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ABSTRACT Cloud technologies are being used nowadays to cope with the increased computing and storage
requirements of services and applications. Nevertheless, decisions about resources to be provisioned and
the corresponding scheduling plans are far from being easily made especially because of the variability and
uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we
address these issues by formulating a multi-objective constrained optimization problem aimed at identifying
the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments.
In particular, we focus on minimizing the expected workflow execution time and monetary cost under
probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved
offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of
the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of
cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are
strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely
quantify uncertainty and take explicitly into account its effects in the decision process.

INDEX TERMS Cloud computing, uncertainty, multi-objective constrained optimization, Genetic Algo-

rithm, Monte Carlo method, scientific workflows.

I. INTRODUCTION
Cloud infrastructures are the computing environments com-
monly used nowadays to deploy distributed applications and
services. These technologies offer many benefits, including,
among the others, reduced costs, scalability and flexibility.
In fact, cloud resources can be rapidly and elastically scaled
up or down as needed. These features — combined with the
utility-based pricing model of the resources — make cloud
computing particularly attractive for enterprises and organi-
zations that can avoid the burden of buying, installing and
maintaining their own infrastructures.

In these complex scenarios, users are willing to devise the
most cost effective solution able to satisfy the requirements of
their workloads [1], [2]. More precisely, it is up to the users
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to choose the provider (or providers) and decide about the
quantity (e.g., number of Virtual Machines) and characteris-
tics (e.g., processing capacity) of resources to be provisioned
for deploying their workloads.

This problem is very challenging. In fact, in the market
there are numerous providers, each offering many diverse
resources with different performance and cost. Moreover,
the dynamic nature of cloud infrastructures as well as the
variability and uncertainty of their performance might seri-
ously affect the overall efficiency of the user applications
and increase provider operational costs. In fact, as discussed
in [3], actual performance is often influenced by many
factors, such as virtualization, contentions, load imbalance,
migration, consolidation. In particular, Virtual Machine (VM)
performance can vary significantly especially under heavy
load conditions (see, e.g., [4], [5]). Therefore, as pointed out
in some papers (see, e.g., [6]-[8]), uncertainty plays a key role
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when dealing with resource provisioning and scheduling and
more generally with cloud service management. Thus, it is
of paramount importance to take explicitly into account these
uncertain behaviors.

These issues motivate our work. More precisely, unlike
the vast majority of workflow scheduling algorithms, in this
paper we investigate the problem of provisioning and
scheduling under performance variability and uncertainty
described by any type of probability distribution. This inno-
vative approach focuses on the cloud user perspective by
proposing a probabilistic formulation of a multi-objective
constrained optimization problem. In detail, this approach
aims not only at minimizing the expected execution time
and monetary cost of the workflow but also at providing
probabilistic guarantees that execution time and cost will not
exceed the desired deadline and budget.

The solution of the problem generates a Pareto optimal
set, that is, a series of valid scheduling plans satisfying the
objectives and constraints of the problem as well as the
precedence constraints between tasks. This is done offline,
that is, the ““optimal”” scheduling plans are computed prior to
the execution of the workflows with the intention of allowing
cloud users to choose the most suitable plan according to their
preferences and needs. In fact, these plans are characterized
by different costs and execution times and can be seen as the
best trade-off between two conflicting objectives.

The main contributions of this paper are summarized by
the following items:

o Probabilistic formulation of a multi-objective con-
strained optimization problem that takes account
of the uncertainty affecting workload and cloud
characteristics;

o Definition of an evaluation approach that combines
the application of the Monte Carlo method and a cus-
tomized Genetic Algorithm encompassing a broad class
of workflows;

« Extensive testing of the proposed evaluation approach
for scientific workflows representative of different
application domains to be deployed in a multi-cloud
environment;

« Investigation of the combined effects of cloud uncer-
tainty and probabilistic constraints.

The paper is organized as follows. Section II addresses
the state of the art in the area of resource provisioning and
scheduling. Section III focuses on the problem definition,
while Section I'V describes the proposed evaluation approach.
The setup of the experiments and their results are presented
in Sections V and VI, respectively. Section VII concludes the
paper with some final remarks.

Il. RELATED WORK

The problem of resource provisioning and scheduling of
scientific workflows in cloud environments has been exten-
sively addressed in the literature by considering different
perspectives [9]. Single and multi-objectives optimization
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problems have been formulated and solved by applying
meta-heuristics or algorithms devised for the purpose (see,
e.g. [10]-[17]). In addition, the effects of performance uncer-
tainty have been studied to a different extent in the frame-
work of provisioning and scheduling in cloud environments
(see, e.g., [18]-[23]) as well as in other environments, such
as virtualized networks in the framework of placement and
embedding (see, e.g., [24], [25]).

Table 1 presents a comparison of our work with the state of
the art. This comparison is based on some relevant parameters
referring to the formulation of the optimization problem and
to the definition of workflow/cloud uncertainty and variabil-
ity. As can be seen, our approach is applicable to any type
of workflow to be deployed in multi-cloud environments.
In addition, it supports any type of probability distribution
for expressing the uncertainty associated with workflow and
cloud characteristics.

Details about the state of the art and our advancements are
provided in what follows.

A. OPTIMIZATION ALGORITHMS

As already pointed out, to find the “best” resource settings
that satisfy the desired QoS requirements, i.e., to orchestrate
the execution of scientific workflow tasks in cloud envi-
ronments, some works proposed specific optimization algo-
rithms, while others investigated the use of meta-heuristics
(see, e.g., [29]-[31] for detailed surveys).

