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Summary. Maize is the principal staple food/feed crop exposed to mycotoxins, and 
the co-occurrence of multiple mycotoxins and their metabolites has been well docu-
mented. This review presents the infection cycle, ecology, and plant-pathogen interac-
tions of Aspergillus and Fusarium species in maize, and current knowledge on maize 
chain management to mitigate the occurrence of aflatoxins and fumonisins. Preven-
tive actions include at pre-harvest, as part of cropping systems, at harvest, and at post-
harvest, through storage, processing, and detoxification to minimize consumer expo-
sure. Preventive actions in the field have been recognized as efficient for reducing the 
entrance of mycotoxins into production chains. Biological control of Aspergillus flavus 
has been recognized to minimize contamination with aflatoxins. Post-harvest maize 
grain management is also crucial to complete preventive actions, and has been made 
mandatory in government food and feed legislation.
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INTRODUCTION

Maize is one of the most important cereals produced for human and 
animal consumption in the European Union (EU), and is grown mainly for 
grain and forage. More than 80% of maize grain is used for feed, and the rest 
is used for production of starch and semolina (Eurostat, 2019). In 2017/2018, 
the EU maize yields reached approx. 65 million tons (European Commission, 
2019), approx. 5% of the global maize production. Maize is second to wheat 
in total EU cereal production (Statista, 2018). Since 2017, the EU has been 
importing significant volumes of maize, mainly coming from Ukraine, Bra-
zil, and Canada. This is partly due to the increased demand for maize feed 
(+8%), and significant reductions in the production of barley and other cere-
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als for feed consumption (European Commission, 2019). 
As well, there has been significant reduction in maize 
growing areas in some European countries, where myco-
toxin contamination is a major concern. That is because 
of the economic losses caused by discarded lots that are 
non-compliant with legal mycotoxin limits, and the con-
sequent income uncertainty for farmers.

Maize is exposed to mycotoxins, which are secondary 
metabolites of fungi with toxic effects on humans and 
animals, and which cause illnesses and also economic 
losses. Mycotoxin contamination is the major non-tariff 
trade barrier for agricultural products, which negatively 
impacts the health and income of small-holder farmers, 
regional and international trade, and the world economy 
(Logrieco et al., 2018). A range of toxic effects has been 
associated with exposure to mycotoxins in humans and 
in many animal species (Eskola et al., 2018). Hence, the 
maximum concentrations of the main class of mycotox-
ins in agricultural food and feed products, as well as in 
their commodities, are regulated in Europe, or recom-
mendations are listed for animal consumption (Commis-
sion Regulation (EU) 576/2006; Commission Regulation 
(EU) 1881/2006; Commission Regulation (EU) 574/2011; 
Commission Recommendations (EU) 165/2013).

One of the major issues in the contamination of 
maize is infection with Aspergillus flavus and Aspergil-
lus parasiticus, and the resulting occurrence of aflatoxins 
(AFs). In addition, the occurrence of aflatoxin B1 (AFB1) 
in feed can lead to contaminated milk, because the toxin 
is metabolized to aflatoxin M1 (AFM1) by dairy cattle 
when fed with contaminated feed, and there is carry-
over to dairy products (EFSA, 2004; van der Fels-Klerx 
and Camenzuli, 2016).

Fusarium species also infect maize and contaminate 
grains with mycotoxins, which include deoxynivalenol 
(DON), zearalenone (ZEN), fumonisins (FBs), nivalenol 
(NIV), T-2 toxin (T2), and HT-2 toxin (HT2). In maize 
the co-occurrence of AFs and FBs is common (Camardo 
Leggieri et al., 2015). Although there are no data dem-
onstrating significant interaction between these toxins, 
reports suggest that both additive and synergistic inter-
actions may occur (Torres et al., 2015; Abbès et al., 2016; 
Qian et al., 2016). Mycotoxins are very stable compounds 
and accumulate in maize grain in the field after fungal 
infections during the crop growing season, with possible 
post-harvest increases when the environment remains 
suitable for fungal activity. Main factors affecting maize 
infection are: environmental conditions, plant suscepti-
bility (depending on crop genetics and health status) as 
well as insect populations.

Many efforts have been devoted to develop strate-
gies, both at the pre- and post-harvest crop stages, to 

reduce production and occurrence of these mycotoxins 
in maize, and their entry into the food and feed chains. 
The present provides an account of advances since 2000 
in strategies to reduce the occurrence of AFs, FBs, and 
DON across the maize supply chain.

ASPERGILLUS AND FUSARIUM SPECIES IN MAIZE

Many of the most relevant mycotoxins in maize 
are synthesized by two fungal genera: Aspergillus and 
Fusarium. Aspergillus spp. include all validated AF-
producing fungi and most of the known species belong 
to the Aspergillus section Flavi, including A. flavus and 
its close relative A. parasiticus. Aspergillus flavus and A. 
parasiticus are very similar species of the section, shar-
ing 96% DNA similarity of the aflatoxin gene clusters 
(Cary and Ehrlich, 2006). These species can be distin-
guished from one another using morphological and 
physiological characteristics, but A. flavus commonly 
only produces B series AFs, while A. parasiticus can pro-
duce both B and G series AFs. Non-aflatoxigenic strains 
also naturally occur in both species (Smith and Moss, 
1985). Aspergillus flavus almost exclusively occurs in 
maize (Giorni et al., 2007).

The most frequently isolated Fusarium species from 
maize are F. verticillioides, F. proliferatum, F. gramine-
arum, and F. subglutinans (Leslie and Logrieco, 2014). 
These cause two different types of ear rot: (i) Fusarium 
ear rot or pink ear rot is caused primarily by members 
of the Liseola section, including F. verticillioides, F. pro-
liferatum and F. subglutinans, now preferably referred to 
as the Gibberella fujikuroi species complex (GFsc); and 
(ii) Gibberella ear rot or red ear rot which is caused by 
species of the Discolor section, with F. graminearum 
being the prevalent species. Fusarium verticillioides and 
F. proliferatum can synthesize large amounts of FBs. Oth-
er species can be involved in the pathogenesis of maize 
ear rot, including F. culmorum and F. equiseti (Logrieco 
et al., 2002). These two fungi produce trichothecenes 
(DON and NIV) and ZEN. Studies reporting the pres-
ence of F. sporotrichioides and F. langhsethiae in maize 
are scarce (Görtz et al., 2008), but these two species have 
been shown to produce T2 and HT2, and their roles in 
maize contamination with these two mycotoxins needs to 
be clarified. Recently, a new mycotoxin-producing species 
of Fusarium, F. temperatum, has been reported in Europe 
and South America by different authors. This species is 
morphologically similar and phylogenetically close to F. 
subglutinans, and has been reported as a producer of FBs, 
beauvericin (BEA), fusaproliferin (FUS) and moniliform-
in (MON) (Scauflaire et al., 2012; Fumero et al., 2016).
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Infection cycle of Aspergillus and Fusarium species on 
maize

