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Abstract
In this paper, we propose an approach to explore reinsurance optimization for a non-
life multi-line insurer through a simulation model that combines alternative rein-
surance treaties. Based on the Solvency II framework, the model maximises both 
solvency ratio and portfolio performance under user-defined constraints. Data visu-
alisation helps understanding the numerical results and, together with the concept of 
the Pareto frontier, supports the selection of the optimal reinsurance program. We 
show in the case study that the methodology can be easily restructured to deal with 
multi-objective optimization, and, finally, the selected programs from each proposed 
problem are compared.

Keywords Optimal reinsurance · Solvency II · Collective risk model · Excess of 
loss · Quota share · Pareto frontier

1 Introduction

The recent introduction of new risk-based reporting and solvency frameworks is 
encouraging non-life insurers to focus much more than previously on risk, value, 
and capital management of their portfolios. These new risk-based frameworks offer 
more incentive to develop risk management strategies that align with risk toler-
ance and optimize economic value on a risk-adjusted basis. Among possible tools 
of risk mitigation, reinsurance is one of the key drivers for non-life insurers. Obvi-
ously, as non-life insurance companies adapt their business models to modern risk 
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management frameworks, which can include customised reinsurance solutions of 
increasing complexity, reinsurance companies are also adapting their offerings to 
meet the evolving needs of their non-life insurance clients. In this framework, the 
selection of the optimal reinsurance design is a relevant task. Indeed, as is well-
known, the detection of a desirable reinsurance program can be based on a relevant 
trade-off. On the one hand, treaties allow to reduce the risk exposure of the insurer 
and hence to stabilize the business (see, e.g., [3] for a recent overview). On the other 
hand, they affect the potential profits. Naturally, the optimal solution depends on 
the chosen objective and constraints. For instance, key elements are criteria used to 
quantify the performance of the retained portfolio as well as the pricing rule applied 
by the reinsurer. In the literature, the analysis of optimal reinsurance treaties can be 
traced back to the seminal paper of [11] and has been an active research field both 
for academics and practitioners since then. Over the following decades, there were 
many contributions in the field, generalizing classical results for more intricate opti-
mality criteria and/or more general premium principles. In particular, in [33], the 
authors show that stop-loss and truncated stop-loss are optimal solutions depend-
ing on the pricing rules of both the insurer and the reinsurer. Optimal reinsurance 
under premium principles based on mean and variance of the reinsurer’s share of the 
total claim amount is analysed in [40]. In [35], the authors, assuming that the pre-
mium calculation principle is a convex functional and that some other quite general 
conditions are fulfilled, study the relationship between maximizing the adjustment 
coefficient and maximizing the expected utility of wealth for the exponential utility 
function, both with respect to the retained risk of the insurer. In [41], the authors 
deal with the general problem of optimal insurance contracts design in the presence 
of multiple insurance providers. New reinsurance premium principles that minimize 
the expected weighted loss functions and balance the trade-off between the reinsur-
er’s shortfall risk and the insurer’s risk exposure are provided in [15]. Prompted by 
the recent insurance regulatory developments aiming at the harmonisation of risk 
assessment procedures, considerable attention has turned to embedding value at risk 
(VaR) and tail value at risk (TVaR) risk measures in the study of optimal reinsur-
ance models (see, e.g. [8, 36]). In this field, the optimal risk management strategy 
of an insurance company subject to regulatory constraints is investigated in [10]. 
An optimal stop-loss reinsurance contract under VaR and TVaR is instead studied in 
[13]. Results are then extended in [14] providing the optimal ceded loss functions in 
a class of increasing convex ceded loss functions. The problem has been reexamined 
in [17] by introducing a simpler and more transparent approach based on intuitive 
geometric arguments. In [32], explicit forms of optimal contracts are derived in the 
case of absolute deviation and truncated variance risk measures. These interesting 
approaches mainly focus on the identification of the optimal program by minimizing 
specific tail risk measures under different premium principles.

We approach this topic in a different way, by introducing a flexible and efficient 
multi-objective simulation-based optimization framework to better represent the 
reward-to-risk trade-off between portfolio performance and risks for a multiline 
non-life insurance company under the Solvency II Directive. In particular, we aim 
at identifying optimal reinsurance programs that jointly maximise the solvency ratio 
and the profitability under specific constraints. Additionally, a Pareto frontier is used 
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to delete inefficient reinsurance treaties and, via the definition of the unique minimal 
convex hull, we further restrict the set of optimal strategies that the company could 
pursue to reach its objectives. It is noteworthy that the use of the Pareto frontier on 
optimal reinsurance from a risk-sharing perspective has been already analysed in 
the literature. In [12], the authors analyse the necessary and sufficient conditions 
for a reinsurance contract to be Pareto-optimal and characterize all Pareto-optimal 
reinsurance contracts under more general model assumptions. Explicit forms of the 
Pareto-optimal reinsurance contracts are obtained under the expected value pre-
mium principle. A set of Pareto optimal insurance contracts is studied in [6], where 
the risk is covered by multiple insurance companies. The authors in [37] study the 
Pareto-optimal reinsurance policies, where both the insurer’s and the reinsurer’s 
risks and returns are considered. The risks of the insurer and the reinsurer, as well 
as the reinsurance premium, are determined by specific distortion risk measures 
with different distortion operators. Pareto optimality of insurance contracts is also 
explored in [5]. However, with our proposal, we differ with respect to this existing 
literature by providing an approach that allows to consider both the empirical char-
acteristics of the insurance company and the framework designed by the Solvency 
II directive. Additionally, this methodology appears as a suitable tool to select opti-
mal reinsurance programs considering a wide range of opportunities. Moreover, our 
approach is more similar in spirit to that of [4], where the optimal risk position of an 
insurance group is explored by considering intra-group transfers. In particular, the 
authors obtain an optimal share of premiums and liability transfers in order to mini-
mize the total amount of the technical provisions and minimum capital requirement, 
based on the methodology provided by Quantitative Impact Study 5. Also in this 
case, we differ from this approach because our aim is to provide a multi-objective 
optimization framework that considers both risk and return. Moreover, our proposal 
deals with a possible partial internal model allowing to overcome some of the limi-
tations1 implied by the standard formula for non-life underwriting risk (e.g. lognor-
mal assumption, absence of size factor, safety loadings neglected in the computation 
of capital requirement, etc.).

Multi-objective optimization in a reward-to-risk framework has been mainly 
explored in the field of portfolio selection (see, e.g., [24, 50]). In the reinsurance 
field, a novel approach is introduced in [44] to find optimal combinations of differ-
ent types of reinsurance contracts. The authors introduce a mean-variance-criterion 
to solve this task and to compare alternative multi-objective evolutionary algorithms 
(MOEAs). In contrast to most MOEAs designed to solve multi-objective reinsur-
ance optimization problems that rely on population metaheuristics, [45] proposes 
a different evolutionary strategy that uses the mutation operator as the main search 
mechanism. In this case the authors aim at finding the optimal combination of trea-
ties that minimize both the loading of the reinsurance company and the VaR of the 
retained losses for a specific business line. Although also our proposal deals with 
multi-objective optimization, we embed the problem in a Solvency II framework, 
we provide a higher degree of flexibility allowing to test alternative and complex 

1 For further details on this topic see [19].
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reinsurance programs (as either the presence of reinstaments or of umbrella cover-
ages) and we also treat multiline insurance companies. In particular, the proposed 
optimization can be seen as a tool to explore and deeply understand the main trade-
offs involved in the construction of a reinsurance program. A numerical analysis has 
been developed in order to test the flexibility of our proposal on a multi-line non-life 
insurance company. The approach proved to be effective in capturing the effects of 
simple or articulated reinsurance programs on both risk measure and profitability. 
Once the gross of reinsurance scenario is simulated, a very large set of treaty combi-
nations can be tested in short computational times, making the approach affordable 
in practice. Then, via the unique minimal convex hull, we limit the optimal strate-
gies that the company could pursue to a restricted number, while the data visualisa-
tion provides a significant support for the comparison of the results.

The paper is organised as follows. Section 2 describes the general framework we 
deal with, as well as an introduction to the risk and reward indicators considered. 
Furthermore, the multi-objective optimization problem is provided. The methodo-
logical environment used to model the aggregate claim amount distribution, the 
dependence between lines of business and the characteristics of the reinsurance pro-
grams involved are described in Sect. 3. In Sect. 4 we perform an empirical analy-
sis of the multi-objective portfolio selection problems and discuss the results. We 
also report a pseudo-code with the developed algorithms. In this way, the numerical 
results are fully reproducible. In particular, in Sects. 4.4 and 4.5 the specific effects 
of reinstaments and umbrella coverages are explored. Conclusions follow.

2  Model

We consider here a multi-line non-life insurance company with L lines of business 
(LoBs) at the end of time t and we focus only on the premium risk component of the 
capital requirement.

Focusing on a 1-year time-horizon, as prescribed the Solvency II directive for 
capital assessment [28], we define the random variable (r.v.) Ut+1 , that denotes the 
amount of own funds2 at time t + 1 as:

where ut is the deterministic amount of own funds at the end of time t. The term 
(bi,t+1 − Xi,t+1 − ei,t+1) is the gross technical profit of LoB i, defined as the differ-
ence between next-year year earned premiums bi,t+1 and incurred aggregate claims 
amount Xi,t+1 plus expenses ei,t+1 . It is worth pointing out that both next-year pre-
miums and expenses are here assumed deterministic. This assumption allows only 
to simplify the model, but the proposed approach also holds in case both amounts 
are treated as random variables. Finally, in formula (1) technical profit assures a 

(1)Ut+1 = ut(1 + j) +

L∑
i=1

(bi,t+1 − Xi,t+1 − ei,t+1)(1 + j)0.5,

2 We denote random variables with capital letters.
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financial return at a rate j, where cash-in and cash-out are assumed uniformly dis-
tributed over the year. Also the financial return is here considered deterministic in 
order to neglect the market risk component from the valuation.