In the framework of deadline-constrained workflow
scheduling, Abrishami et al. [26] propose two algorithms
that differ in the way they schedule tasks. The one-phase
algorithm schedules partial critical paths on single instances
of computation services, while the two-phases algorithm
distributes the overall deadline on the workflow tasks and
then schedules each task based on its sub-deadline. Simi-
larly, to minimize the overall workflow execution cost and
satisfy deadline constraint, Rodriguez and Buyya [16] apply
a particle swarm optimization meta-heuristics that considers
elastic provisioning and heterogeneity of cloud resources
as well as VM performance variation. Zhu et al. [28]
devise an evolutionary optimization approach based on a
new encoding scheme together with tailored genetic oper-
ators and initial population. This approach is applied to
solve a multi-objective scheduling problem aimed at mini-
mizing both makespan and cost. The efficiency of different
meta-heuristics for a multi-objective workflow scheduling
problem is investigated in [32], while the sensitivity of
Genetic Algorithm is analyzed in [11].

In this paper, we formulate a multi-objective constrained
optimization problem whose solution is based on a Genetic
Algorithm (GA). Similarly to [28], we customize the
crossover and mutation operators to the nature of the work-
load and of the cloud infrastructure. Moreover, for the initial
population, we propose a simple heuristics that allows us to
appropriately choose some individuals, while we select the
rest randomly among the feasible solutions.
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TABLE 1. Summary of the main characteristics of the workflow scheduling approaches. The v’ symbol denotes a full coverage of the characteristic, while

the ~ symbol a partial coverage.
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v
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Chaisiri et al. [19]

Fard et al. [22] v

Hu etal. [13] v
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Lietal [27]

Liu et al. [14]

ENENEN

Meena et al. [15]
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Verma & Kaushal [17]

Zhu et al. [28]

ENENENENENENENENENENEN
ANERENENENENEN

INENEN

SNENENENENENENENEN
2

This work

B. PERFORMANCE UNCERTAINTY

Another important issue considered in the framework of pro-
visioning and scheduling deals with performance uncertainty
of cloud infrastructures. Chaisiri et al. [19] take account of
the uncertainty of resource demand and pricing in multi-cloud
environments by proposing an optimal resource provisioning
algorithm formulated as a stochastic programming model. In
the framework of resource provisioning and scheduling of
MapReduce applications, Della Vedova et al. [21] propose
a stochastic approach for considering performance uncer-
tainty and variability of workload and cloud characteristics.
According to this approach and its extension to general appli-
cations [18], the characteristics that could be affected by
uncertainty are described by independent random variables,
whose probability distributions explain the variability. These
distributions are an integral component of the optimization
problem formulated to identify the resources to be provi-
sioned and the scheduling plan satisfying the desired perfor-
mance and cost metrics.

The stochastic nature of workload is also considered by
Liu et al. [23] for scheduling deadline-constrained work-
flows characterized by random arrivals and uncertain task
execution time. In particular, the time is modeled as a
random variable described by a normal distribution. Sim-
ilarly, to minimize uncertainty propagation in scheduling
workflows, Chen et al. [20] model task execution time
and data transfer time by means of normal distributions.
Matha et al. [33] include performance instability in cloud
simulation environments by introducing the concept of noise
in computation and communication tasks. Performance data
monitored in real cloud environments are the basis for extract-
ing the noise.

A different approach for scheduling workflows under
runtime VM performance fluctuations is proposed by
Li et al. [27]. In detail, time series analysis is applied to
capture the performance trends and predict VM behavior.
These predictions are then used by a Genetic Algorithm to
find the optimal mapping between tasks and VMs.

A robust scheduling approach is proposed by
Fard et al. [22] to investigate the problem of resource pro-
visioning and scheduling of workflow applications under

VOLUME 9, 2021

performance uncertainty. In particular, they assume that the
processing time of a workflow task is unknown although
bounded within a given uncertainty interval. Moreover,
the probability distribution of the processing time in this
interval is also unknown. Using this model, they formulate
a multi-objective optimization problem aimed at optimizing
the makespan and cost of workflow executions as well as
the robustness of the scheduling solutions to unpredictable
fluctuations of processing times.

Unlike this approach, we model uncertainty of both work-
flow characteristics and cloud performance by means of ran-
dom variables that can be described by any type of prob-
ability distribution. The workflow execution time and the
monetary cost for leasing cloud resources are obtained from
the probabilistic evaluation of the combination of these ran-
dom variables. For this purpose, we apply the Monte Carlo
method whose integration with the customized Genetic Algo-
rithm allows us to investigate the effects of uncertainty for
a broad class of workflows and cloud environments under
probabilistic constraints.

IlIl. PROBLEM DEFINITION

As already stated, our investigation focuses on offline work-
flow scheduling in uncertain cloud environments. In particu-
lar, starting from the workflow and cloud models, we define
the corresponding execution model and propose a probabilis-
tic formulation of a multi-objective constrained optimization
problem. This problem is aimed at minimizing the expected
values of both workflow execution time and monetary cost
for leasing cloud resources under probabilistic constraints on
deadline and budget.

Figure 1 summarizes the main components of the modeling
framework proposed in this paper. As the figure suggests,
the solution of this problem generates a Pareto optimal set,
that is, a series of valid scheduling plans characterized by
different costs and execution times. Cloud users will then be
able to choose among these plans the most appropriate for
their needs.

In what follows, we introduce the basic definitions used
throughout the paper and the formulation of the optimization
problem. Table 2 summarizes the main notations.
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FIGURE 1. Main components of the modeling framework.

A. WORKFLOW MODEL

We model a workflow W using a Directed Acyclic Graph
(DAG) {T, E}, whose set of nodes T = {T;;i = 1,...,n}
corresponds to the n computational tasks of the workflow and
whose setof edges E = {ej;j=1,...,k},withE CT x T,
represents the k& control/data dependencies existing between
tasks.