Maize is susceptible to mycotoxin-producing fungi 
from flowering, at growth stage BBCH63 (male: begin-
ning of pollen-shedding; female: when tips of stigmata 
are visible), and fungus infection efficacy is optimized at 
BBCH67 (female: stigmata drying) (Battilani et al., 2003; 
Battilani et al., 2013). Aspergillus and Fusarium species 
commonly reproduce by asexual spores (Battilani et al., 
2013). The conidia of Aspergillus are dispersed mainly by 
air movement (Battilani et al., 2003). Fusarium species 
produce macroconidia which, for F. graminearum, are 
typically dispersed by splashing rain, and for the GFsc, 
also by air movement (Shaner, 2003; Paul et al., 2004; 
Manstretta and Rossi, 2015; Manstretta and Rossi, 2016). 
Conidia in crop debris are considered the main sources 
of infection, and they enter host plants through natu-
ral openings or wounds (Cotten and Munkvold, 1998). 
Sexual reproduction is possible for Fusaria, and the rel-
evance of this depends on the species and the crop loca-
tion, while for A. flavus sexual reproduction has been 
demonstrated in the laboratory, and some evidence 
suggests that it could occur in nature although not yet 
observed (Horn et al., 2009; Horn et al., 2016).

Systemic development of Fusarium species from 
maize seeds and roots to the stalks and to cobs can also 
contribute to kernel infection, but the role of systemic 
infections remains to be confirmed (Munkvold et al., 
1997; Murillo-Williams and Munkvold, 2008). Systemic 
infection by Aspergillus has never been considered.

Beside silk and systemic infection, insect-assisted 
infections by mycotoxigenic fungi have also been iden-
tified as important pathway for maize ear infections by 
Aspergillus and Fusarium species. Insects can be vectors 
of inoculum and host entry can be assisted by larvae 
feeding on kernels (Munkvold and Carlton, 1997). Lepi-
doptera typically have the greatest impacts on mycotox-
in-producing fungi in maize. Much attention has been 
given to the interactions between Lepidoptera, includ-
ing the European corn borer (ECB; Ostrinia nubilalis), 
and F. verticillioides infections (Blandino et al., 2015; 
Drakulic et al., 2017). ECB is the main maize pest in 
Central and Southern Europe, and this insect has been 
shown to promote F. verticillioides and F. proliferatum 
infections in maize grains and consequent FB con-
tamination, in temperate areas (Blandino et al., 2015). 
The incidence of the western flower thrips (Franklin-
iella occidentalis) on maize ears has also been corre-
lated with the presence of F. verticillioides (Parsons and 
Munkvold, 2012). Further evidence also indicates that 
kernel injury attributed to the western bean cutworm 
(WBC; Striocosta albicosta) can lead to increased levels 

of F. verticillioides and subsequent increased levels of 
FBs in maize (Parker et al., 2017).

Ecology

Every fungal species has unique ecological require-
ments, and optimum conditions for fungal growth are 
not always those that are most appropriate to mycotoxin 
biosynthesis (Figures 1 and 2). Therefore, it is difficult 
to identify common ecological trends across different 
fungal species. Nevertheless, A. flavus is well adapted to 
warm and dry weather conditions (Giorni et al., 2016). 
In contrast, the optimum conditions for the develop-
ment of F. verticillioides include warm temperature (T) 
and moderate rainfall. Mild T and high rainfall dur-
ing maize grain maturation are best for infections by F. 
graminearum (Bhatnagar et al., 2014). T, relative humid-

Figure 2. Water activity (aw) required for fungal growth and myco-
toxin production for same of the most relevant Aspergillus and 
Fusarium species isolated from maize.

Figure 1. Temperatures (°C) required for fungal growth and myco-
toxin production for Aspergillus and Fusarium species isolated from 
maize.
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ity (RH), and, above all, grain water activity (aw) are the 
most important ecological factors influencing fungal col-
onization of maize grain substrates (Giorni et al., 2011; 
Lazzaro et al., 2012; Battilani et al., 2016).

In vitro trials have indicated that the optimum aw 
for growth of A. flavus is in the range of 0.96 to 0.98 
at 25°C, 0.98 at 30°C, and 0.96 at 37°C (Pitt and Mis-
camble, 1995). In the field, A. flavus can grow in maize 
grain at aw as low as 0.73 (8–12 % moisture content), and 
produce AFs down at aw = 0.85 (17–19% moisture) (Gior-
ni et al., 2011; Battilani et al., 2013; Battilani et al., 2016). 
In vivo trials also shown that AFB1 is positively correlat-
ed with aw when aw ≥ 0.95, confirming the in vitro data, 
and is negatively correlated when aw< 0.95 (Giorni et al., 
2016). Therefore, aw of 0.95 is proposed as a threshold, at 
which AF production increases rapidly. The influence of 
abiotic stresses on A. flavus infection is complicated by 
the co-existence of different fungal species in maize ker-
nels during the crop growing season. Previous in vitro 
studies considered the competition between F. verticil-
lioides and A. flavus (Giorni et al., 2014). Dominance of 
one species over the other was demonstrated only under 
extreme conditions, while mutual antagonism was more 
common (Giorni et al., 2016).

Growth of F. verticillioides occurs within a wide 
range of T, with an optimum T range of 22.5 to 27.5°C 
and a minimum aw = 0.87. The optimum T and aw 
reported for inducing FB production are from 20 to 
25°C and 0.95 to 0.99 aw, while no production was 
observed at 10°C and aw ≤ 0.93 (Medina et al., 2013). 
Fusarium temperatum strains reached maximum growth 
rate at T values greater than 22°C and the least growth 
was at 15°C and 0.95 aw, and these strains produced 
maximum amounts (1000 μg g−1) of fumonisin B1 (FB1) 
at 0.98 aw and 15°C (Fumero et al., 2016). Fusarium 
graminearum grew over a wide range of T and moisture 
conditions, with the optimum growth at approx. 25°C 
and aw = 0.977-0.995. The influence of incubation T (15, 
20, 28, or 32°C) and aw (0.96, 0.97, or 0.98) on the pro-
duction on DON by F. graminearum on maize kernels 
was studied by Llorens et al. (2004). They demonstrat-
ed that aw in the range considered did not significantly 
affect trichothecene synthesis, while T affected DON 
production with the optimum T being 28°C.

Plant-pathogen interactions

Differences in chemical composition of maize kernels 
during each growing season and related plant physiol-
ogy, can be variedly associated with fungal colonization 
and mycotoxin contamination (Luo et al., 2008; Luo et 
al., 2011). 