As well-known, the insurance company can enter in a reinsurance contract in 
order to mitigate its risk (see, e.g. [16, 21]) for the year t + 1 and we assume that, for 
each LoB, the company has at disposal a finite number (denoted with r) of treaties 
in the market. In other words, for each LoB, the company has a number r + 1 of pos-
sible choices, given by the r available alternative treaties and by the possibility that 
no reinsurance is selected by the company.

Hence, given L LoBs, we have (r + 1)L possible choices for the company3. To this 
end, we introduce a set M =

{
m1,… ,m(r+1)L

}
 , with (r + 1)L elements, where each 

element m indicates a possible choice (i.e. which treaty has been selected for each 
LoB).

Therefore, we can rewrite the own funds defined in formula (1) as:

where the new component in formula (2) considers the effect on the technical 
profit of the reinsurance treaties selected by the insurance company and, therefore, 
depends on m. In particular, it is defined as the difference between the amount of 
premiums paid to the reinsurance company br

i,t+1
 and the aggregate claim amount 

paid by the reinsurer Xr
i,t+1

 plus the commissions Cr
i,t+1

 paid by the reinsurer in pro-
portional treaties.

Given this framework, our aim is to select the optimal combination m∗ for the 
insurance company by considering the effects on both the profitability and the risk. 
The aim is the definition of an optimization criterion that takes into account and 
connects the most crucial performance indexes and the most realistic assumptions 
altogether. Hence, to evaluate the effect we start considering two classical indicators.

Concerning risk mitigation, the easier solution is represented by detecting the 
mix of reinsurance contracts m that minimizes the coefficient of variation 

CV(Sn
t+1

(m)) =
�(Sn

t+1
(m))

�(Sn
t+1

(m))
 of the r.v. Sn

t+1
(m) =

∑L

i=1
(Xi,t+1 − Xr

i,t+1
) . Although the 

analysis of the effects of a treaty on the volatility is crucial and it could be also inter-
esting for a direct comparison with the risk mitigation factors defined by the Sol-
vency II standard formula (see, e.g., the non-proportional factor defined in [29] and 
analysed in [18, 19]), the coefficient of variation gives only a partial view of the risk 
profile of an insurer. For instance, it does not consider the effect on the skewness of 
the distribution as well as the presence of possible sliding commissions in propor-
tional treaties.

(2)
Ut+1(m) =ut(1 + j) +

L∑
i=1

[
(bi,t+1 − Xi,t+1 − ei,t+1)

−(br
i,t+1

− Xr
i,t+1

− Cr
i,t+1

)

]
(1 + j)0.5,

3 For the sake of simplicity, we assume that all treaties can be applied to all lines of business. Otherwise 
the number of possible combinations decreases.
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Hence, to have a more complete view of the impacts in terms of risk mitigation, 
we focus on the solvency position of the insurance company by searching for the 
combination m that maximizes the solvency ratio srt(m) =

ut

scrt(m)
 . The denomina-

tor considers the premium risk solvency capital requirement ( scrt ) derived by a par-
tial internal model and it is computed as:

where we apply a VaR evaluated at 99.5% confidence level as prescribed by the Sol-
vency II directive [28]. Obviously the approach can be easily adapted varying the 
risk measure or the confidence level (for instance using a TVaR at 99% as in Swiss 
Solvency Test (see [27, 30])).

In terms of profitability, our purpose is to maximize the expected ROE defined 
as:

Therefore, we define a multi-objective portfolio optimization problem with specific 
constraints. Specific constraints are given by the fact that the Solvency II Directive 
requires a minimum capital to be held by EU-based insurance companies in order 
to guarantee a target level for the ruin probability over a specified period. Addition-
ally, a minimum level of profitability could be asked by the stakeholders. Hence, we 
define the problem as follows:

subject to:

where � ∈ [0,∞) and � ∈ [1,∞) are minimum expected profitability and minimum 
solvency ratio defined by the company. � ∈ (0,∞) is instead the maximum level of 
volatility that can be tolerated by the insurance company. For instance, the insurer 
could ask that the net coefficient of variation is lower or equal than the net volatil-
ity factor provided by the standard formula. Or alternatively, it could be imposed 
a reduction of the coefficient of variation moving from gross to net of reinsurance 
situation.

The choice of considering simultaneously two risk measures, srt(m) and 
CV(Sn

t+1
(m)) , is mainly driven by their different meaning: the solvency ratio 

mainly captures the risk behaviour for extreme cases (1 over 200 years according 

scrt(m) = VaR99.5%

(
Sn
t+1

(m)
)
− �

(
Sn
t+1

(m)
)

�(ROEt+1(m)) =
�(Ut+1)

ut
− 1 = j + (1 + j)0.5

�

�∑L

i=1

�
(bi,t+1 − Xi,t+1 − ei,t+1) − (br

i,t+1
− Xr

i,t+1
− Cr

i,t+1
)

��

ut
.

(3)max
m

(
�(ROEt+1(m)), srt(m)

)

(4)

⎧⎪⎨⎪⎩

m ∈ M

�(ROEt+1(m)) ≥ �

srt(m) ≥ �

CV(Sn
t+1

(m)) ≤ �
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to the level of confidence 99.5%), while the coefficient of variation describes also 
the volatility around the expected losses.

The concept of Pareto frontier is then introduced to delete inefficient reinsurance 
treaties from the optimization. Given the set of feasible treaties M∗ ⊆ M that sat-
isfy constraints (4), we define the set O∗ ⊆ M

∗ of reinsurance treaties that are not 
strictly dominated by any other treaty in M∗ . According to the problem (3), a feasi-
ble treaty m�

∈ M
∗ is said to (Pareto) dominate another solution m��

∈ M
∗ if

with at least one strict inequality satisfied. The use of the Pareto frontier has a signif-
icant impact on reducing the number of considered reinsurance treaties when pass-
ing from M∗ to O∗.

Furthermore, we introduce the concept of convex hull to detect the reinsur-
ance treaties with the most interesting risk-return trade-offs. A convex hull of a 
given set Y is defined as the unique minimal convex set containing Y . In par-
ticular, given that the problem (3) is a double maximization, we compute on O∗ 
the so-called upper convex hull, which is composed by the upward-facing points 
only. We define the set of treaties belonging to the upper convex hull as C∗ ⊆ O

∗ . 
Under problem (3), the upper convex hull is characterized by an interesting prop-
erty: given O∗ , let C∗ =

{
m1,… ,mq

}
 (with q ≥ 2 ) be its upper convex hull, where 

srt(m1) < ⋯ < srt(mq) ; then for s = 1,… , q − 1

subject to the constraint srt(m) > srt(ms) . In other words, when we move from a 
program ms of the convex hull to another Pareto efficient program with a greater 
solvency ratio, the best trade-off, between srt(m) and �(ROEt+1(m)) , is achieved by 
selecting the next program ms+1 on the convex hull. Trivially, if the upper convex 
hull is linear, also every mw with s < w ≤ q returns the best trade-off, but with dif-
ferent scales. In the numerical part we deal with problem (3), we consider a set M 
of alternative reinsurance programs, we identify the set of feasible solutions M∗ and 
then we will use the concept of Pareto frontier and Eq. (6) to identify strategic rein-
surance programs for the insurance company. In particular, we easily computed the 
convex hull with the chull function from the built-in R package grDevices. The func-
tion has been slightly modified in order to obtain either the upper or lower convex 
hull.

Note that the optimization problem can be easily restructured by switching 
�(ROEt+1(m)) or srt(m) with CV(Sn

t+1
(m)) in both (3) and (5). Of course the optimi-

zation target in (3) would be the minimization of CV(Sn
t+1

(m)) , and the condition in 
(5) would be CV(Sn

t+1
(m

��

)) ≤ CV(Sn
t+1

(m
�

)) . In addition, by replacing �(ROEt+1(m)) 
with CV(Sn

t+1
(m)) in (6), we need to determine the lower convex hull instead of the 

upper one when passing from O∗ to C∗ , and, formula (6) becomes a minimization. 
These alternative problems will be also analysed in the numerical part.

(5)
{

�[ROEt+1(m
��

)] ≥ �[ROEt+1(m
�

)]

srt(m
��

) ≥ srt(m
�

)

(6)max
m∈O∗

(
�(ROEt+1(m)) − �(ROEt+1(ms))

srt(m) − srt(ms)

)
= ms+1
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3  Methodological environment

To solve problem (3)–(4), we introduce a methodological environment. In particular, 
a classical frequency-severity model (see, e.g., [9, 23]) is applied to model the distri-
bution of gross aggregate claims amount Xi,t+1 of each LoB. In other words, we can 
define the r.v. Xi,t+1 as:

where

– Ki,t+1 is the r.v. claim counts. As usually provided in the literature (see [23]), the 
number of claims distribution is the Poisson law ( Ki,t+1 ∼ Poi(ni,t+1 ⋅ Qi,t+1) ), 
with an expected number of claims ni,t+1 affected by a structure variable Qi,t+1.