Moreover, we describe the resource requirements of the
individual tasks, i.e., their computation, transfer and com-
munication demands, as random variables that explain their
variability. In particular, the computation demand Dfomp and
the transfer demand D?f ¢ denote the amount of processing of
task 7; and the data volume it transfers to/from I/O devices,
while Dz"-’"’" refers to the communication demand, namely,
the data volume to be exchanged between tasks 7; and 7.

B. CLOUD MODEL

To model the cloud infrastructure we consider multiple
instances of m VM types and we assume that VMs of the
same type have the same performance characteristics. More
specifically, we describe the performance of each VM; in
terms of its processing capacity mec, data transfer rate Vl.xf «
to/from local or remote I/O devices and network bandwidth
VP to/from VM.

Similarly to the workflow model, to take account of the
performance uncertainty and variability that might affect
VMs, we represent these characteristics by means of random
variables.

In addition, we define the leasing costs of the cloud infras-
tructure, namely, the cost ciVM of VM;, the cost cl-Xfer of data
transfer to/from I/O devices and the cost c}?’v of data transfer
due to communication between VM; and VM;. Obviously,
there is no uncertainty associated with these costs.

C. EXECUTION MODEL
The workflow execution model consists of two components,
namely:
« Resource provisioning;
o Scheduling plan.
Resource provisioning refers to the VMs to be allocated,
while scheduling plan refers to the execution ordering of the
tasks and the mapping between tasks and allocated VMs.
Let R be the set of the n-tuples corresponding to all com-
binations with repetition of the VMs that can be provisioned
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TABLE 2. Summary of the main notations. The - symbol denotes a
random variable.

Workflow model
w workflow
{T,E} workflow DAG
T set of computational tasks of the workflow
E set of control/data dependencies
n number of computational tasks
number of control/data dependencies
D;omP o computation demand of task T}
D?f er o transfer demand of task T}
DZC."jmm ¢ communication demand between T; and T’
Cloud model
vbree o  processing capacity of VM
Vixf er o data transfer rate of VM
Vib;” ¢ network bandwidth between VM; and VM ;
clVM leasing cost of VM;
ciXfcr data transfer cost for I/O of VM,
cl.b;fv data transfer cost between VM; and VM

Execution model

r decision variable for resource provisioning
R set of all possible resource provisioning

s decision variable for task scheduling

S set of all possible topological sorts of {7, E'}

ti(r) o execution time of task 75
ci(r) o cost of task T;

Tw(r,s) <o  workflow execution time
Cw(r,s) <o  workflow monetary cost

Optimization problem

d deadline

b budget

pT probability associated with deadline
pC probability associated with budget

to the n tasks. Each tuple » € R corresponds to a resource
provisioning and describes the allocation of tasks to VMs. In
what follows r; denotes the VM allocated to task 7;, e.g., if T
is allocated to VM5, then r; = 5.

For a given resource provisioning » the execution time #;(r)

of task T; is the sum of its processing time tic o"P (1), transfer
time ¢, Jer (1) and communication time 159" (r). These times

are computed as:

comp
comp Y
() = — e
ri
xfer
xfer i
li (r) = xfer
ri
n comm

comm _ ij
li (l’) - Z ybw

j=Liji ]

Moreover, let S be the set of all topological sorts of the
workflow DAG, that is, the linear orderings of tasks such that
V(T;,T;) € E, the execution of task 7; is scheduled before
task 7. Thus, each n-tuple s € S accounts for all data/control
dependencies of the workflow.
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Given a topological sort s € S, we compute the workflow
execution time Tyy(r,s) in terms of start/finish times of
the tasks, namely, £ (r, s) and ¢/ (r,5) = t3(r, s) + t;(r). In
detail, Tyy(r, s) is given by:

Tw(r,s) = I][ilél;_({tf (r, $)}

Note that the start time tf of the task 7; depends on
the precedence constraints described by s and on additional
constraints that might be introduced by scheduling multiple
tasks on a single VM. The set of tasks that have to finish their
execution before starting task 7; is:

LT, r,s) ={Ty €T, AT}, T)) € E
V((ry = 1) A (Tx < Ti)}
where < is the partial ordering induced by the topological
sort s, that is, task Tx < T; if Ty comes before 7; in the
tuple s. For example, if s = (T, T3, T2, T4) then it holds
T < T3 < Ty < Ty.
As a consequence, the earliest start time of 7 is defined as:

s F
7 (r,s) =  max {t; (r,9)}
TreL(T;,r,s)
where tf (r,s) = 0 when there are no constraints, i.e.,

L(T;, r,s) = {#}. Let us remark that tf(r, s) and tf(r, s) are
random variables since they are derived from the random
variables describing the uncertainty of workflow demands
and VM performance.

Similarly, we compute the overall workflow cost Cyy (7, s)
as the sum of the monetary costs c¢;(r) of the execution of
the individual tasks 7;. In detail, c;(r) is the sum of the
leasing cost of the allocated VM and of the data transfer
costs. Although the leasing costs of the cloud infrastructure
are not affected by variability, we remark that the resulting
costs are random variables since they also depend on the
task execution times and communication demands that are
described by random variables.

D. OPTIMIZATION PROBLEM
To identify the resources to be provisioned and the schedul-
ing plan satisfying the selected performance and cost
metrics under probabilistic constraints, we formulate a
multi-objective constrained optimization problem. More pre-
cisely, our problem aims at minimizing the expected values
of the random variables describing the workflow execution
time Tyy(r,s) and monetary cost Cyy(r,s) under strong
guarantees on the tail, i.e., percentile, of the corresponding
distributions.
Hence, according to the definitions previously introduced,
our optimization problem is formulated as follows:
minimize (E [Ty (7, s)], E[Cw(r, 5)]) (1)
reR,seS
subject to Pr(Tyy(r, s) <d) > pr

Pr(Cyw(r,s) < b) = pc

where E [Ty (r, s)] and E [Cyy(r, s)] denote the expected
values of the workflow execution time and cost, while d and b
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refer to the deadline associated with the execution time and
to the available budget. Finally, the probabilities pr and p¢
refer to the guarantees required for the execution time and
the monetary cost, respectively. Of course, the larger the
probabilities the stronger the guarantees are.