The dynamics of aw in grains during the grow-
ing season determines the competitiveness of A. fla-
vus against other co-occurring ear rot fungi (Giorni 
et al., 2011). The ability of A. flavus and other ear rot 
fungi such as F. verticillioides to utilize carbon sources 
at different T and aw conditions could also influence 
the dynamics of AF contamination (Giorni et al., 2016). 
Other factors, such as crop growth stage, physiology, 
active plant defenses, and grain composition, are also 
likely to influence the dynamics of AF production dur-
ing grain ripening (Ojiambo et al., 2018). The rate of 
drying of the ripening kernels critically affects their con-
tamination with AFs and FBs (Medina et al., 2013). The 
most significant increase in FB production and accumu-
lation occurs after the dent stage. This stage is also char-
acterized by acidification and maximum levels of amy-
lopectin content; both of which enhance FB synthesis 
(Picot et al., 2011). 

Lipid composition of maize kernels also affects fun-
gal infection and toxin accumulation by Aspergillus and 
Fusarium species (Dall’Asta et al., 2012; Dall’Asta et al., 
2015; Battilani et al., 2018). Plant and fungal oxylipins 
play crucial roles in cross-talk between the pathogens 
and their host (Scala et al., 2013; Ludovici et al., 2014; 
Battilani et al., 2018).

OCCURRENCE OF MULTIPLE MYCOTOXINS

A survey by Streit et al., (2013) indicated that, on a 
global scale, 84% of maize was contaminated with at 
least one mycotoxin, and 46% was co-contaminated 
with multiple mycotoxins. The natural co-occurrence of 
mycotoxins produced by different fungi in maize and 
maize products has been reported, and most surveys 
have focused on the major mycotoxins AFs, FBs, ZEN, 
and trichothecenes (mainly DON) (Smith et al., 2016; 
Ingenbleek et al., 2019). Only a few studies have specified 
the percentage of the co-contaminated samples. Com-
mon co-occurrence of AFs + FBs, FBs + DON, and FBs 
+ DON + ZEN has been reported (ranging from 25% 
to 40%). More details of the main reported mycotoxin 
combinations are summarized in Table 1.

Apart from the occurrence of parent forms, modified 
mycotoxins have been frequently reported to co-occur in 
cereals, including maize (Rasmussen et al., 2012; Nakaga-
wa et al., 2013; Kovalsky et al., 2016). Glucosides of DON, 
ZEN, and other minor trichothecenes have been frequent-
ly described. Mycotoxin modification in wheat is part of 
the biotransformation machinery expressed by host plants 
in response to pathogen attacks (Berthiller et al., 2009a). 
However, toxin biotransformation has been little investi-
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gated in maize. Occurrence of modified FBs in maize has 
been reported (Bryła et al., 2013a; Dall’Asta and Battilani, 
2016), and conjugation of FBs with fatty acids (oleic and 
linoleic acids) through the formation of ester bonds has 
been described (Bartόk et al., 2010; Bartók et al., 2013; 
Falavigna et al., 2016). Recent evidence strongly supports 
the hypothesis that fatty acid esters of FB1 are produced 
by F. verticillioides using fatty acids from the substrate 
(Falavigna et al., 2016). These compounds are formed by 
the fungus in a substrate concentration-dependent man-
ner (Falavigna et al., 2016), and they may undergo cleav-
age in the gastrointestinal tracts of mammals.

FBs can also occur as non-covalently bound forms, 
also known as “hidden fumonisins”, now referred to as 

modified mycotoxins (Rychlik et al., 2014). Several stud-
ies have demonstrated the complexation of FBs with 
maize macro-constituents, the main one being starch 
(Dall’Asta et al., 2009; Dall’Asta et al., 2010; Dall’Asta 
et al., 2012; Bryła et al., 2015). This complexity may sig-
nificantly affect the quantification of FBs under routine 
conditions, requiring additional hydrolysis steps under 
alkaline conditions. The amounts of modified FBs are 
closely related to environmental factors and chemical 
composition of maize, and may significantly contribute 
to the overall amount of FBs occurring in each sample. 
The ratio between free and total FBs has been reported 
at between 0.4 to 0.7, depending on yearly variations and 
host hybrid examined (Dall’Asta et al., 2012; Bryła et 

Table 1. Co-occurrence of mycotoxins in maize and derived products.

Mycotoxin Commodity Observation References

AFs; FBs Maize 95.6% of samples with AFB1 and FBs (FB1+FB2) Camardo Leggieri et al. 
(2015)

FBs; DON Maize products High co-occurrence of fb1, fb2 and don strong evidence of 
co-occurrence of fb1 and fb2 Cano-Sancho et al. (2012) 

Maize and maize 
products 38% of samples with fbs and don Kirincic et al. (2015)

Maize 25% of samples with don+fb1 Zachariasova et al. (2014)

FBs; BEA Maize

97% of samples with fb1 and fb2
10% of samples with ota
17% of samples with bea
15% of samples with bea, fb1 and fb2
3% of samples with bea and ota

Jurjevic et al. (2002)

FBs; ZEN Maize 40% of samples with fb1 and zen Domijan et al. (2005)

FBs; DON; ZEN; OTA Maize and maize 
products

57% of samples with co-occurring mycotoxins
38% of samples with fbs, don and zen Kirincic et al. (2015)

Maize 40% of samples with fb1, zen and ota
6% of samples with fb1, fb2 and ota Domijan et al. (2005)

DON; DON derivates Maize High occurrence of don and don3g Desmarchelier and 
Seefelder (2011)

Maize and maize 
products High co-occurrence of don, 3-adon, 15-adon and don3g De Boevre et al. (2012)

Maize Consistent co-occurrence of don and don3g in all tested samples Berthiller et al. (2009b)
Maize 50% of sample with don + its acetylated and/or glycosylated derivates Zachariasova et al.(2014)

DON; BEA Maize 38% of sample with don and bea Zachariasova et al. (2014)

DON; ZEN Maize and maize 
products 25% of samples with don and zen Kirincic et al. (2015)

Maize 26% of sample with don and zen Zachariasova et al. (2014)

DON; T2-HT2 Maize and maize 
products High co-occurrence of don and ht2 Cano-Sancho et al.(2012)

DON;NIV; T2-HT2 Maize Relatively high content of niv, higher than for don for same samples Rasmussen et al. (2012)

Abbreviations: AFs = aflatoxins, FBs = fumonisins, FB1 = fumonisin B1, FB2 = fumonisin B2, DON = deoxynivalenol, DON3G = deoxyni-
valenol-3-glucoside, 3-ADON = 3-acetyl-deoxynivalenol, 15 ADON = 15-acetyl-deoxynivalenol, BEA = beauvericin, ZEN = zearalenone, T2 
= T-2 toxin, HT2 = HT-2 toxin, NIV = nivalenol, OTA = ochratoxin A.
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al., 2015; Giorni et al., 2015). Dry milling of maize also 
increased free FBs in bran by 69% and total FBs parti-
tioning in fractions by 46%, while free FBs decreased 
in flour by 28% and total FBs partitioning in fractions 
by 20% (Bryła et al., 2015). Total release of this fraction 
under digestive conditions has been considered by the 
European Food Safety Authority. The contribution of 
modified FBs to overall FB exposure in animals, using 
an additional factor of 1.6 with respect to the free FB 
contents has been proposed. This factor has been extrap-
olated from several studies and a broad database (n = 
316) (Dall’Asta et al., 2010; Dall’Asta et al., 2012; Bryła et 
al., 2013b; Bryła et al., 2014; Bryła et al., 2015; Oliveira et 
al., 2015).