– Qi,t+1 is a mixing variable (or contagion parameter) (see [34, 42]) and it 
describes the parameter uncertainty on the number of claims. It is assumed that 
�(Qi,t+1) = 1 and that the random variable is defined only for positive values. In 
the numerical analysis, a Gamma distribution will be assumed for Qi,t+1.

– Zh,i,t+1 is the amount of claim h (severity). As usual, Z1,i,t+1, Z2,i,t+1,… , are mutu-
ally independent and identically distributed random variables, each independent 
of the number of claims Ki,t+1.

In order to focus only on premium risk, we are considering next year incurred 
losses that can be covered by using earned premiums. We define earned premiums 
bi,t+1 = �

[
Xi,t+1

](
1 + �i

)
+ �

[
ei,t+1

]
 , where �i is the safety loading coefficient. It is 

noteworthy that we are excluding next-year payments for claims already occurred 
at the valuation date because such random variable is treated in reserve risk evalu-
ation. Furthermore, previous assumptions are based on a mixed compound Poisson 
process that is a classical methodology used in literature and in practice to quantify 
the capital requirement for premium risk (see, e.g. [23]).

Total claims amount gross of reinsurance, Sg
t+1

=
∑L

i=1
Xi,t+1 , for the whole port-

folio is then computed by taking into account the dependence between lines of busi-
ness. Since we deal with L > 2 and we want to consider also tail dependencies, that 
can be crucial to fully catch the benefit of reinsurance contracts, we apply Vine 
copulas (see, e.g., [20, 38]). As well-known, thanks to Sklar’s theorem (see, e.g., 
[25, 48, 49]), the modelling of the marginal distributions can be conveniently sep-
arated from the dependence modelling in terms of the copula. But, while for the 
bivariate case, a rich variety of copula families is available and well-investigated 
(see [39, 43]), Archimedean copulas can lack the flexibility of accurately model-
ling the dependence among larger numbers of variables. Vine copulas do not suffer 
from any of these problems, because allow to build flexible dependency structures 
using bi-variate copulas. Therefore, the copula aggregation is divided in blocks of 
bi-variate aggregations, in such a way that each block can be characterized with 
a different choice of copula and parameters. In other words an aggregation tree is 
defined (see, e.g., [46]). Vines thus combine the advantages of multivariate copula 

(7)Xi,t+1 =

Ki,t+1∑
h=1

Zh,i,t+1,
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modelling, that is separation of marginal and dependence modelling, and the flexi-
bility of bivariate copulas (see [2] for a description of statistical inference techniques 
for the two classes of canonical (C-) and D-vines). C- and D-vine copulas have been 
very successful in many applications, mainly, but not exclusively, in risk manage-
ment, finance and insurance. For instance, in [1, 31] the authors showed the good 
performance of vine copulas compared to alternative multivariate copulas.

Very briefly, C-vines are characterized by a unique node that is connected to all 
the others. The structure is star-shaped and, for instance, in four dimensions we 
have three trees. Note that, given the starting configuration of first tree, there is not 
a unique way in which the following trees can be structured. On the other hand, 
D-Vine copulas are characterized by a linear structure. Unlike the C-vine, once 
the first tree is chosen, the following trees are uniquely defined. In fact, by setting 
the starting sequence of nodes, there is only one way to aggregate. Trivially, in a 
3-dimensional case, there is no difference between a C-vine and D-vine (for a recent 
overviews about the vine methodology, see [20, 22]).

Additionally, we define the set of possible treaties that the insurance company has 
at disposal on the market. In particular, we assume for the generic LoB i that the fol-
lowing contracts are available for the year t + 1 : 

1. a Quota Share treaty with a ceding percentage �i and reinsurance commissions 
Cr
i
;

2. an Excess of Loss per risk with deductible Di and limit Li , denoted with Li xs Di . 
The reinstatements related to the layer are assumed free and unlimited for now. 
Under this type of reinsurance, a reinsurance company has to pay for each h−
claim Zh,i an amount equal to min

(
max

(
Zh,i − Di, 0

)
, Li

)
;

3. a combined treaty, where the Quota Share treaty is in force after the Excess of 
Loss.

To generate the set of available reinsurance programs M , the mathematical domain 
of the reinsurance parameters has been discretised for both Quota Share and Excess 
of Loss treaties. This operation is required in order to deal with a finite number of 
programs m. An adequate discretisation helps providing realistic reinsurance pro-
grams, while keeping relatively small computational times.

To price Excess of Loss treaties the standard deviation pricing principle has been 
applied, where for the generic LoB i the reinsurance premium br,xol

i,t+1
 is equal to

where Xr,xol

i,t+1
 is the aggregate claim amount paid by the reinsurer due to the Excess of 

Loss treaty in force. As well known, reinsurance treaties can be priced using alterna-
tive methodologies and this topic has been widely explored in the literature. The aim 
of this part is to introduce a general structure for the development of the case study. 
Obviously the same approach can be easily applied considering an alternative pric-
ing principle.

Since in the combined treaties the Quota Share is applied after the Excess of 
Loss, the proportional treaty is characterized by the following premium

(8)b
r,xol

i,t+1
= �(X

r,xol

i,t+1
) + ��(X

r,xol

i,t+1
).
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The previous formula is motivated by the fact that we expect a lower Quota 
Share premium if an Excess of Loss already mitigates part of the underlying risk. 
Trivially, the overall reinsurance premium for the generic LoB i is defined as 
br
i,t+1

= b
r,xol

i,t+1
+ b

r,qs

i,t+1
 . Obviously in case only Quota Share is in force, we apply for-

mula (9) assuming br,xol
i,t+1

= 0.

4  Numerical application

4.1  General framework and gross of reinsurance results

In this section, we test the proposed approach using data of an Italian insurance 
company. Data have been modified for confidentiality reasons. For the sake of sim-
plicity, we assume that the company operates only in the following LoBs: 

1. Motor third party liability (MTPL);
2. General third party liability (GTPL);
3. Motor own damage (MOD).

Main parameters of the company are reported in Table 1. In particular, for each LoB i, 
the single claim amount Zh,i,t+1 is distributed according to a LogNormal(�i,t+1, �i,t+1) 
and each claim is covered up to a policy limit pli,t+1 . Some key parameters, as the 
standard deviation of the structure variable �(Qi,t+1) , the safety loading and the 
expense ratio ERi,t+1 have been calibrated using market data (see [7]).

In terms of annual tariff premiums (last column in Table 1), this insurer repre-
sents more or less the 10th biggest Italian insurer for each LoB. Therefore, given 
the distribution of premiums around the market, we are in front of a medium-sized 
insurer. By looking at the parameters, we can note that MTPL is the largest LoB in 
the portfolio, but, due to high competitiveness in the market, the safety loading coef-
ficient is only 1.2% . Instead, GTPL is characterized by a larger and more volatile 
claim-size distribution and at the same time, it’s the least diversified due to a low 
value of E(KGTPL,t+1) . For MOD, a higher profitability is expected notwithstanding a 
lower relative volatility.

(9)b
r,qs

i,t+1
= �i,t+1

(
bi,t+1 − b

r,xol

i,t+1

)
.

Table 1  Parameters of the model

In order: mean and coefficient of variation of r.v. claim-size, policy limit, average claims count, standard 
deviation of structure variable, safety loading, expense ratio, gross premiums

LoBs �(Zi,t+1) CV(Zi,t+1) pli,t+1 �(Ki,t+1) �(Qi,t+1) �i,t+1 ERi,t+1 bi,t+1

MTPL 4500 6 10,000,000 50,000 6.83% 1.2% 21.2% 288,959,391
GTPL 6000 10 10,000,000 10,000 12.37% 6.7% 32.3% 94,564,254
MOD 1500 2 1,000,000 30,000 11.27% 13.8% 30.4% 73,577,586
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A Monte Carlo simulation procedure is initially performed and it has been 
used parameters reported in Table  1. Particular care is given when storing the 
simulated large claims, which will be fundamental for reinsurance applications in 
the next steps. To this end, the Algorithm 1 describes the procedure followed to 
generate the aggregate claim amount for each LoB. 

Algorithm 1 Monte Carlo simulations
1: nsim ← number of simulations
2: Sim ← list() � Initialize a list to contain the LoBs
3: for i = MTPL,GTPL,MOD do
4: Sim[i] ← list() � Initialize a list inside a list to contain nsim simulations for each LoB
5: qi ← vector of dimension nsim sampled from Gamma(hi, hi)
6: ki ← vector of dimension nsim sampled from Poi(ni,t+1 · qi) � Sample once for each element of qi
7: for j = 1, 2, . . . , nsim do
8: zi,j ← vector of dimension ki[j] sampled from LogNormal(µi,t+1, σi,t+1)
9: zi,j ← pmin(zi,j , pli,t+1) � pmin: element-wise minimum
10: Sim[i][j] ← list() � Store the vector of large claims in [1] and the sum of attritional claims in [2]
11: Sim[i][j][1] ← vector of zi,j that are greater than a threshold Ti

12: Sim[i][j][2] ←
∑

zi,j that are less than or equal to a threshold Ti

13: end for
14: end for

Thanks to the simulation structure provided by Algorithm  1, the aggregate 
claims amount Xn,xol

i,t+1
 net of a generic Excess of Loss Li xs Di can be easily com-

puted on the same simulations by applying the Algorithm 2. 