In what follows, not to clutter the presentation, 7)) and
Cyy denote Ty (r, s) and Cyy(r, 5), respectively.

IV. EVALUATION APPROACH

The solution of the optimization problem requires the appli-
cation of methods that take into account the multi-objective
nature of the problem and allow the evaluation of the random
variables describing the objectives. More specifically, the
proposed approach is based on an algorithm in the class of
multi-objective evolutionary algorithms, that is, the Genetic
Algorithm, while the probabilistic evaluation relies on the
Monte Carlo method. As shown in Figure 2, the Genetic
Algorithm interacts with the Monte Carlo method by provid-
ing an individual, i.e., scheduling plan, whose execution time
and cost probability distributions are evaluated by the Monte
Carlo method and then used by the Genetic Algorithm.

scheduling plan
Genetic

m Monte Carlo
Algorithm method
wm-c|

vm-c| 3 t

E[Cw] Pr(Cw <)
! E[Tw] Pr(Tiy <d)

individual evaluation

FIGURE 2. Interactions between the Genetic Algorithm and the Monte
Carlo method for solving the multi-objective constrained optimization
problem.

We remark that resource provisioning and scheduling plans
are evaluated offline, i.e., prior to the actual execution of the
workflow, thus allowing cloud users to select the plan best
suited to their preferences. In what follows we provide the
details of the proposed evaluation approach.

A. PROBABILISTIC EVALUATION

To deal with uncertainty affecting workload and cloud char-
acteristics, the probabilistic evaluation provides the probabil-
ity distributions of the random variables T}y and Cyy used in
the optimization problem (1). In particular, these distributions
allow the estimation of the expected values to be minimized
and of the percentiles associated with the constraints.

In general, two alternative approaches, i.e., analytic and
simulation, can be applied for evaluating the target probabil-
ity distributions.

The analytic approach initially computes the probability
distribution functions of the execution time and cost of each
task as a function of the random variables describing its
demands and the cloud performance. These distributions are
then algebraically combined according to the task prece-
dence constraints of each scheduling plan as to obtain the
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target distributions. For this purpose, numerical methods for
computing convolution and integral operators are generally
applied. Of course, depending on the workflow DAG and the
scheduling plan, there might be conditional dependencies on
the earliest start time of some tasks, thus requiring very com-
plex algebraic combinations. In addition, numerical approx-
imations might affect the accuracy of the target distribution
estimation.

The simulation approach directly computes Monte Carlo
draws of Tyy and Cyy from the realizations of the random
variables describing task demands and cloud performance.
The pseudocode for computing the empirical distributions
of these random variables and for evaluating the scheduling
plans is presented in Algorithm 1. In particular, given a
resource provisioning r and a scheduling plan s, the procedure
SIMULATE_EXECUTION computes the realizations of execution
time and monetary cost of the workflow. These realizations
are used by the procedure EVALUATE_SCHED_PLAN for comput-
ing empirical distributions of Ty and Cyy .

Similarly to the analytic approach, all these computations
are driven by the task precedence constraints of each schedul-
ing plan. In general, the Monte Carlo method is applied
whenever the independence of the random variables involved
in the evaluation process cannot be assumed.

Algorithm 1 Scheduling Plan Evaluation With Monte Carlo
1: // Samples random variables that characterize workflow
and cloud, and computes workflow execution time and
monetary cost
2: procedure SIMULATE_EXECUTION(r, §)

3: Generate realizations p of all random variables
related to cloud and workflow.

4: time < compute_time(p, 7, §)

5: cost <— compute_cost(p, r, §)

6: return time, cost

7: end procedure

8: // Evaluates the scheduling plan and returns expected

values and probabilities for time and cost
9: procedure EVALUATE_SCHED_PLAN(7, s, d, b)

10: Initialize empty time_samples and cost_samples
lists.

11: repeat

12: t, ¢ < simulate_execution(r, s)

13: Add 7 to time_samples.

14: Add c to cost_samples.

15: until Monte Carlo stopping criterion

16: Compute empirical distributions of random variables

Tyy and Cyy from time_samples and cost_samples.
17: return E [Ty], E [Cy], Pr(Tyy < d), Pr(Cyy < D)
18: end procedure

B. OPTIMIZATION PROBLEM SOLUTION

The solution of the optimization problem is based on the
application of a Genetic Algorithm customized to the nature
of the problem. This meta-heuristic is able to cope with the
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search space of the problem — that can grow exponentially
with the number of workflow tasks and VM types — thus
providing global sub-optimal solutions within a predefined
processing time.

We remark that the multi-objective optimization problem
has multiple solutions that can be seen as the best trade-off
between the two conflicting objectives, i.e., the expected
values of workflow execution time and monetary cost, that
satisfy at the same time the deadline and budget constraints.
These solutions lay on the so-called Pareto front, that is,
the boundary of the Pareto optimal set consisting of the
non-dominated set of the feasible points in the search space
considered by the GA [34].

Algorithm 2 summarizes the main steps of the Genetic
Algorithm applied to our optimization problem. Details of
these steps are given in what follows.