In contrast to Fusarium mycotoxins, no modification 
of AFs in maize has yet been reported.

FIELD PREVENTION STRATEGIES FOR MAIZE 
MYCOTOXINS

Several research efforts have defined good agricultur-
al practices (GAPs) to apply during pre-harvest stages, 
including: (i) farming systems, (ii) host resistance and 
hybrid selection, (iii) soil management, crop residues 
and crop rotations, (iv) irrigation, (v) pest and disease 
control, and (vi) biological control agents (BCAs) (Blan-
dino et al., 2009a; Blandino et al., 2009b; Battilani et al., 
2012). 

Farming systems

Little information is available on fungal incidence in 
organic versus conventional farming of maize. Lazzaro 
et al. (2015) demonstrated that Fusarium incidence was 
different between farming systems in Italian maize (20% 
in conventional production and 35% for organic produc-
tion). However, Aspergillus incidence was not linked to 
the farming system but to weather conditions. Myco-
toxin occurrence was not considered by Lazzaro et al., 
(2015).

The most relevant agricultural factors that should 
be considered essential for integrated programmes to 
reduce Aspergillus and Fusarium toxins are outlined 
below, and are summarized in Supplementary Table S1.

Host resistance and hybrid selection 

Comprehensive knowledge of plant defense mecha-
nisms may help to identify kernel resistance mecha-
nisms, and assist the development of targeted and inno-

vative approaches for breeding resistant crops (Alberts 
et al., 2016). Plant breeding has been used as a tool to 
develop maize varieties resistant to abiotic and biotic 
stresses (Cary et al., 2011; Lanubile et al., 2011; Brown et 
al., 2013; Farfan et al., 2015; Lanubile et al., 2017). These 
efforts have resulted in a number of germplasm releases. 
However, no maize hybrids were found to be completely 
resistant to fungal infection and/or mycotoxin contami-
nation, because of the need to select for multiple traits 
and associated genes that contribute collectively to plant 
resistance. Resistance mechanisms are interconnect-
ed processes involving many gene products and tran-
scriptional regulators, as well as host interactions with 
environmental factors, particularly, drought stress and 
high T (Jiang et al., 2011). The molecular mechanisms 
underlying maize resistance have yet to be determined. 
Research has been devoted to understanding kernel 
resistant mechanisms at the transcriptional level, and to 
identify stress and/or defense related genes induced dur-
ing A. flavus infection in maize (Chen, et al., 2001; Chen 
et al., 2015). Microarray or proteomic studies have led 
to the discovery of many genes involved in maize resist-
ance including several resistance-related quantitative 
trait loci (QTLs) (Kelley et al., 2012; Brown et al., 2013). 
Comparisons between the resistant and susceptible lines 
indicate differences in gene expression networks (Luo et 
al., 2011). Several research outputs are available on plant-
pathogen interactions and host resistance; these are 
promising starting points for future developments, but 
clear suggestions regarding hybrid selection, considered 
the best prevention tool, is not feasible.

Soil management, crop residues and crop rotation

Crop rotation and tillage are recommended prac-
tices to reduce inoculum of fungi on overwintering 
crop residues. Studies on the effects of these practices 
in maize show variable results, depending on the nature 
of the pathogen, the geographical location and the com-
binations with other strategies (Leslie and Logrieco, 
2014). Under conditions of high T and low aw, A. flavus 
becomes the dominant fungal species in the soil and 
produces abundant inoculum (Horn, 2003). Fusarium 
inoculum is always copious in crop residue in soil, irre-
spective of environmental conditions. Therefore, soil till-
age is commonly considered to reduce inoculum avail-
ability. The effects of crop rotation are likely to be neg-
ligible, however, in areas with high prevalence of maize, 
because of long-distance air dispersal of A. flavus and 
GFsc (Munkvold, 2014).

Baliukoniene et al., (2011) demonstrated that F. ver-
ticillioides, F. proliferatum and F. subglutinans survive 
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for at least 630 d in maize stalk residues left on the soil 
surface or buried up to 30 cm deep. Under conven-
tional tillage, the soil was contaminated with 7.0 ± 0.5 
log10 CFU g-1 of fungal spores belonging to 17 genera of 
fungi. They identified Fusarium from 80% soil samples 
from conventional tillage. In contrast, the soil under no-
tillage was contaminated with 13.5 ± 12.5 log10 CFU g-1 
fungal spores. There is evidence that crop rotation has 
greater impacts on F. graminearum and F. culmorum 
and relative mycotoxins, especially DON and ZEN, rath-
er than FB- and AF-producing fungi (Munkvold, 2014). 
This is consistent with splash dispersal of their inocu-
lum. Besides affecting fungal population growth, soil 
conditions also influence plant root development. Crops 
with poorly developed root systems are more suscepti-
ble to water and nutritional stresses, and consequently, 
are more susceptible to Aspergillus and GFsc infections. 
Adequate soil drainage to avoid drought stress, espe-
cially in clay soils, and adapting tillage strategies to soil 
conditions (Arino et al., 2009; Blandino et al., 2009a) 
may reduce fungal activity. Furthermore, crop rotation 
is applied to control maize pests. This practice is recom-
mended in maize to reduce larval populations of western 
corn rootworm (Diabrotica virgifera) (Munkvold, 2014).

Irrigation

Maize has low tolerance to drought-stress, which 
is considered to be the most crucial factor promoting 
mycotoxin contamination, in addition to causing signifi-
cant yield losses. Limited water availability predisposes 
plants to AF contamination (Battilani et al., 2008; Abbas 
et al., 2012; Torelli et al., 2012; Damianidis et al., 2018). 
For A. flavus infection, water stress is particularly criti-
cal during silk emergence and kernel ripening, so it is 
recommended to irrigate according to water needs tak-
ing into account also the evapo-transpiration precipita-
tion (water balance). For geographical areas where water 
can be limiting, maize hybrids tolerant to water stress, 
in addition to early sowing, should be considered.