Algorithm 2 Calculate aggregate claims amount net of XoL reinsurance for LoB i
1: function XoL(Simulations, i,Di, Li) � L = 0 to obtain gross of reinsurance results
2: zi ← Simulations[i] � Simulations of the LoB i
3: Output ← empty vector of dimension nsim

4: for j = 1, 2, . . . , nsim do
5: Largei,j ← zi[j][1] � Vector of large claims of the jth simulation
6: Attritionali,j ← zi[j][2] � Value of the sum of attritional claims of the jth simulation
7: LargeNeti,j ← pmin(Largei,j , Di) + pmax(Largei,j −Di − Li, 0) � pmax: element-wise maximum
8: Output[j] ← Attritionali,j +

∑
LargeNeti,j

9: end for
10: return Output
11: end function

The main characteristics for each LoB are listed in Table 2. Additionally, gross 
capital requirement for premium risk is computed, at moment, separately for each 
LoB.

The lowest coefficient of variation is observed for MTPL, due to both a higher 
diversification and the lowest variability of the structure variable. However, the 
marginal capital requirement is the highest among the three lines because of the 
relevance in the portfolio. On the other hand, in relative terms, the highest capital 
is absorbed by GTPL.

Since the empirical evidence of dependence between LoBs is not available, the 
aggregation is achieved through the use of Vine copula, where the parameters are 
calibrated according to the correlation matrix provided by Solvency II Commission 
Delegated Regulation [29] (see Table 3).

In particular, since we deal with a 3-dimensional scenario, a C-Vine copula is 
equivalent to a D-Vine one. The chosen aggregation structure is graphically repre-
sented with the following trees. Therefore, each couple is aggregated by applying 
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a mirror Clayton copula (see [46]), whose parameters have been derived exploiting 
the well-known relation between the correlation coefficient and Kendall Tau. 

MTPL GTPL MOD
ρ = 50% ρ = 25%

MTPL
GTPL

MOD
GTPL

ρ = 50%

Recalling the results of Algorithm 1, we need to reorder the simulation structure 
according to the copula sample, where the gross of reinsurance aggregate claims 
amount Xg

i,t+1
 is used as ordering index. The Vine copula simulation algorithm is 

implemented in the R’s VineCopula package (see [47]). 

Algorithm 3 Sort simulations according to the copula sample
1: SortedSim ← list() � Initialize a list to contain the LoBs
2: C ← matrix of dimension [nsim; 3] sampled from the Vine copula � Each column is

named according to the LoBs
3: for i = MTPL,GTPL,MOD do
4: Xg

i,t+1 ← XoL(Sim, i, 0, 0) � Vector of simulated aggregate claim amounts gross of
reinsurance

5: RankC ← vector of ranks of C[., i] � Rank the elements of column i of C
6: SortedSimi ← Sim[i] sorted by ascending order of Xg

i,t+1
7: SortedSimi ← SortedSimi sorted using RankC
8: SortedSim[i] ← SortedSimi

9: end for

Table 2  Mean, standard deviation, coefficient of variation of aggregate claims amount distribution and 
scr for each LoB

LoBs �(Xi,t+1) �(Xi,t+1) CV(Xi,t+1) VaR99.5%(Xi,t+1) − �(Xi,t+1)

MTPL 224,853,164 16,366,551 7.28% 44,229,873
GTPL 59,755,974 8,880,263 14.86% 25,781,117
MOD 44,991,474 5,119,400 11.38% 14,232,375

Table 3  Correlation matrix 
(Solvency II Commission 
Delegated Regulation [29])

MTPL GTPL MOD

MTPL 1 0.5 0.5
GTPL 0.5 1 0.25
MOD 0.5 0.25 1
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Table 4 reports main characteristics of the distribution of aggregate losses for the 
whole portfolio. Furthermore, total capital requirement is equal to roughly 78 millions 
of Euro with a saving of approximately 7% because of diversification between LoBs. 
It is worth pointing out that the solvency ratio is roughly 117% and the expected ROE 
is around 14%. The financial return rate j is assumed equal to 0 for simplicity.

Starting from the framework gross of reinsurance reported in Table  4, we test 
alternative reinsurance strategies that the insurance company can pursue. To do this, 
we set the constraints (4) in problem (3) as follows:

In this specific setting, the aim of the insurance company is to obtain a significant 
increase of the solvency ratio because of the reinsurance. Additionally, the con-
straints assume a minimum level of profitability equal to 10% and a total net volatil-
ity not higher than the gross one.4 The set M is composed by all possible combina-
tions obtained assuming to cover the risk with an Excess of Loss treaty, a Quota 
Share or a combined treaty based on an interplay between a proportional and a non-
proportional treaty (with a Quota Share after the Excess of Loss). Both the retention 
of the quota share and the limits of the layer covered by the Excess of Loss have 
been discretised in order to deal with a finite number of possible reinsurance trea-
ties. In particular, the following choices have been made:

– for the selection of all the possible Quota Share treaties, whose retention 1 − �i 
varies in the interval [0; 1] with a step of 5% to consider retentions that are likely 
to be negotiated between insurer and reinsurer;

– for the selection of all possible Excess of Loss, in this initial analysis we do not 
consider subsequent layers and the presence of possible reinstatements, aggre-
gate limits and aggregate deductibles. The choice has been made in order to 
reduce the computational times and the size of M . However, in Sect. 4.4, a spe-
cific focus has been made on consecutive layers and reinstatements;

– the deductible Di is defined in the range [500, 000;2, 000, 000] with a step of 250, 
000. The lower limit has been set to fix a reasonable attachment point for the 
treaty and to avoid that the layer over-fits the simulations by protecting extreme 
events only at a low price;

– the limit Li has been discretised with a 2, 000, 000 step to study how far should 
the layer go. More precisely, due to the presence of the policy limit pli,t+1 , the 
range of Li is 

[
2, 000, 000;pli,t+1 − Di

]
;

Since MOD is a short tailed LoB, the application of Excess of Loss does not sig-
nificantly contribute in mitigating extreme losses. For the sake of brevity, results 

(10)

⎧
⎪⎨⎪⎩

m ∈ M

�(ROEt+1(m)) ≥ 10%

srt(m) ≥ 150%

CV(Sn
t+1

(m)) ≤ 7.69%

4 We choose to report also information also about the treaties with sr
t
(m) ≥ 145% and 

�(ROE
t+1(m)) ≥ 8.5% to visualise how much the set of constraints is binding.
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related to Excess of Loss treaties for this line of business have not been reported 
in the following.

When pricing Excess of Loss treaties, we assume that the insurance market 
competitiveness is in line with the reinsurance one. Therefore, recalling Eq. (8), 
the standard deviation premium principle has been calibrated as follows:

Instead, when pricing Quota Share, we will assume that the reinsurer requires an 
additional compensation by keeping a fixed 5% of the expense commissions, such 
that

Hence, the reinsurance commissions are assumed deterministic.
Now we have all the elements to compute the results net of reinsurance through 

the application of different reinsurance programs on the simulations of Algo-
rithm  3. Since each Excess of Loss contract is redundant in M and the Quota 
Share is always applied afterwards, it is preferred to calculate in a separate step 
the aggregate claims amount Xn,xol

i,t+1
 and the reinsurance premium br,xol

i,t+1
 for each 

unique Excess of Loss treaty. In fact, the application of Quota Share contracts is 
straightforward since both ceded losses and ceded premiums are derived from the 
ceding percentage �i . 

Algorithm 4 Calculate Xn,xol
i,t+1 and br,xoli,t+1 for each XoL contract in scope

1: ListXoL ← list of unique Excess of Loss contracts in M
2: � Each element of ListXoL contains info about the LoB i it refers to, the deductible Di and the limit Li

3: claimsXoL ← list()
4: premiumsXoL ← list()
5: for i = MTPL,GTPL,MOD do � Initialize by adding the results gross of reinsurance
6: claimsXoL[i][0][0] ← Xg

i ← XoL(Sim, i, 0, 0) � Store the vector of aggregate claims amount gross of reinsurance
7: premiumsXoL[i][0][0] ← 0 � No reinsurance premium is paid
8: end for
9: for contract ∈ ListXoL do
10: i ← LoB the contract refers to
11: Di ← deductible of the contract
12: Li ← limit of the contract
13: claimsXoL[i][Di][Li] ← Xn,xol

i,t+1 ← XoL(Sim, i,Di, Li)

14: Xr,xol
i,t+1 ← Xg

i,t+1 −Xn,xol
i,t+1

15: premiumsXoL[i][Di][Li] ← br,xoli,t+1 ← E(Xr,xol
i,t+1) + βiσ(X

r,xol
i,t+1)

16: end for

{
�MTPL = 20%

�GTPL = 45%

Cr
i,t+1

= 95% ⋅ �i ⋅ ei,t+1.

Table 4  Mean, standard deviation and coefficient of variation of aggregate claims amount (whole portfo-
lio, gross of reinsurance), solvency ratio and expected roe

�(S
g

i,t+1
) �(S

g

i,t+1
) CV(S

g

i,t+1
) sr

g

t �(ROE
g

t+1
)

329,600,612 25,364,287 7.69% 117.26% 14.15%
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The last and crucial step of the calculations is mainly composed by the simple 
combination of Algorithm  4 outputs claimsXoL and premiumsXoL according to 
the programs contained in M . In fact, note that the operations involved in Algo-
rithm 5 to calculate the vector of aggregate claims amount net of reinsurance Sn

t+1
 

are not time-consuming. 