Algorithm 2 Genetic Algorithm
1: // Applies the selection, crossover, and mutation opera-
tors and returns the next generation
2: procedure EVOLVE(population, d, b, pr, pc)

3: Generate the offspring by applying the genetic oper-
ators to the population.
4: population < population U offspring
5: Initialize empty population scores dictionary.
6: for each individual in population do
7: scores[individual] <« evaluate(individual, d, b,
pT,PC)
8: end for
9: Build next_generation by selecting the fittest individ-
uals among the population.
10: return next_generation

11: end procedure
12: // Returns the Pareto front of the population after genetic

evolution
13: procedure sOLVE(cloud, workflow, d, b, pr, pc)
14: Generate the initial population with heuristics.
15: repeat
16: population <« evolve(population, d, b, pr, pc)
17: until GA stopping criterion
18: solution <« pareto_front(population)
19: return solution

20: end procedure

1) ENCODING

A preliminary step for the application of the GA deals
with the encoding scheme for the definition of the mapping
between the chromosomes and both the set of resources to be
provisioned and the corresponding scheduling plans. More
specifically, the proposed encoding is based on an array of
integers composed by the two n-tuples r and s. We recall that r
represents the mapping between tasks and the allocated VMs,
while s represents the scheduling order of the tasks. In detail,
to allow for all possible combinations of task-VM allocations,
the values of r; range from 1 up to n x m, that is, the product
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FIGURE 3. Example of the encoding of a scheduling plan for an eight-task
workflow on three VMs.

of the number of tasks and the number of VM types. Note
that multiple tasks could share a single VM instance. The
array s represents a topological sort of the workflow DAG
where element s; identifies a task. Thus, the values of these
identifiers range from 1 to n.

Figure 3 presents the encoding of a scheduling plan
for a simple workflow consisting of eight tasks T;
i=1,2,...,8). As can be seen in Fig. 3(c), r describes
the mapping of each task into one of the three provisioned
VMs, while s ensures the precedence constraints among tasks
depicted as arrows.

Finally, we outline that the proposed encoding scheme
uniquely identifies a resource provisioning and scheduling
plan under two assumptions, namely, earliest start time of
the tasks and non preemptive scheduling. This means that
a task will start processing as soon as the scheduling prece-
dence constraints are fulfilled and this processing cannot be
interrupted.

C. GENETIC OPERATORS

The search mechanisms of the GA are based on the use
of genetic operators, i.e., crossover, mutation and selection
operators. While the selection operator does not require any
customization, the crossover and mutation operators have to
be customized according to the proposed encoding. In fact,
these operators must ensure offspring chromosomes satisfy
the topological sort of the workflow DAG. Hence, according
to the proposed encoding, crossover consists of two indepen-
dent components, one applied to array r and one applied to
array s. A similar approach is used for mutation.

In particular, recombination of array r is based on standard
operators for integer optimization, such as single/multiple
points or simulated binary crossover, polynomial, swap or
scramble mutation.

For array s, the design of the crossover and mutation opera-
tors is not straightforward as these operators have to explicitly
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take into account the dependencies among workflow tasks
(see [28]). For example, after the application of a standard
crossover operator (e.g., random single point crossover),
it might be necessary to readjust the offspring by changing
the order of the tasks that violate the dependencies and by
ensuring that all tasks appear exactly once. Similarly for the
mutation, the randomly chosen element of the chromosome
has to be moved in such a way that violations of task depen-
dencies are avoided.

An example of a random single point crossover operator
applied to both arrays r and s is shown in Figure 4. In detail,
two offspring result from the recombination of two parents.
The colors of each offspring refer to the parent they are
generated from. As figure suggests, each offspring has been
readjusted to take account of the task precedence constraints.

A W=

|15|11|12|ll 12|15|12|ll 1|3|2 5 4|6|7|8‘

Parents

[

15'11111‘12111 1‘4‘2 3‘5‘(5‘7‘8‘

15

ll|12|11 11‘11‘]2‘1[ 1|3|2 4

Offspring

‘13111‘13 15 12|11 1‘4"2 315

15112 G|7|8‘
H CAA

FIGURE 4. Example of an application of a crossover operator to two
individuals, i.e., parents, resulting in two new individuals, i.e., offspring.

Figure 5 refers to the application of a simple random
mutation where, as highlighted by the red arrow, the second
element of the array r has been selected. As a result, a new
scheduling plan is generated where task 77 is allocated to
VM 13 instead of VM1, thus requiring the provisioning of
an additional VM. Similarly, the operator applied to array s
changes the order of the tasks, namely, task 7, is scheduled
before task 7>, as highlighted by the green arrow. Hence, 7} is
scheduled before T5 on VM 5. It is worth noting that mutation
of array s is not always applicable due to task dependencies.

15

11|12|12|12

original individual

15

12|11

15

13|12|12|12|15|12|11

mutated individual

FIGURE 5. Example of an application of a mutation operator to generate
a new individual.

As already pointed out, the selection of the individuals for
the reproduction for the next generation is generally based
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on standard operators for multi-objective optimization prob-
lems, such as proportional, ranking and tournament selection.
In addition, the selection process has to promote diversity
among individuals, thus maintaining a good spread of the
individuals in the solution space.

D. FITNESS FUNCTION

The definition of a function for assessing the fitness of the
individuals to be promoted in the selection process is the
basis of GA. In particular, for multi-objective constrained
optimization problems, this function has to take into account
both the objectives and the constraints.

According to the formulation of our optimization problem
(1), the function is defined in terms of the expected values
of the workflow execution time E [7)y] and monetary cost
E [Cyy]. Hence, to cope with the objectives of the problem,
individuals with the lowest expected values are more likely to
be selected.

Another issue to be addressed in this framework deals with
including the constraints into the fitness function. Different
approaches can be applied for this purpose, such as discard-
ing individuals that violate one constraint or assigning them
penalties that might depend on the extent of the violation [35].
Let us recall that, unlike the objectives, the constraints of
(1) are expressed in terms of probabilities of satisfying the
selected deadline under the given budget.