Data on FBs are less well defined compared with that 
for AFs. A field study by Arino et al. (2009) showed that 
drought stress during early maize reproductive growth 
was associated with increased risk for grain contami-
nation with FBs due to F. verticillioides. However, the 
type of irrigation (flood or sprinkler) did not affect FB 
levels. Although the contribution of water stress to FB 
contamination is controversial, irrigation according to 
water needs to avoid drought stress to plants is still rec-
ommended, but avoiding excessive and prolonged irri-
gation close to the stage of milk ripening growth stage 
is important, as this could enhance FB accumulation 

(Blandino et al., 2009a; Munkvold, 2014). Increases of 
DON concentration of up to 3.5 to 5-fold, caused by F. 
graminearum, were also documented by Oldenburg and 
Schittenhelm (2012) in kernels derived from limited 
watered plots compared to well-watered plots.

Pest and disease control

Several measures are applied against maize pests, 
including crop rotation, insecticides, fungicides and 
other chemical treatments, the use of resistant maize 
hybrids and biological control agents (BCAs), as well as 
monitoring and forecasting.

The use of insecticides reduces risk of mycotoxin 
contamination associated with insects (Folcher et al., 
2009). The links between insecticide use (mainly pyre-
throids) for the control of ECB and reduction of FB 
contamination have frequently been described (Blandi-
no et al., 2009a; Blandino et al., 2009b; Blandino et al., 
2009c; Folcher et al., 2009; Mazzoni et al., 2011; Folcher 
et al., 2012). Studies of beneficial effects of combined use 
of insecticides and fungicides have provided equivo-
cal results. Folcher et al. (2009) demonstrated no syn-
ergy between deltamethrin and tebuconazole. Efficacy 
for reducing FBs was 89.96% reduction from the insec-
ticide treatment and 89.97% from insecticide + fungi-
cide. Mazzoni et al., (2011) demonstrated benefit from 
the combination deltamethrin + tebuconazole in reduc-
ing FB contamination, whereas no modification in AF 
content was observed after treatments. Content of FB1 
decreased by 35% in plots treated with tebuconazole and 
by 56% with tebucoazole + deltamethrin.

Biological control agents (BCAs) 

Several pre-harvest biological control systems have 
been developed for maize against Aspergillus spp. and 
Fusarium spp. These have used a variety of potential 
biocontrol agents (BCAs), including fungal and bacte-
rial strains or atoxigenic fungal strains, as summarized 
in Table 2. Many microorganisms have been tested, but 
only Trichoderma harzianum (Nayaka et al., 2010) and 
Clonostachys rosea (Luongo et al., 2005; Xue et al., 2014; 
Samsudin et al., 2017) have been studied under field con-
ditions, and only atoxigenic A. flavus strains have been 
applied on large scale.

Biological control of pathogenic A. flavus has been 
based on the use of atoxigenic isolates of this fun-
gus, which act through competitive exclusion of AF-
producers in the environment, and during crop tis-
sue infection (Cotty and Bayman, 1993). The efficacy 
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of this technique has been validated for control of AF 
contamination in maize. Two bio-pesticides with atoxi-
genic A. flavus active ingredients are registered for use 
on maize crops in the USA (Cotty, 2006), and several 
are available in the sub-Saharan Africa, grouped under 
AFLASAFE mark (Bandyopadhyay et al., 2016). Atoxi-
genic A. flavus communities that are endemic to Italy 
have been identified, and their efficacy for reducing AF 
contamination by AF-producers has been demonstrated. 
One strain (MUCL 54911) displayed the greatest effi-

cacy against several AF-producers (Mauro et al., 2015), 
and was selected as the active ingredient in AF-X1, now 
under consideration for registration in Europe (Mauro 
et al., 2018). To maximize efficacy for preventing afla-
toxin contamination, the product should be adapted 
to the target crop and environment (Cotty, 2006), and 
the product should also be applied at the 5th leaf crop 
growth stage (Mauro et al., 2015).

Far less field-based information is available on the 
effects of BCAs on FB-producing Fusarium spp. Results 

Table 2. Current information on reduction of mycotoxin-producing Aspergillus spp. and Fusarium spp., and mycotoxins production by bio-
control microorganisms in vitro, in planta, and in field trials in maize.

BCA(s) Target fungal species Type of assay References

Pre-harvest

Atoxigenic A.flavus strains A. flavus In vitro and in field

Cotty and Bayman (1993); Cotty 
(2006); Mauro et al. (2015); 
Bandyopadhyay et al.(2016); 
Mauro et al. (2018)

Trichoderma harzianum A. flavus In greenhouse and in field Sivparsad and Laing (2016)
Streptomyces spp. A. flavus In vitro Verheecke et al. (2016)
Bacillus megaterium A. flavus In vitro Kong et al. (2014)

Bacillus subtilis (CW14) Aspergillus spp.,
Penicillium spp. In vitro Shi et al. (2014)

Saccharomyces cerevisiae A. parasiticus In vitro Armando et al. (2012)
Clonostachys rosea, Gram negative 
bacterium (BCA5) F. verticillioides In vitro Samsudin et al. (2017)

Atoxigenic F. equiseti, Clonostachys 
rosea, Epicoccum nigrum, Idriella 
bolleyi, Trichoderma harzianum, 
Trichoderma viride

F. culmorum
F. graminearum
F. proliferatum
F. verticillioides

In field Luongo et al. (2005)

Epicoccum nigrum F. graminearum In vitro and in planta Abdallah et al. (2018)
Bacillus mojavensis (RRC101) F. verticillioides In vitro Blacutt et al. (2016)
Bacillus spp., Pseudomonas spp. 
Paenibacillus spp. F. verticillioides In planta Figueroa-López et al. (2016)

Trichoderma harzianum F. verticillioides In vitro, in greehouse and in field Nayaka et al. (2010)
Clonostachys rosea F. graminearum In field Xue et al. (2014)
Trichoderma asperellum F. graminearum In vitro and in planta Yaqian et al. (2016)

Post-harvest

Pichia anomala A. flavus In vitro Tayel et al. (2013); Hua et al. 
(2014)

Lactobacillus plantarum A. flavus In vitro Ahlberg et al. (2017)

Debaryomyces hansenii, BCS003
Aspergillus spp.,
F. proliferatum,
F. subglutinans

In vitro Medina-Cordova et al. (2016)

Lactobacillus plantarum MYS6 F. proliferatum In vitro Deepthi et al. (2016)
Lactobacillus delbrueckii, L. 
acidophilus, L. sakei, Pediococcus 
acidilactici, Enterococcus faecalis

F. proliferatum In vitro Khalil et al. (2013)
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of bio-assays conducted under controlled conditions have 
demonstrated moderate suppression of toxigenic F. verti-
cillioides and F. proliferatum strains using non-pathogen-
ic Fusarium strains, including F. equiseti (Luongo et al., 
2005). Samsudin et al., (2017) studied the effects of two 
BCAs, a fungus (C. rosea) and a gram-negative bacterium 
(BCA5), on growth rates of F. verticillioides (FV1), the 
relative expression of the FUM1 gene and FB1 produc-
tion. The fungal antagonist reduced FB1 contamination 
on maize cobs by >70% at 25°C, and almost 60% at 30°C 
regardless of the maize ripening stage. For the bacterial 
antagonist, however, FB1 levels on maize cobs were sig-
nificantly decreased only in some temperature/aw treat-
ments (25° C and aw=0.976-0.958; 30° C and aw=0.976).

