Aging Research, Hebrew SeniorLife (R.J.), Har-
vard Medical School (P.M.R., D.I.C.), Boston, MA; The Novo 
Nordisk Foundation Center for Basic Metabolic Research, 
Faculty of Health and Medical Sciences, University of Copen-
hagen, Denmark (N.G., J.B.-J., C.T.H., T.H., O.P.); Medical 
Research Council Integrative Epidemiology Unit, School of 
Social and Community Medicine, University of Bristol, 
United Kingdom (F.D.); Centre for Cardiovascular Genetics, 
Institute of Cardiovascular Science (F.D.) and Faculty of Pop-
ulation Health Sciences (F.W.A.), University College London, 
United Kingdom; Department of Biostatistics and Center for 
Statistical Genetics (X.S., M.B.), Department of Internal 
Medicine, Division of Cardiovascular Medicine (H.Z., 
C.J.W.), Department of Epidemiology, School of Public 
Health (J.A.S., S.L.R.K.), Department of Computational 
Medicine and Bioinformatics (C.J.W.) and Department of 
Human Genetics (C.J.W.), University of Michigan, Ann 
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Department of Clinical Sciences, University of Lund, Malmö, 
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Medicine (N.W.R., F.K., M.I.M.), and Big Data Institute at the 
Li Ka Shing Centre for Health Information and Discovery, 
University of Oxford, United Kingdom (C.M.L.); Research 
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CLINICAL PERSPECTIVE
We analyzed 77 single nucleotide variants that remained of interest, but did not achieve genome-wide significance with blood 
pressure (BP) traits from a prior analysis of Exome chip genotypes. A meta-analysis of results from the CHARGE Exome 
BP and European led consortia in combination with association results from UK Biobank samples (pan-ancestry sample of 
≈475 000 and European only sample of ≈423 000) indicated 21 genome-wide significant loci. Four of these are novel BP 
loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). We also 
identified a potentially independent novel BP-associated single nucleotide variant, rs3416322 (missense, SYNPO2L) at a 
known locus. Two of the BP-associated single nucleotide variants influence expression levels of nearby genes. These new 
findings add to the growing number of BP loci and could potentially facilitate an improved understanding of BP regulation, 
and identify novel therapeutic targets to reduce the burden of cardiovascular disease.
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