E. INITIAL POPULATION

The generation of the initial population is of paramount
importance for GA since it is the starting point of the solution
space exploration and heavily influences the convergence
to “optimal” solutions. Several approaches, ranging from
random sampling to heuristics, such as HEFT (i.e., Hetero-
geneous Earliest Finish Time), can be applied for generating
the initial population.

An alternative approach is to generate the initial population
by including some “extreme’ individuals of the solution
space and randomly selecting some others for preserving
diversity. For example, the initial population could include
individuals representing for each VM type a fully parallel
scheduling plan where each task is allocated to a different
VM instance as well as a fully sequential scheduling plan,
where all tasks share a single VM instance.

V. EXPERIMENTAL SETUP
To assess the effects of uncertainty on the scheduling plans
that satisfy the objectives and the probabilistic constraints of
the optimization problem, we devised an evaluation environ-
ment that integrates the Monte Carlo method and the Genetic
Algorithm properly customized to take account of the nature
of the problem. In particular, this environment is based on a
multi-threaded Java application that evaluates the evolution
of the scheduling plans and provides the “optimal” Pareto
sets as a function of the workflow and cloud characteristics.
In what follows, we detail the setup of the evaluation
environment as well as the characteristics of the workflows

89898

and multi-cloud infrastructure considered in the experiments.
Moreover, we discuss the applicability issues of the pro-
posed approach and we analyze the sensitivity of the GA
parameters.

Let us recall that the proposed approach focuses on the
cloud user perspective and allows offline identification of the
optimal scheduling plans.

A. EVALUATION SETUP

The setup of the evaluation approach deals with the specifica-
tions of the Monte Carlo method and Genetic Algorithm. In
detail, we derive the probability distributions of the workflow
execution time 74 and monetary cost C)y by computing sev-
eral draws of these random variables through the Monte Carlo
method. More precisely, we derive their algebraic expressions
by traversing the topological sort described by s and by
representing the V?mc, Vixf " and V}”YV random variables by
symbolic values. We then numerically evaluate these expres-
sions by replacing the symbolic values with realizations of the
corresponding random variables sampled with the SSJ Java
library for stochastic simulation [36].

As a stopping criterion for the Monte Carlo method we
choose the 95% confidence intervals of the standard error of
E[Ty] and E [Cyy].

With respect to the GA setup, the first choice deals
with the algorithm. In particular, we choose the NSGA-II
algorithm [37] and the implementation provided by the
jMetal 5.6 framework [38]. In fact, this algorithm pre-
serves the diversity of the solutions and emphasizes the
non-dominated ones.

In terms of GA operators, we apply the Simulated Binary
Crossover (SBX) for r, whereas for s the operator is cus-
tomized according to what described in Section IV-C. As
mutation and selection operators, we choose a polynomial
mutation and binary tournaments. Similarly to the crossover
operator, the mutation operator has been properly customized
to avoid dependency violations. For the tournaments, individ-
uals are ranked according to the dominance criterion and in
case of tie to the crowding distance. Finally, the probabilities
associated with the crossover and mutation operators, that is,
the likelihood of the operators to be applied, will be chosen
as a result of a sensitivity analysis (see Sect. V-D).

To assess the fitness of each individual (r, s), we define a
multivariate function f(r, s) in terms of the objectives and the
constraints of the optimization problem, namely:

f(rs S) = (E [TW] ’ E[CW] 7NV’ CV)

where N, and C, denote the number and severity of constraint
violations, respectively. In detail, depending on the number of
violated constraints, N, is defined as follows:

0 (Pr(Tw =d)=pr) A (Pr(Cyy = b) = pc)
Ny=11 (P =d) <pr) & Pr(Cyy =b) <pc)
2 (Pr(Tywy =d) <pr) A (Pr(Cyy = b) < pc)
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This means that N, is set to O if both constraints are
satisfied, to 1 if the deadline or budget constraint is violated
and to 2 if both constraints are violated.

In addition, to summarize the weights of deadline and
budget violations, we define C,, as follows:

P (T)(pr)—d|" [P ew)pe)-b|"
d b

where Pr!(-) denotes the quantile function and |-|T the
positive part.

As a stopping criterion for the GA we set the number
of evaluations of the fitness function for each individual
to 50,000. Indeed, for the three considered workflows, any
increase of this value does not improve the Pareto fronts.

The final GA setup deals with the definition of the ini-
tial population in terms of number and types of individuals.
Algorithm 3 details this process. In particular, the population
size is assessed by the sensitivity analysis (see Sect. V-D). In
terms of population composition, to ensure diversity, we gen-
erate four individuals representing two fully parallel and two
fully sequential scheduling plans and we randomly select the
remaining ones. For the parallel plans, each task is allocated
to a different instance of the most expensive VM type or of
the VM type with the smallest processing capacity. For the
sequential plans, all tasks are allocated to a single instance of
these VM types. In the multi-cloud environment considered
in the experiments (see Table 4), these VM types correspond
to x3large of Public cloud A and small of Private cloud. For
the remaining individuals we randomly generate r, whereas
we derive s by sampling the topological sorts of the work-
flow DAG.

C, =

B. WORKFLOW AND CLOUD DESCRIPTION

To model the complex applications deployed nowadays in
cloud environments, we focus on three well-known scientific
workflows, namely, Montage, Cybershake, and Epigenomics,
representative of different application domains. These work-
flows differ in terms of structural properties and resource
requirements (see, e.g., [39] for their detailed characteriza-
tion). In summary, the Montage workflow represents an I/O
intensive astronomy application used to create a mosaic of
the sky starting from a set of input images. On the contrary,
the Cybershake workflow is a data intensive application used
to characterize earthquake hazards from synthetic seismo-
grams. Finally, the Epigenomics workflow is a computa-
tion intensive application for genome sequencing operations
based on multiple pipelines operating in parallel on different
data chunks.