Abdallah et al., (2018) demonstrated the capacity of 
two endophytic fungi (Epicoccum nigrum and Sardoria 
fimicola) to reduce ZEN amounts in maize under in vitro 
and in planta conditions. Epicoccum nigrum consistently 
reduced amounts of DON and 15-ADON. Some micro-
organisms have also been studied in vitro for their abil-
ity to inhibit spoiling Aspergillus spp. and Fusarium spp. 
species in maize feed and food products, and for use as 
natural post-harvest preserving agents (Table 2).

GRAIN HARVESTING AND DRYING

Late harvesting has major impacts on the levels of 
mycotoxins in maize grain, possibly due to high grain 
moisture levels and greater periods for fungal growth 
and toxin production (Munkvold, 2014). Apergillus fla-
vus efficiently produces AFs when maize grain mois-
ture content is less er than 28%. In this context, high 
T (>25°C) and aw less than 0.95 have been suggested as 
thresholds above which AF accumulates rapidly (Gior-
ni et al., 2016). To reduce AF contamination, therefore, 
harvesting in hot and dry years should be carried out 
while avoiding very low moisture contents in maize 
grain, and limiting the time available for rapid growth 
of A. flavus and rapid synthesis of AFs. A working com-
promise for farmers would be to harvest at 22-24% grain 
moisture, but not at less than 20%.

Detrimental effects of a late harvesting are also con-
firmed in Fusarium spp. A study conducted on maize 
silage in Switzerland demonstrated that samples with 
high DON contents often came from fields harvested 
after September (Eckard et al., 2011). 

Moisture content of maize grain at harvest is com-
monly not low enough to guarantee safe storage, so the 
grain must be dried before storage commences (Buller-
man and Bianchini, 2014). Drying is performed using 
heated air dryers. Many technologies, and different Ts 

and time combinations, can be applied for artificial dry-
ing of cereals. Treatments at 70°C for 24 h have been 
shown to be the more effective for reducing the inci-
dence and extent of fungal populations, than greater T 
and shorter exposure time (95°C for 9 h) (Giorni et al., 
2015). Grain should also be dried to less than 14% mois-
ture content to be stored safely, with rapid reduction of 
moisture content during the first 24 h post-harvest. A 
final moisture content <13% is suggested when A. flavus 
is present (Channaiah and Maier, 2014).

POST-HARVEST GRAIN MANAGEMENT TO 
MINIMIZE RISKS OF MYCOTOXIN CONTAMINATION

Grain cleaning and grading

Pest attacks, harvesting and subsequent handling of 
maize grain can generate broken kernels, as well as con-
tamination from soil and foreign materials which may 
be sources of mycotoxin contamination. Several physi-
cal processes are used for automated grain cleaning and 
grading (e.g. sieving, f lotation, density segregation). 
Maize cleaning is commonly applied to remove powder 
and small kernel pieces, commonly the portions with 
the greatest mycotoxin contamination. Grading gained 
increased interest for improving grain lots to comply 
with legislated standards for processed products. Origi-
nally, grain grading machines were based on particle 
weight and size and used centrifugation and flotation in 
air flows. Contemporary grading machines are mainly 
based on optical sensors. Grading using UV light illumi-
nation for AF reduction is widely used, although myco-
toxins can accumulate without visible symptoms and so 
pose limits to the use of optical sorting techniques (Kar-
lovsky et al., 2016).

Studies on the effectiveness of gain cleaning/grading 
processes have produced equivocal results, possibly due 
to the different initial levels of contamination of the raw 
materials tested (Pietri et al., 2009), and because of dif-
ferences between mycotoxins. Intact kernels were shown 
to contain approx. 10 times less FBs than broken maize 
kernels (Murphy et al., 1993), and removal of broken 
kernels and other impurities from unprocessed maize 
reduced DON and ZEN by around 70–80 % (Trenholm 
et al., 1991). For FB, however, contrasting results have 
been published. The cleaning step did not affect FB con-
centration from unprocessed and cleaned maize grain 
with low contamination (Generotti et al., 2015), while 
a decrease of 45% was in medium-high contaminated 
grain (Fandohan et al., 2005). Removal of fine material 
(approx. 10% by weight) in maize grain has been shown 
to reduce AF levels by 84% (Hu et al., 2017).
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Grain storage

After drying and cleaning, maize grain is placed in 
silos, for short or long periods, where it is prone to toxi-
genic fungal contamination and subsequent mycotoxin 
production, if conductive conditions occur. Air tem-
perature, relative humidity and kernel moisture content 
have been identified as major storage factors influenc-
ing fungal activity and grain quality. Moderate T, kernel 
moisture less than 14% and dry environment have been 
demonstrated to limit A. flavus growth and subsequent 
AF contamination in stored maize (Giorni et al., 2008). 
Monitoring of T and moisture has been suggested for 
early detection of fungal growth (Mason and Woloshuk, 
2010), and this can be done using manual grain inspec-
tion for spoilage by moulds and other quality param-
eters, and measuring grain T. Both approaches, how-
ever, have inherent limitations: human sensory detec-
tion could be influenced by subjectivity errors caused by 
individual biases. Cables used to monitor T inside bulk 
grain bins detect changes only when spoiling grain mass 
is large enough to raise the T, and these changes must 
happen close to the sensors. Recent studies have exam-
ined the use of CO2 production as an early indicator of 
levels of AFs (Garcia-Cela et al., 2019) or FBs (Mylona et 
al., 2012) in stored maize, and in other cereals (Mylona 
et al., 2011; Martín Castaño et al., 2017). These studies 
have shown CO2 production and trends in the respira-
tion rates, measured by Gas Chromatographic (GC) 
equipment, can be used as ‘storability risk indices’ to 
predict overall quality changes in stored grain.

Hermetic storage in silo bags is an alternative meth-
od to mitigate variations of environmental param-
eters and prevent fungal activity. No variations in AFs, 
FBs, DON, and OTA or in fungal contamination was 
observed in silo bags when dynamics of fungi and relat-
ed mycotoxins were examined during maize storage 
(Gregori et al., 2013).