Algorithm 5 Calculate results net of reinsurance for each reinsurance program m ∈ M
1: M ← list of reinsurance programs
2: � Each element of M contains for each LoB i the Quota Share αi and the XoL deductible Di and limit Li

3: Results ← dataframe() � Initialize a dataframe to contain the output
4: n ← 1 � Initialize the row index of Results
5: for m ∈ M do
6: Sn

t+1 ← vector of zeros of dimension nsim

7: brt+1 ← 0
8: Cr

t+1 ← 0
9: for i = MTPL,GTPL,MOD do
10: αi,t+1 ← m[i][α] � Retrieve the treaty’s characteristics for the LoB i
11: Di ← m[i][D]
12: Li ← m[i][L]
13: br,xoli,t+1 ← premiumsXoL[i][Di][Li] � Retrieve the pre-calculated XoL premium

14: Xn,xol
i,t+1 ← claimsXoL[i][Di][Li] � Retrieve the pre-calculated vector of claims net of XoL

15: br,qsi,t+1 ← αi,t+1(bi,t+1 − br,xoli,t+1)

16: bri,t+1 ← br,xoli,t+1 + br,qsi,t+1
17: brt+1 ← brt+1 + bri,t+1 � Update the reinsurance premiums brt+1 =

∑
i b

r
i,t+1

18: Cr
i,t+1 ← 95% · αi,t+1 · ei,t+1

19: Cr
t+1 ← Cr

t+1 + Cr
i,t+1 � Update the reinsurance commissions Cr

t+1 =
∑

i C
r
i,t+1

20: Xn
i,t+1 ← (1− αi,t+1)X

n,xol
i,t+1

21: Sn
t+1 ← Sn

t+1 +Xn
i,t+1 � Update the vector of claims net of reinsurance Sn

t+1 =
∑

i X
n
i,t+1

22: end for
23: ES ← E(Sn

t+1)
24: E(ROEt+1) ←

∑
i (bi,t+1 − ei,t+1)− ES − brt+1 + Cr

t+1
25: SS ← σ(Sn

t+1)
26: CV (Sn

t+1) ← SS/ES
27: srt ← (V aR99.5%(Sn

t+1)− ES)/ut

28: if (E(ROEt+1) < ρ) or (CV (Sn
t+1) > χ) or (srt < ξ) then

29: Go to the next m � Avoid storing the results if at least one of the constraints is not satisfied
30: end if
31: Results[n, treaty] ← �m Store the treaty’s info and results
32: Results[n,E(ROE)] ← E(ROEt+1)
33: Results[n,CV ] ← CV (Sn

t+1)
34: Results[n, sr] ← srt
35: n ← n+ 1 � Update the row index
36: end for

We acknowledge that the proposed algorithms can be further optimised in 
terms of computational times. However, the current algorithms already provide 
the results in a reasonable amount of time. Indeed, to give an idea of computa-
tional times, given the aforementioned discretisations and assumptions, the most 
time consuming part of the process is Algorithm 5, which takes 12 min to com-
pute all the combinations of treaties. The code is written in R, with the help of 
the Rcpp package (see [26]), using an Intel Pentium 4415U, 2.30 GHz proces-
sor and 8 GB RAM. The pseudo-code presented in this paper is kept simple 
in order to be easier to understand. However, the proposal allows us to use the 
same results for different optimization problems, as shown in Sect. 4.3.
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4.2  Profitability and capital requirement optimization under volatility constraint

Recalling the proposed optimization problem (3), it is possible to analyse graphi-
cally each reinsurance scheme from Algorithm 5, as depicted in Fig. 1. Since the 
aim is to maximise both the �(ROEt+1(m)) and srt(m) , the reinsurance programs 
we aim for are the ones in the upper-right corner of the figure. Only the points 
displayed in orange satisfy the set of constraints (10).

Then, in Fig. 2 a close-up of the orange dots of Fig. 1 is presented. As shown 
by the color gradient of CV(Sn

t+1
(m)) , the treaties with the least coefficient of vari-

ation are the ones in the lower-left corner. Using the concept of Pareto frontier, 
the set of non-dominated reinsurance programs O∗ are determined in yellow and 
in orange. In particular, the three orange points are the ones belonging to the 
upper convex hull frontier C∗ ⊆ O

∗ , and, in ascending order of srt(m) , are struc-
tured as summarized in Table 5.

Note that �MOD is not specified in Table 5 since the optimal reinsurance pro-
grams never apply Quota Share for MOD (i.e. �MOD = 0 for all three cases). This 
fact is justified by the high profitability and low riskiness that characterize this 
line, and, therefore, ceding such LoB would be inefficient for the insurance com-
pany. The results in Table 5 (see last three columns) show some peculiarities:

– in each program the coefficient of variation is really close to the one gross 
of reinsurance, which is equal to 7.69% . Hence, the constraint has been sat-
isfied in its upper bound, while the resulting programs maximize the trade-
off between srt(m) and �(ROEt+1(m)) without any significant reduction of 
CV(Sn

t+1
(m));

– all the programs rely heavily on the Quota Share of MTPL to adjust srt(m) , since 
ceding such LoB generates a more diversified risk portfolio;

– In conjunction with the increase of �MTPL , the Excess of Loss’ layer of GTPL 
shifts towards more frequent risks to provide more coverage;

– the upper convex hull frontier is almost linear graphically;
– there is no program on the convex frontier with srt(m) ≈ 160% because of the 

discontinuity between the second and the third orange point. In fact, under this 
optimization, if the insurer aims for such srt(m) target, a reinsurance program 
on the Pareto frontier would be selected.

4.3  Alternative optimizations

In this section, we modify the optimal problem keeping constant the set of con-
straints. In particular, we focus here on the minimization of the underlying riski-
ness considered in both srt(m) and CV(Sn

t+1
(m)) and we define a minimum level of 

profitability equal to 10%. Therefore, we rewrite the problem as
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subject to (10).
As mentioned before, we use the same results from Algorithm 5, while chang-

ing the axes in the data visualisation. The reinsurance programs are represented in 
Fig. 3. Trivially, we now aim for the lower-right corner of the figure. As before, the 
orange dots represent the programs that satisfy the constraints, and they are charac-
terized by a spiky shape. The use of the Pareto frontier is able to reduce in a signifi-
cant way the number of considered programs, as shown in Fig. 4.

In this scenario, the lower convex hull has been computed and it is not linear 
as in the previous optimization. Due to this fact, we can build a line that connects 
the leftmost and rightmost points of the Pareto frontier, and determine which Pareto 
reinsurance program is tangent to it. This determination of the tangent program can 
provide some useful considerations on the most interesting trade-offs. The programs 
on the convex frontier, ordered by values of srt(m) and with the tangent program in 
bold, are reported in Table 6.

The profit constraint has been met in its lower bound, with an expected ROE just 
slightly higher than 10% . In fact, the optimal trade-off between the two risk meas-
ures comes at the cost of reducing as much as possible the expected profit. The 5th 
program also appeared in the previous optimization (see Table 5), since it almost 
meets the upper bound of volatility constraint and it is characterized by the highest 
solvency ratio among the subset of programs.

The tangent program relies on a solid protection with an Excess of Loss on GTPL 
and it does not use any Quota Share on such LoB to avoid sharing profit. At the 
same time, the optimal program combines on MTPL a Quota Share with a retention 
of 70% and an Excess of Loss that does not cover extreme losses after 7.25 millions, 
due to their low occurrence.

Alternatively, we assume that the insurance company is willing to achieve a 
minimum solvency ratio, while maximizing the expected profit and minimizing the 
claims volatility. This kind of scenario is of interest in the actuarial practice, and it is 
worth to be analysed. The optimization problem can be rewritten as:

subject to (10).
As in the previous cases, the numerical constraints are applied, and we are able to 

select the programs depicted in orange in Fig. 5.
In Fig. 6, the programs on the convex frontier are determined. We summarize the 

characteristics of these programs in Table 7, ordered by values of �(ROEt+1(m)) , and 
with the tangent program in bold.

In this case, all the programs that lie on the convex frontier have a solvency 
ratio close to the lower bound in the constraint. With respect to previous results, 
the tangent program relies less on Quota Share and more on Excess of Loss for 

(11)

{
max
m

srt(m)

min
m

CV(Sn
t+1

(m))

(12)

{
max
m

�(ROEt+1(m))

min
m

CV(Sn
t+1

(m))
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MTPL. We have indeed that such treaty assures a lower saving of capital but also 
a lower reduction of profitability. The tangent program achieves really similar 
results to the 4th program. The only difference is choosing which LoB to cover 
more and which less with Excess of Loss.

Up to now, we have analysed three different reinsurance optimization criteria 
under the assumed constraints. However, it is interesting to explore what happens 
when the number of possible reinsurance programs is strongly limited because 
the constraints are too binding. To this end, we increase the solvency ratio con-
straint, such that the new constraints of problem (12) is set as follows:

As shown in Fig. 8, the convex frontier is composed by only two programs, summa-
rized in Table 8.