The structure of each workflow is derived from the Pega-
sus Workflow Repository.! More precisely, we consider the
Montage, Cybershake, and Epigenomics workflows with 25,
30 and 24 tasks (see Fig. 6).

In addition, according to the data published in the reposi-
tory, we derive the computation, transfer and communication

1 https://pegasus.isi.edu/workflow_gallery/
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Algorithm 3 Initial Population

1: // Builds the initial population of individuals (r, s)
2: procedure INITIAL_POPULATION(cloud, workflow, popula-
tion_size)
Initialize empty population.
s < random topological sort of the workflow DAG
r < tuple of n instances of the most expensive VM
Add (r, s) to population.
r < tuple of n instances of the smallest processing
capacity VM
8: Add (r, s) to population.
9: r < tuple of one instance of the most expensive
VM (same VM id repeated n times)
10: Add (r, s) to population.
11: r < tuple of one instance of the smallest processing
capacity VM (same VM id repeated n times)
12: Add (r, s) to population.

A O

13: // Creates remaining individuals randomly

14: for i from 4 to population_size do

15: r < tuple of random VM ids

16: s <— random topological sort of the workflow
17: Add (r, s) to population.

18: end for

19: return population

20: end procedure

(a) Montage (b) Cybershake
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FIGURE 6. Montage workflow with 25 tasks (a), Cybershake workflow
with 30 tasks (b) and Epigenomics workflow with 24 tasks (c).

demands of the individual tasks (see Table 3 for a summary
of the overall demands).

To describe the cloud infrastructure, similarly to [18],
we consider a multi-cloud environment with public and
private clouds consisting of multiple instances of different
types of VMs, whose cost, processing capacity and band-
width are summarized in Table 4. The table outlines that
both VM processing capacity and bandwidth depend on the
VM type. In particular, we assume that communications
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TABLE 3. Overall workflow demands.

Computation Transfer | Communication
Workflow demand demand demand
[instructions x10%] [MB] [MB]
Montage 3.542 21 477
Cybershake 10.319 80,191 7,053
Epigenomics 274.973 8,173 1,932

TABLE 4. Main characteristics of the multi-cloud environment considered
in the experiments.

Cloud Leasing cost | Proc. capacity | Bandwidth

Provider | VM PC | UsD/m] | [MIPS x105] | [Mbps]
micro 0.040 1.95 300

small 0.080 391 300

medium 0.320 15.63 600

Public A large 0.520 25.38 800
xlarge 0.640 31.25 800

x2large 1.040 51.02 1,100

x3large 2.080 101.63 1,100

micro 0.045 1.95 300

small 0.090 391 300

Public B medium 0.180 7.81 600
large 0.369 16.03 800

xlarge 0.774 33.67 1,100

Private sma.ll 0.001 1.95 800
medium 0.001 7.81 800

between different VM types exploit the smaller VM band-
width. Moreover, although the leasing cost is represented as
USD per hour, in our experiments we use a per-minute billing.
Finally, we set the data transfer rate to/from local or remote
I/0O devices of individual VMs equal to their bandwidth.

In what follows, without loss of generality, we consider
task demands not affected by any variability, while we model
uncertainty and variability of cloud performance. For this pur-
pose, since uncertainty worsens cloud performance, we repre-
sent cloud characteristics with probability distributions upper
bounded by the nominal performance. Hence, we model
the reciprocal of the positive random variables describing
these characteristics. Moreover, to quantify the uncertainty,
we define a variability factor VF that represents the relative
deviation of VM performance with respect to the nominal
value. We outline that, even though in our experiments we
will use workflows with a rather small number of tasks, as we
will discuss in Sect. V-C, our approach can handle much
larger workflows.

C. SCALABILITY ISSUES

To assess the general applicability and scalability issues of
the proposed approach, we profiled our Java application
during the evaluations of the Epigenomics workflow with
increasing number of tasks, namely, 24, 46, 100 and 997.
Table 4 presents the runtimes and processing times obtained
on an HPE ProLiant DL580 server running Fedora 31 oper-
ating system and 1.12 JRE.

The hardware configuration of the server includes four
Intel Xeon processors at 3.2GHz with 12 cores each, 1TB of
RAM and 16 SAS Hard Disks with a capacity of 1.8TB each.
The processing times listed in the table account for the total
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TABLE 5. Resource usage as a function of the number of tasks of the
Epigenomics workflow.

Number | Runtime | Processing time
of tasks [s] [s]
24 146 3,789
46 271 6,689
100 576 11,739
997 37,819 874,630

time spent by all threads. In fact, we configured the jMetal
framework to run 40 concurrent threads.

As can be seen, these times do not increase proportionally
with the number of tasks. Larger workflows can be evaluated
at the expenses of larger resource usage and we believe that
these runtimes are acceptable for an offline approach.

D. SENSITIVITY ANALYSIS OF GA PARAMETERS

To choose the probabilities associated with the crossover and
mutation operators and the number of individuals, i.e., the
size of the initial population, we perform a sensitivity anal-
ysis based on a grid-search. More precisely, for isolating the
effects of the GA parameters we consider the optimization
problem (1) without any deadline and budget constraint and
cloud variability. Hence, by varying the crossover and muta-
tion probabilities and the initial population size as shown
in Table 6, we solve this problem for each of the 125 com-
binations of these parameters and for every workflow.

TABLE 6. Crossover probability, mutation probability and population size
used in the grid-search.