Natural compounds with fungicidal or fungistatic 
activity may be useful for preventing fungal growth in 
stored maize (Bullerman and Bianchini, 2014; Caceres et 
al., 2016). Different categories of plant-based compounds 
with bioactivity against a wide range of fungi have been 
identified as alternative agents, including antioxidants 
(Coma et al., 2011; Azaiez et al., 2013; De Lucca et al., 
2013; Thippeswamy et al., 2013; Tracz et al., 2016), phe-
nolic compounds (Ferrochio et al., 2013; Thippeswamy 
et al., 2015), and essential oils (Da Gloria et al., 2010; 
Matasyoh et al., 2011; Elsamra et al., 2012; Garcia et al., 
2012; Koc and Kara, 2014; Sahab et al., 2014; Abhishek 
et al., 2015; Kalagatur et al., 2015; Liang et al., 2015; 
Achugbu et al., 2016; Kosegarten et al., 2017; Sawaiet 

al., 2017) (see Supplementary Table S2). It is difficult to 
draw general conclusions from available information, 
due to the diversity of variables considered, including 
the fungal species and the types of compounds tested. 
Results have mostly been from small scale experiments, 
and efficacy in maize storage trials remains to be tested 
and confirmed. Some general conclusions can be drawn, 
but results remain to confirmed in practical situations. 
Most studies have tested effects of particular compounds 
on fungal growth, whereas few have reported effects on 
mycotoxin reduction. The reported inhibition rates on 
AFs (Thippeswamy et al., 2013; Liang et al., 2015; Tracz 
et al., 2016) and on FBs (Coma et al., 2011; Elsamra et 
al., 2012; Thippeswamy et al., 2015) ranged from 30 to 
100%. Eugenol (4-allyl-2-methoxyphenol) has been fre-
quently reported as the active ingredient in the majority 
of the tested essential oils (eugenol concentration 34.7–
78.4 %), highlighting the promise for this compound to 
reduce Aspergilli and Fusaria toxin production (Sahab et 
al., 2014; Kalagatur et al., 2015; Sawai et al., 2017).

Grain processing

Food and feed processing can have affect initial con-
tent of mycotoxins in raw materials and these processes 
are here discussed individually.

Milling of maize grain does not destroy mycotoxins, 
but this process leads to redistribution of mycotoxins 
among mill fractions. Distribution of Aspergillus and 
Fusarium toxins in maize products after dry-milling 
has been investigated in several studies, showing simi-
lar patterns of distribution. Mycotoxin contamina-
tions increase, compared to unprocessed maize grain, 
in bran, germ and fractions intended for animal feed 
(Coradi et al., 2016), whereas they decrease in flaking 
grits and flour which are mainly destined to human 
consumption (Bullerman and Bianchini, 2014; Savi et 
al., 2016). The distribution of Fusarium toxins (FBs, 
ZEN and DON) in dry-milled maize products has been 
assessed, and these results indicate that average myco-
toxin content in meals and grits was reduced by 65-88% 
compared to the unprocessed grain (Reyneri et al., 
2004). A significant decrease (40%) in FB content from 
unprocessed maize to cornmeal semolina has also been 
demonstrated, whereas a significant increase in FB con-
tent has been found in middlings, commonly intended 
for feed production (Generotti et al., 2015). In wet-mill-
ing, mycotoxins may be dissolved in the steep water and 
further redistributed. Forty to 50% of AFs were moved 
from corn grain into steep water during wet milling, 
where 28–38% of these mycotoxins remained in the 
fiber fraction, 11–17% in the gluten fraction, 6–11% in 
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the germ, and only 1% in starch (Karlovsky et al., 2016; 
Vanara et al., 2018).

Thermal processing. Most mycotoxins are heat sta-
ble, but varying degrees of destruction can be achieved 
with the application of different time/T combinations. 
AFs have high decomposition Ts ranging from 237°C to 
306°C, but all heat treatments (boiling, roasting, bak-
ing or steaming) have been reported to reduce foodstuff 
contamination (Jalili, 2015). Boiling maize grits reduced 
AF levels by 28%, while frying the boiled grits gave total 
reduction of 34–53% (Bullerman and Bianchini, 2014). 
Also, FBs are moderately stable compounds in high T, as 
a significant decrease in these compounds only occurs 
above 150–200°C, where thermal processing such as bak-
ing, frying, roasting or extruding are applied (Humpf 
and Voss, 2004; Mohanlall et al., 2013). Bread baking 
has been shown to reduce concentrations of free FBs by 
30–32% and concentrations of modified FBs by 10–19%. 
The differences in reduction of modified FBs were 
explained by the presence of proteins or starch capable 
of stabilizing the mycotoxins during baking (Bryła et 
al., 2014). The effects of bread making on DON, T-2 and 
HT-2 toxin stability in naturally contaminated flour sam-
ples have been studied in wheat, but no data are available 
for maize derived products (Stadler et al., 2018). Increases 
of DON after bread making have been reported, where-
as the conjugated form as glucoside derivative DON3G 
(deoxynivalenol-3-glucoside) was reduced by approx. 50% 
after baking (Monaci et al., 2013). In contrast, only 7.2% 
degradation of DON was recorded after baking at 100–
250°C for 180 min (Numanoglu et al., 2012).

Decreases in FB contents after thermal processing 
could be ascribed to the masking phenomena, as well as 
possible modifications of mycotoxin structure through 
interactions with other food components leading to the 
formation of conjugates (Falavigna et al., 2012). Free and 
total FBs have also been shown to increase after heated 
drying, especially at 70°C for 24 h exposure. This evi-
dence suggests possible retrogradation of starch, after 
heating, particularly for amylose, was closely related to 
modifications in detectable FBs (Giorni et al., 2015).

Flaking and extrusion processes, obtained with high 
pressure and heating, have been recently reviewed (Jack-
son et al., 2012; Bullerman and Bianchini, 2014). Several 
reports showed that FBs decreased after cornflake pro-
cessing. About 60 to 70% of the initial amounts of FB1 
and FB2 were lost during entire cycle of cornflake pro-
cessing, with less than 30% losses occurring during the 
intermediate extrusion-cooking step (De Girolamo et al., 
2001). During extrusion cooking, the product is forced 
through metal tubes by rotating screws and is subjected 
to high T, high pressure, and severe shear. Extrusion 

usually causes decreases in mycotoxin concentrations. 
However, the effects on mycotoxin levels is probably 
influenced by the screw speed and T. Stability of FB1 
in corn grits was affected by the extrusion parameters: 
up to 50% reduction in FB1 was measured when the 
grits were extruded at 160°C (Jackson et al., 2012). The 
effects of extrusion on AF levels was also influenced by 
the presence or absence of additives, moisture content 
and T. Extrusion alone reduced AF content by 50–80%, 
and with addition of ammonia, either as hydroxide (0.7-
1.0%) or as bicarbonate (0.4%), the decreases in AF levels 
were greater than 95% (Jalili, 2015). Inclusion of sugar 
also altered the stability of FBs during extrusion pro-
cessing (Castelo et al., 2006). This was also the case for 
DON for which extrusion decomposed DON, which was 
more susceptible to extrusion than AFB1 (Cazzaniga et 
al., 2001).