It is interesting to note that the first program in Table  8 has been already 
appeared as tangent program when dealing with the optimization problem (11). 
In fact, this program is characterized by an interesting trade-off between volatility 
and solvency ratio, while satisfying the profitability constraint in its lower bound. 
Since there are only two programs given the current conditions, we are not able to 
perform a good comparison. An idea is to investigate whether these two programs 
remain a valid choice under a less binding constraint in terms of profitability such 
as:

(13)

⎧⎪⎨⎪⎩

m ∈ M

�(ROEt+1(m)) ≥ 10%

srt(m) ≥ 160%

CV(Sn
t+1

(m)) ≤ 7.69%

Fig. 1  Behaviour of alternative reinsurance programs in terms of expected ROE and solvency ratio. The 
scale varies with respect to the coefficient of variation net of reinsurance. Points displayed in orange sat-
isfy the set of constraints (10)
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Now that more programs are considered, a proper convex frontier is determined 
in Fig. 10, and confirms that the first program of Table 8 is now the tangent one, as 
shown in Table 9.

If we obtained a different tangent program in Table 9, the main problem would be 
linked to the constraints being too binding: by considering a wider range of reinsur-
ance programs, the insurance company would be able to select a better trade-off.

The 5th program of Table 9 is really similar to the tangent one, except for LGTPL 
that covers large claims up to the policy limit plGTPL,t+1 . Since in practice the 

(14)

⎧⎪⎨⎪⎩

m ∈ M

�(ROEt+1(m)) ≥ 9%

srt(m) ≥ 160%

CV(Sn
t+1

(m)) ≤ 7.69%

Fig. 2  We display a close-up of the orange dots of Fig. 1. Moreover, yellow dots represent the set of non-
dominated reinsurance programs. Orange points are the strategies belonging to the upper convex hull 
frontier

Table 5  Characteristics of the reinsurance treaties in the convex hull

Last three columns report the coefficient of variation of aggregate claims amount, the solvency ratio and 
the expected ROE that have been evaluated net of reinsurance

DMTPL LMTPL �MTPL DGTPL LGTPL �GTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

2,000,000 6,000,000 30% 1,500,000 4,000,000 0% 7.65% 150.08% 10.91%
2,000,000 4,000,000 35% 1,250,000 4,000,000 0% 7.67% 155.86% 10.55%
2,000,000 4,000,000 40% 750,000 4,000,000 0% 7.66% 164.54% 10.01%



 A. Zanotto, G. P. Clemente 

1 3

distribution of extreme losses might be underestimated in the fitting procedure, opt-
ing for a wider Excess of Loss layer can be a valid choice.

4.4  Reinstatement optimization

In this section, we investigate the impact of reinstatements on the optimization 
problem (3). We briefly recall the main characteristics of reinstatements. Under an 
Excess of Loss treaty Li xs Di applied to the generic LoB i, the reinsurer pays for 
each h−claim Zh,i,t+1 an amount Zr,xol

h,i,t+1
 equal to min(max(Zh,i,t+1 − Di, 0), Li) . In case 

of presence of an annual aggregate deductible AADi and an annual aggregate limit 
AALi , the aggregate claim amount Xr,xol

i,t+1
 paid by the reinsurer for such Excess of 

Loss treaty is calculated as follows:

When reinstatements are present, AALi is given as an integer multiple of the limit 
Li , such that AALi = (Ni + 1)Li , where Ni is the number of reinstatements available. 
The reinsurance premium for such Excess of Loss varies accordingly to the rein-
statements being free or paid. In case of free reinstatements, the premium is simply 
calculated on the basis of the risk underlying a layer Li xs Di with an aggregate layer 
(Ni + 1)Li xs AADi . With paid reinstatements the insurer pays an additional reinstate-
ment premium to reinstate the layer if a claim reduces its capacity. The premium of 
the nth reinstatement is paid pro rata of the claims to the layer and it is expressed as 
a percentage cn of the base premium br,base

i,t+1
 initially paid for the layer. To clarify the 

concept, the nth reinstatement covers the amount

(15)X
r,xol

i,t+1
= min

(
max

(
Ki,t+1∑
h=1

(
Z
r,xol

h,i,t+1

)
− AADi, 0

)
,AALi

)
.

Fig. 3  Behaviour of alternative reinsurance programs in terms of solvency ratio and coefficient of vari-
ation. The scale varies with respect to the expected ROE net of reinsurance. Points displayed in orange 
satisfy the set of constraints (10)
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where 
(

Rn,i

Li

)
 represents the proportion of layer reinstated. Therefore, since the pre-

mium for the nth reinstatement is defined as 
(
cn,ib

r,base

i,t+1

Rn,i

Li

)
 , the total premium is

In the previous optimization problems, we always assumed the absence of 
Annual Aggregate Deductibles and Limits by imposing AADi = 0 , Ni = ∞ and 
cn,i = 0 ∀n = 1,… ,N and ∀i . To study the reinstatements’ effects in the proposed 

(16)Rn,i = min

(
max

(
Ki,t+1∑
h=1

(
Z
r,xol

h,i,t+1

)
− AADi − (n − 1)Li, 0

)
, Li

)

(17)b
r,xol

i,t+1
= b

r,base

i,t+1

(
1 +

1

Li

Ni∑
n=1

cn,iRn,i

)
.

Fig. 4  We display a close-up of the orange dots of Figure 3. Moreover, yellow dots represent the set of 
non-dominated reinsurance programs. Orange points are the strategies belonging to the lower convex hull 
frontier, with the tangent one in red

Table 6  Characteristics of the reinsurance treaties in the convex hull

In all cases, reinsurance treaties have not been selected for MOD (i.e. �
MOD

= 0 ). Last three columns 
report the coefficient of variation of aggregate claims amount, the solvency ratio and the expected ROE 
that have been evaluated net of reinsurance. In bold, we have the reinsurance treaty that is tangent to the 
convex hull

DMTPL LMTPL �MTPL DGTPL LGTPL �GTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

750,000 9,250,000 15% 500,000 9,500,000 10% 7.22% 150.11% 10.02%
500,000 4,000,000 15% 500,000 8,000,000 10% 7.23% 151.25% 10.01%
750,000 9,250,000 25% 500,000 9,500,000 0% 7.31% 156.21% 10.02%
1,250,000 6,000,000 30% 500,000 8,000,000 0% 7.40% 160.14% 10.01%
2,000,000 4,000,000 40% 750,000 4,000,000 0% 7.66% 164.54% 10.01%
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optimization framework, we modify the Excess of Loss treaties presented in Table 5 
for both MTPL and GTPL, such that:

– given the generic LoB i, the Excess of Loss layer Li xs Di is split in two 
sequential layers, denoted as Li,1 xs Di and (Li − Li,1) xs (Di + Li,1) . This choice 
has been made since assuming the presence of only one layer might neglect 
possible advantages provided by the reinstatements. In the computations Li,1 

Fig. 5  Behaviour of alternative reinsurance programs in terms of expected ROE and coefficient of vari-
ation. The scale varies with respect to the solvency ratio net of reinsurance. Points displayed in orange 
satisfy the set of constraints (10)

Fig. 6  We display a close-up of the orange dots of Fig. 5. Moreover, yellow dots represent the set of non-
dominated reinsurance programs. Orange points are the strategies belonging to the lower convex hull 
frontier, with the tangent one in red
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has been discretised with a 1,000,000 step in the range [0;Li) , where we trivi-
ally consider the single layer Li xs Di when Li,1 = 0;

– subsequently, for each new layer we may introduce reinstatements, both paid 
and free, with N ∈ {0, 1, 2,∞} . In case of paid reinstatements, cn,i ∈ {0.5, 1} 
as commonly found in practice, and we assume cn,1 = cn,2 = ⋯ = cN,1 when 
N ≥ 2 . Trivially, cn,i = 0 ∀i for free reinstatements;

Table 7  Characteristics of the reinsurance treaties in the convex hull

In all cases, reinsurance treaties have not been selected for MOD (i.e. �
MOD

= 0 ). Last three columns 
report the coefficient of variation of aggregate claims amount, the solvency ratio and the expected ROE 
that have been evaluated net of reinsurance. In bold, we have the reinsurance treaty that is tangent to the 
convex hull

DMTPL LMTPL �MTPL DGTPL LGTPL �GTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

750,000 9,250,000 15% 500,000 9,500,000 10% 7.22% 150.11% 10.02%
750,000 8,000,000 15% 500,000 9,500,000 10% 7.23% 150.05% 10.04%
750,000 6,000,000 15% 500,000 9,500,000 10% 7.23% 150.02% 10.07%
1,000,000 6,000,000 20% 500,000 9,500,000 0% 7.31% 150.03% 10.52%
1,000,000 8,000,000 20% 500,000 8,000,000 0% 7.32% 150.01% 10.55%
2,000,000 4,000,000 25% 500,000 4,000,000 0% 7.47% 150.21% 10.80%
2,000,000 6,000,000 30% 1,500,000 4,000,000 0% 7.65% 150.08% 10.91%

Fig. 7  Behaviour of alternative reinsurance programs in terms of expected ROE and coefficient of vari-
ation. The scale varies with respect to the solvency ratio net of reinsurance. Points displayed in orange 
satisfy the set of constraints (13)
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– to determine the initial reinsurance premium br,base
i,t+1

 for each resulting layer, 
the standard deviation pricing principle has been applied (see, e.g., [51] for 
further details on the methodology) with the same calibration used in the pre-
vious sections.

To add the reinstatements in Algorithm 5, we need to calculate the stochastic 
reinsurance premiums in premiumsXoL as vectors. Due to the presence of sequen-
tial layers, we also need to compute such premiums twice. The resulting reinsur-
ance programs that satisfy the set of constraints (10) are represented with red 
points in Fig. 11. We observe a trade-off between two different effects: 

1. since the standard deviation premium principle is sub-additive, the reinsurance 
premium increases when we split a layer in two consecutive layers. Therefore, 
since we are not introducing the counterparty default risk in the calculations, 

Fig. 8  We display a close-up of the orange dots of Fig. 7. Moreover, yellow dots represent the set of non-
dominated reinsurance programs. Orange points are the strategies belonging to the lower convex hull 
frontier

Table 8  Characteristics of the reinsurance treaties in the convex hull

In all cases, reinsurance treaties have not been selected for MOD (i.e. �
MOD

= 0 ). Last three columns 
report the coefficient of variation of aggregate claims amount, the solvency ratio and the expected ROE 
evaluated that have been evaluated net of reinsurance

DMTPL LMTPL �MTPL DGTPL LGTPL �GTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

1,250,000 6,000,000 30% 500,000 8,000,000 0% 7.40% 160.14% 10.01%
2,000,000 4,000,000 35% 500,000 4,000,000 0% 7.55% 161.15% 10.16%
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we expect a reduction in the profitability of the insurer by keeping untouched its 
underlying risk net of reinsurance;

2. by introducing a finite value of AAL and number of reinstatements, the reinsurance 
premiums are reduced on average and the insurer is more exposed to extreme risk 
due to possible layer exhaustion and stochastic reinsurance premiums.

For these reasons the generated reinsurance programs are characterized by a 
lower solvency ratio than their respective starting orange point of Fig.  11. We 
might also observe that some red dots are located on top of the convex frontier, 
showing that the insurer can actually slightly optimize the trade-off between 
srt(m) and �(ROEt+1(m)) of the reinsurance program with adequate layer splits 
and reinstatements. This further optimization is clearly not possible when applied 
to a reinsurance program that satisfies the solvency ratio constraint in its lower 
bound, like the leftmost orange point of Fig. 11. Therefore, we ignore the latter 
and, recalling the results of Table 5, the reinsurance programs that will be opti-
mized are presented in Table 10.

To avoid overloading the tables with numerical results, we will present one rein-
statement optimization for each reinsurance treaty present in Table 10. In particular, 
we choose the alternative programs that lie on top of the convex frontier that opti-
mize the trade-off between srt(m) and �(ROEt+1(m)) . Both the optimized programs 
presented in Table 11 modify the MTPL layer while leaving untouched the GTPL 
one. For this reason, the information regarding the latter LoB is not included.

In particular, we can see from Table 11 that the MTPL layer of the first program 
has been split into two consecutive layers, each with one paid reinstatement. Instead, 
the MTPL layer of the second program is not split, but indicates that a paid reinstate-
ment might be preferable to an unlimited AAL. In both the optimized programs, the 

Fig. 9  Behaviour of alternative reinsurance programs in terms of expected ROE and coefficient of vari-
ation. The scale varies with respect to the solvency ratio net of reinsurance. Points displayed in orange 
satisfy the set of constraints (14)
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resulting changes in CV(Sn
t+1

(m)) , srt(m) and �(ROEt+1(m)) are minimal when com-
pared to the respective starting point.

4.5  Umbrella case study

Since we dealt with finite aggregate limits and reinstatements, an interesting analysis 
could be characterized by the introduction of an Umbrella treaty to avoid horizontal 
exhaustion of the layers. Before diving into the numerical results, we will briefly 
describe the characteristics of such reinsurance treaty to give more context to the 
subject. The main purpose of an Umbrella is to protect the insurance company from 
risks that are not covered by other reinsurance contracts. For example, an Umbrella 
coverage might include catastrophe claims or other particular risks that are excluded 

Fig. 10  We display a close-up of the orange dots of Fig. 9. Moreover, yellow dots represent the set of 
non-dominated reinsurance programs. Orange points are the strategies belonging to the lower convex hull 
frontier, with the tangent one in red

Table 9  Characteristics of the reinsurance treaties in the convex hull

Last three columns report the coefficient of variation of aggregate claims amount, the solvency ratio and 
the expected ROE evaluated that have been evaluated net of reinsurance. In bold, we have the reinsurance 
treaty that is tangent to the convex hull

DMTPL LMTPL �MTPL DGTPL LGTPL �GTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

500,000 6,000,000 20% 500,000 6,000,000 20% 7.23% 160.23% 9.01%
750,000 6,000,000 25% 500,000 9,500,000 10% 7.28% 160.78% 9.38%
750,000 4,000,000 25% 500,000 9,500,000 10% 7.29% 160.53% 9.42%
750,000 4,000,000 25% 500,000 8,000,000 10% 7.30% 160.12% 9.49%
1,250,000 6,000,000 30% 500,000 9,500,000 0% 7.39% 160.35% 9.94%
1,250,000 6,000,000 30% 500,000 8,000,000 0% 7.40% 160.14% 10.01%
2,000,000 4,000,000 35% 500,000 4,000,000 0% 7.55% 161.15% 10.16%



1 3

An optimal reinsurance simulation model for non-life insurance…

by the reinsurance scheme. Another common use is to increase the protection of 
Excess of Loss treaties in two alternative scenarios:

– vertical exhaustion occurs when a claim exceeds the amount Di + Li of the 
Excess of Loss applied to the LoB i. In this case, the Umbrella covers the amount 
exceeding the layer. Contractually speaking, when the vertical exhaustion clause 
is present, the perimeter of the Umbrella can be defined as a subset of the risks 
covered by the associated Excess of Loss layer. For example, given an Excess of 
Loss that covers the GTPL LoB, the Umbrella that protects its vertical exhaus-
tion might include the medical liability risks only for commercial reasons;

– horizontal exhaustion occurs when the aggregate claim amount Xr,xol

i,t+1
 transferred to 

the reinsurer reaches the aggregate limit AALi , leaving the insurer unprotected. In 
this scenario, the Umbrella protects the insurer from those claims that fall in the 
layer when the latter is already fully consumed, providing an additional coverage.

A single Umbrella coverage can protect multiple LoBs at the same time and its 
perimeter can be defined in several ways, for example by including the horizontal 
exhaustion clause only, which is the particular case that we analyse since connected 
with the previous section where we introduced finite aggregate limits. More pre-
cisely, we study how an Umbrella affects the optimization when applied to all the 
Excess of Loss treaties with finite AAL for both MTPL and GTPL.

To price such contract, the standard deviation premium principle with 
�umb = 35% . From a risk theory perspective, when an Umbrella is applied to multi-
ple LoBs, the dependence between them is a strong driver to determine the volatility 
of the underlying risk, and therefore, in our case, the price of the treaty. Since two 
consecutive layers with finite AAL can be present for both MTPL and GTPL, defin-
ing a closed mathematical formula to compute the standard deviation of such com-
plex risk is a tough challenge. For this reason, we derive the standard deviation from 
the simulations in each scenario where the Umbrella has been tested.

To better understand the math behind the Umbrella, given Gi Excess of Loss lay-
ers for the generic LoB i, we define the amount

where Di,g and Li,g are respectively the deductible and the limit of the gth layer, with 
g = 1,… ,Gi . Trivially, Di = Di,1 and Li =

∑Gi

g=1
Li,g when the layers are sequential 

such as Di,g = Di,g−1 + Li,g−1 for g > 1 . When layers with finite AALi,g are present, a 
portion of the claims might exceed the layer capacity, that can be defined on aggre-
gate as

where, in absence of an Umbrella, Xr,out

i,t+1
 is a loss for the insurer. Given that 

the Umbrella contracts that we are considering cover every Excess of Loss layer 

(18)Z
r,xol

h,i,g,t+1
= min

(
max

(
Zh,i,t+1 − Di,g, 0

)
, Li,g

)
,

(19)X
r,out

i,t+1
=

L∑
i=1

Gi∑
g=1

max

(
Ki,t+1∑
h=1

(Z
r,xol

h,i,g,t+1
) −

(
AADi,g + AALi,g

)
, 0

)
,
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available in the program, an Umbrella with annual aggregate deductible AADumb and 
limit AALumb covers the amount

In our analysis we assume that two different Umbrella treaties are available in the 
market: one with medium coverage ( AALumb = 5, 000, 000 ) and another with high 
coverage ( AALumb = 20, 000, 000 ), both with AADumb = 0 . As seen before, with the 
introduction of adequate finite AALi the insurer can achieve an improvement in the 
expected profitability at the cost of increasing both CV and sr. Instead, with the sub-
sequent introduction of an Umbrella, we expect to observe an effect in the opposite 
direction: the trade-off between a finite AALi and an Umbrella covering horizontal 
exhaustion might provide some interesting results. We remark that the scope of this 
section is to investigate the main effects of an Umbrella in terms of profitability and 

(20)X
r,umb

i,t+1
= min

(
max

(
X
r,out

i,t+1
− AADumb

)
,AALumb

)
.