Traditional nixtamalization production of tortillas, 
the process of cooking in alkaline solution, is reduced 
initial total AFs by 60-65% and FBs by 80% (Schaar-
schmidt et al., 2019). This was through physical removal 
during steeping and washing, and by degradation after 
application of elevated pH and high T. However, the 
reductions varied depending on cooking time T, steep-
ing time, and initial toxin concentration in maize grain 
(Mendez-Albores et al., 2014). The impacts of different 
nixtamalization processes on AF and FB concentrations 
was reviewed by Schaarschmidt et al. (2019). Besides 
reduction in the free parent forms, nixtamalization can 
also cause modification, and/or binding or release of 
matrix-associated mycotoxins, but their toxicity has yet 
to be evaluated (De Girolamo et al., 2016).

Detoxification

Preventive actions are not effective for fully avoid-
ing mycotoxin contamination, so detoxification methods 
may still be necessary to recover contaminated com-
modities. These include the use of physical processes, or 
chemical and biological additives. The efficacy of these 
processes in reducing AFB1 was reviewed by Rushing 
et al., (2019). They reported a reduction range of AFB1 
between 51 and 100% after thermal treatment at Ts 
between 150 and 200°C, and exposure times between 
20 and 200 min. However, none of the reviewed studies 
were conducted on maize matrices, but were on other 
cereals (rice and wheat). Gbashi et al. (2019) examined 
decontamination effects of heating on maize flour, and 
demonstrated that AFs (AFB1, AFB2, AFG1) were com-
pletely degraded at 217°C for 35 min. Heat treatment is a 
low cost and simple approach for mitigating the presence 
of mycotoxins. However, thermal stability of mycotox-
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ins requires the use of high Ts and long exposure times, 
which result in a significant impacts on grain quality 
factors.

Effects of UV or gamma irradiation have been 
reported in maize for AFB1 (Markov et al., 2015) and 
FBs (Mansur et al., 2014). Reductions of AFB1 by radia-
tion were reported to range between 60 and 90% (Mark-
ov et al., 2015). 

Chemical treatments have included acidification, 
ammonization and ozonation, the latter has shown a 
decontamination rate of AFB1 in maize of 88% (Luo et 
al., 2014). 

Microbial degradation of mycotoxins in less-toxic 
products has been examined. These biological treatments 
include inoculation with Bacillus (Oluwafemi et al., 
2010; Noah Badr et al., 2017) or yeast species (Verheecke 
et al., 2016), and botanical extracts or enzymes from dif-
ferent biological sources (Karlovsky et al., 2016), with 
reported reductions in mycotoxins of 60-100%. However, 
all the described methods are remain experimental, and 
have yet to be considered as practical management strat-
egies for mycotoxin detoxification. 

MODELLING, AND EFFECTS OF CLIMATE CHANGE

Mechanistic models, using weather data as inputs, 
can predict mycotoxin contamination during the maize 
growing season and at harvest. They provide valuable 
support to crop management in a whole food chain view 
aimed at minimizing mycotoxin contamination. Mecha-
nistic models are available for the prediction of AF and 
FB occurrence in maize crops, based on actual weather 
data (Battilani et al., 2003; Maiorano et al., 2009; Batti-
lani et al., 2013), but have not been developed for DON 
contamination. The impacts of cropping systems are yet 
to be included in these models. The models could be 
adapted for the post-harvest periods, but this has yet to 
be considered. Instead, risk maps have been drawn using 
historical meteorological data inputs to characterize the 
most common contamination in relevant geographic 
areas (Battilani and Camardo Leggieri, 2015).

Apart from seasonal prediction and risk maps, the 
interest in predictive models for mycotoxins contami-
nation in crops is increasing to take account of climate 
change. At a global level, climate change is expected 
to have significant impacts on plant biogeography and 
fungal populations, with consequences on mycotoxin 
patterns, as confirmed with predictive approaches (Bat-
tilani et al., 2016; van der Fels-Klerx et al., 2016), and 
by field surveys in Europe (Piva et al., 2006; Dobolyi 
et al., 2013; Levic et al., 2013). Uncertainties in climate 

conditions and extreme events have been stressed, and 
also described as crucial at farm levels (Camardo Leg-
gieri et al., 2019), increasing the emerging risk of co-
occurring mycotoxins. Predictive models have therefore 
become important, to address uncertainties and high-
light risk conditions on a geographic basis. Predictive 
models are likely to be important tools in chain man-
agement for mycotoxin reduction as support for farm-
ers, extension services and stakeholders. These willra-
tionalize pre- and post-harvest crop and product man-
agement, and provide tools to policy makers for rel-
evant strategic decisions.

CONCLUSIONS

This review has addressed Aspergillus and Fusarium 
species in maize, and provided an account of available 
strategies to mitigate the occurrence of AFs, FBs and 
DON in maize. Mycotoxin contamination with more 
than one congener, including modified mycotoxin forms, 
is an issue that needs further investigation, particular-
ly regarding the consequences for human and animal 
health. A large body of literature exists on fungal growth 
and mycotoxin production, and on factors impacting 
plant-pathogen interactions. Research efforts to support 
the development of mycotoxin prevention strategies have 
resulted in sound mitigation methods, mainly at pre-
harvest stages (Figure 3). Nevertheless, removal of myco-
toxin contamination in maize cannot yet be foreseen, 
and further efforts are needed to increase the production 
of maize with mycotoxins below safe levels set by scien-
tific advisory bodies. Key research areas that need fur-
ther attention include:
• Management of maize genetic resistance, with par-

ticular focus on effectiveness towards all mycotoxin 
producing fungi;

• Increased understanding of plant-pathogen interac-
tions and plant defense mechanisms, including the 
role of mycotoxins in maize-fungi cross-talk;

• Extension of biocontrol to Fusaria and pest control 
as sustainable approaches for mycotoxin mitigation;

• Improvement of the performance of predictive mod-
els, including investigating the impacts of cropping 
systems and of co-occurring fungi on model predic-
tions;

• Prediction of future scenarios of mycotoxin occur-
rence as supporting tools for decision makers;

• Further development of alternative biological tools 
to be applied post-harvest, to improve safe storage or 
detoxification of contaminated grain and complete 
sustainable management of the maize value chain.
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Harmonized methodologies for human and animal 
health risk assessment have been recently developed 
(EFSA, 2019). Such methodologies need to be applied 
to multiple mycotoxins, using available co-occurrence 
data and comparative toxicity metrics, to investigate the 
potential impacts on human and animal health of multi-
ple mycotoxins, in a range of crops including maize.
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