Fig. 11  Behaviour of alternative reinsurance programs in terms of expected ROE and coefficient of vari-
ation that satisfy the set of constraints (10). The scale varies with respect to the solvency ratio net of 
reinsurance. Yellow dots represent the set of non-dominated reinsurance programs and orange points are 
the strategies belonging to the upper convex hull frontier. The points displayed in red are the reinsurance 
programs with the presence of different reinstatements structures generated starting from the programs in 
orange

Table 10  Characteristics of the reinsurance treaties in the convex hull that can be optimized by splitting 
the Excess of Loss layers and by introducing reinstatements

Last three columns report the coefficient of variation of aggregate claims amount, the solvency ratio and 
the expected ROE that have been evaluated net of reinsurance

# DMTPL LMTPL �MTPL DGTPL LGTPL �GTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

1 2,000,000 4,000,000 35% 1,250,000 4,000,000 0% 7.67% 155.86% 10.55%
2 2,000,000 4,000,000 40% 750,000 4,000,000 0% 7.66% 164.54% 10.01%
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solvency ratio, without focusing too much on optimizing the trade-off with the intro-
duction of such treaty.

Both the Umbrella contracts have been applied to those programs that had 
at least one Excess of Loss with finite AALi,g and that were generated accord-
ing to the set of criteria specified in the previous section. Recalling the results 
of Table  11, the programs that were slightly more efficient than the respective 
starting program are characterized by solid reinstatements, such that an Umbrella 
never activates according to the simulations. Hence, we excluded from the cur-
rent analysis all the programs that, with the addition of an Umbrella, were unaf-
fected in terms of protection. The resulting programs with AALumb = 5, 000, 000 
are represented with red dots in Figure 12. We can observe that many programs 
generated by the rightmost optimal program, depicted in orange, lie on top of 
the convex frontier when the Umbrella is applied. This effect is reasonable since, 

Table 11  Characteristics of the reinsurance treaties of Table 10 optimized by splitting the Excess of Loss 
layers and by introducing reinstatements

Last three columns report the coefficient of variation of aggregate claims amount, the solvency ratio and 
the expected ROE that have been evaluated net of reinsurance

# split DMTPL LMTPL NMTPL cMTPL CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

1 sub-layer 1 2,000,000 3,000,000 1 50% 7.68% 155.66% 10.58%
sub-layer 2 5,000,000 1,000,000 1 100%

2 sub-layer 1 − − − − 7.67% 164.38% 10.06%
sub-layer 2 2,000,000 4,000,000 1 100%

Fig. 12  Behaviour of alternative reinsurance programs in terms of expected ROE and coefficient of vari-
ation that satisfy the set of constraints (10). The scale varies with respect to the solvency ratio net of 
reinsurance. Yellow dots represent the set of non-dominated reinsurance programs and orange points are 
the strategies belonging to the upper convex hull frontier. The points displayed in red are the reinsurance 
programs with the presence of different reinstatements structures generated starting from the programs in 
orange, characterized by an additional Umbrella cover with AAL = 5, 000, 000
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recalling Table 10, the second program covers more GTPL than the first, creating 
the opportunity to benefit from the Umbrella price ( 𝛽umb < 𝛽GTPL ). One of these 
reinsurance programs is shown in Table 12.

Compared to Table 11, the program shown in Table 12 relies in this scenario on a 
finite AAL also for GTPL, so that the extreme losses that exceed AALGTPL,1 are cov-
ered by the Umbrella. On the opposite side, the second GTPL layer is characterized 
by AALGTPL,2 = ∞ , probably due to the fact that the Umbrella’s limited capacity is 
able to cover in a proper manner just the losses coming from the first GTPL layer 
and the MTPL one. In general, the presented program is just slightly different from 
the starting program in terms of coefficient of variation, solvency ratio and expected 
ROE net of reinsurance.

We now analyse the impact of the Umbrella with a higher coverage (i.e. 
AALumb = 20, 000, 000 ). With such capacity, the Umbrella is able to cover every 

Table 12  Characteristics of the second reinsurance treaty of Table 10 optimized by splitting the Excess 
of Loss layers and by introducing reinstatements and an Umbrella with AAL

umb
= 5, 000, 000

Last three columns report the coefficient of variation of aggregate claims amount, the solvency ratio and 
the expected ROE that have been evaluated net of reinsurance

i split Di Li Ni ci CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

MTPL sub-layer 1 − − − − 7.67% 164.05% 10.11%
sub-layer 2 2,000,000 4,000,000 0 0%

GTPL sub-layer 1 750,000 1,000,000 0 0%
sub-layer 2 1,750,000 3,000,000 ∞ 0%

Fig. 13  Behaviour of alternative reinsurance programs in terms of expected ROE and coefficient of vari-
ation that satisfy the set of constraints (10). The scale varies with respect to the solvency ratio net of 
reinsurance. Yellow dots represent the set of non-dominated reinsurance programs and orange points are 
the strategies belonging to the upper convex hull frontier. The points displayed in red are the reinsurance 
programs with the presence of different reinstatements structures generated starting from the programs in 
orange, characterized by an additional Umbrella cover with AAL = 20, 000, 000
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exceeding loss in our simulations. Therefore, on a first glance, one might expect that 
the solvency ratio and the coefficient of variation of the aggregate claims amount 
remain constant when passing from the starting program to the modified one with 
such Umbrella. But, as displayed in Fig. 13, it is not always the case: in fact, if we 
focus on the central orange points and on its respective alternatives in red, some pro-
grams are characterized by a different (and lower) solvency ratio. The reason behind 
this effect is the presence of stochastic reinstatement premiums, which downgrade 
both the solvency ratio and the coefficient of variation. Also, note that every red 
point in the middle is now dominated by the original program.

An alternative program from the rightmost orange program of Fig. 13 is displayed 
in Table 13. Compared to the results presented in Table 12, the program is charac-
terized by the same layer split, but relies more on reinstatements due to the greater 
Umbrella’s capacity. In addition, the solvency ratio has decreased, while keeping 
almost untouched the coefficient of variation and the expected ROE. As briefly men-
tioned before, two opposite effects are present:

• the presence of reinstatements implies higher expected profit and higher risk due 
to volatile reinsurance premiums;

• the Umbrella improves the solvency ratio and the coefficient of variation, while it 
downgrades the expected ROE.

In this particular scenario, the trade-off does not add any particular value for the 
insurer. It is worth mentioning that, for �umb ≥ 40% , every alternative program with 
the Umbrella lies below the convex frontier. Therefore, since the optimization is 
strongly price sensitive for the Umbrella, such treaty should not be considered solely 
to achieve a better risk-return trade-off. In fact, protecting the horizontal exhaustion 
of the Excess of Loss layers might be an interesting choice when the assumptions 
regarding the claim-size distribution are too unreliable.

Table 13  Characteristics of the second reinsurance treaty of Table 10 optimized by splitting the Excess 
of Loss layers and by introducing reinstatements and an Umbrella with AAL

umb
= 20, 000, 000

Last three columns report the coefficient of variation of aggregate claims amount, the solvency ratio and 
the expected ROE that have been evaluated net of reinsurance

i split Di Li Ni ci CV(Sn
t+1

(m)) srt(m) �(ROEt+1(m))

MTPL sub-layer 1 − − − − 7.68% 163.50% 10.11%
sub-layer 2 2,000,000 4,000,000 1 50%

GTPL sub-layer 1 750,000 1,000,000 1 100%
sub-layer 2 1,750,000 3,000,000 1 50%
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5  Conclusions

In this paper, we propose an alternative approach to tackle multi-objective portfolio 
optimization problems under specific constraints. We apply this optimization frame-
work in the portfolio selection process of an EU-based non-life insurance company 
that aims at jointly remunerating for shareholders’ capital and be compliant in terms 
of solvency ratios with the Solvency II Directive. In particular, we investigate the 
solutions to the proposed risk-return reinsurance optimization of a multi-line non-
life insurer through a simulation model. In particular, the combination of Excess of 
Loss and Quota Share contracts have been tested on three lines of business of an 
Italian insurance company. The concepts of Pareto efficient frontier and convex hull 
support the selection of the most appealing reinsurance structures under the user-
defined constraints. Moreover, the aid provided by the data visualisation contributes 
in the comprehension of the numerical results.

In addition, two alternative optimization problems have been also analysed, and 
most of the selected programs exhibit very similar structures. The results reveal that 
the Quota Share plays a huge role in balancing the risk portfolio since one of the 
lines of business (Motor Third Party Liability) is predominant. A trade-off between 
proportional and non-proportional reinsurance is present in order to reach the 
desired goals. In fact, the Excess of Loss deductible and limit depend on how much 
Quota Share has been bought, and vice-versa. For each selected program no reinsur-
ance is applied to the Motor Other Damage business because of the high profit and 
the moderate risk.

In the last sections reinstatements and consecutive Excess of Loss layers have 
been introduced, revealing that an opportune combination of reinstatements and lay-
ers might slightly improve the effects of a reinsurance program. Subsequently, in 
order to cover losses coming from the horizontal exhaustion of the layers, two differ-
ent Umbrella treaties have been analysed.

Particular care needs to be paid when building assumptions on both claim-size 
distribution and reinsurance pricing. In fact, the chosen reinsurance program might 
cost differently than initially thought once the actual quote is obtained. Meanwhile, 
an imprecise risk estimation might lead to biased decisions.

The calibration of the model optimizes risk and return indicators within a 1-year 
time horizon, which, in case of the solvency ratio, is consistent with the Solvency II 
framework. Further research improvements may involve the projections in a multi-
year horizon, while including the opportunity of adjusting the reinsurance program 
along the way. In addition, since an insurance company already has its own rein-
surance program, the proposed optimization model can be adapted by investigat-
ing only programs that are slightly different from the reference one. Thereby, the 
analysis would signal with shorter computational times which are the most effective 
modifications that could be implemented in the current reinsurance program.
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