Parameter Values

Crossover probability | 0.5 0.7 0.9 0.95 0.99
Mutation probability 0 0.01 | 0.02 0.1 0.2

Population size 100 | 200 | 500 | 1000 | 2000

To compare the various Pareto fronts obtained as a result
of these evaluations, we resort to the hypervolume indica-
tor [34]. In this framework, we define as a reference point,
i.e., nadir, the expected values of the workflow execution
time of a sequential scheduling plan on the VM type with the
smallest processing capacity and of the monetary cost of the
fully parallel scheduling plan on the most expensive VM type.

The values of this indicator computed for each work-
flow are summarized in terms of averages and 95% con-
fidence intervals. The analysis of these statistics suggests
that the hypervolume values are not significantly influenced
by the crossover and mutation probabilities independently
of the workflow type. As a result, we set the crossover and
mutation probabilities to 0.9 and 0.02 as suggested in [37].

On the contrary, as Figure 7 shows, the hypervolume
averages vary with the population size and workflow type,
although the corresponding confidence intervals are generally
rather narrow. Hence, by taking into account these results,
we set the number of individuals to be generated in the initial
population to 100 individuals for the Montage workflow and
1,000 for Cybershake and Epigenomics workflows.
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FIGURE 7. Averages and 95% confidence intervals of hypervolume values
as a function of population size for the three considered workflows.

VI. EXPERIMENTAL RESULTS

This section investigates the effects of cloud uncertainty on
the solutions of the constrained optimization problem. For
this purpose, we vary the probability distributions describing
cloud characteristics and the corresponding variability factor.
Moreover, we discuss the effects of uncertainty in isolation as
well as combined with the probabilistic deadline and budget
constraints.

A. CLOUD UNCERTAINTY

To investigate the effects of cloud uncertainty, we designed
several experiments varying the type of probability distri-
butions (i.e., Uniform, Half-Normal and Weibull) describing
the cloud characteristics (i.e., VM processing capacity, data
transfer rate, network bandwidth). We recall that uncertainty
is quantified in terms of the variability factor VF. In particular,
in the first set of experiments we explore the impact of the
distribution type and we set VF to 0.3. Figure 8 shows, for the
three workflows, the solutions of the optimization problem,
i.e., the Pareto fronts. Note that each front is represented as a
line connecting the solutions it consists of.

Since the workflows considered in our study are char-
acterized by different precedence constraints and resource
demands (see Fig. 6 and Table 3), the ranges of the feasible
solutions are different. In fact, expected execution times for
Montage are in the range of [12, 548] s, for Cybershake in
[543, 3,043] s, and for Epigenomics in [1,133, 183,121] s.
Similarly, the corresponding ranges for expected monetary
costs are [0.01, 0.87], [0.21, 0.60], and [0.09, 2.83] USD,
respectively.

TABLE 7. Solutions of minimum expected time and cost, and balanced
solution for Cybershake workflow as a function of the probability
distribution. The variability factor is set to 0.3.

Distribution | minimum time | minimum cost | “balanced"

Half-Normal | 543s  $0.57 | 3,043s $0.21 895s  $0.25
Uniform 543s  $0.60 | 3,002s  $0.21 902s  $0.25
Weibull 544s  $0.57 | 3,033s  $0.21 901s  $0.25

The figure suggests that the choice of the probability
distribution type does not significantly affect the resulting
Pareto fronts for all the considered workflows. This is con-
firmed by Table 7 where the minimum expected time solu-
tion is shown together with the minimum expected cost
solution and with the ““balanced” solution. These solutions
refer to the Cybershake workflow. Note that the minimum
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FIGURE 8. Pareto fronts for the three workflows as a function of the
distribution type, with variability factor equal to 0.3. The dashed lines
correspond to the “balanced” trade-offs between time and cost.

expected cost solution corresponds to the rightmost point
in Fig. 8(b), whereas the minimum expected time solution
to the leftmost point. The balanced solution represents a
trade-off between time and cost, that is, the point of the Pareto
front closest to the ideal line whose slope has been set to
1 USD/h, which in our study is comparable to the leasing cost
of the VM.

In general, the scheduling plans corresponding to the
solutions of the optimization problem fully exploit the
multi-cloud environment. More specifically, the solutions of
minimum cost include multiple VM instances of the private
cloud. On the contrary, the private cloud is exploited to a
limited extent by the solutions of minimum time. In addition,
it is worth noting that according to these plans the overall
number of VM instances ranges from 14 to 22. In fact, to save
communication time and cost, multiple tasks are scheduled on
the same VM instance.
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FIGURE 9. Pareto fronts for each workflow and probability distribution as a function of the variability factor VF.

The impact of uncertainty has also been evaluated by
increasing the variability factor VF associated with the cloud
performance from O (no variability) up to 0.9 (very large
variability). Figure 9 plots the Pareto fronts obtained for the
three workflows as a function of the probability distribu-
tion (i.e., Uniform, Half-Normal and Weibull). As expected,
the greater the uncertainty, the worse the performance and
cost. In fact, the lines depicting the Pareto fronts for larger
VF lie generally above those corresponding to smaller ones.
For example, solutions that refer to VF = 0.9 (i.e., red points)
are characterized by the largest expected times and costs.
Obviously, the smallest expected times and costs correspond
to the solutions with no variability (i.e., blue points) and are
also independent of the distribution type.

Another interesting remark refers to the patterns of the
Pareto fronts that are affected by the sub-optimal solutions
provided by the GA. For example, this is the case of Fig. 9(b),
where the orange and the green lines interweave, and also the
case of green and red lines in Fig. 9(h).

In summary, for the cloud uncertainty we notice that,
independently of the topological structure of the workflows,
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the variability factor has a heavy impact on the Pareto fronts,
while the distribution type does not significantly affect the
solutions. Hence, to properly provision cloud resources, it is
compelling to precisely quantify uncertainty and take into
account its effects in the decision process.

B. DEADLINE AND BUDGET CONSTRAINTS UNDER
UNCERTAINTY

In this section we analyze the combined effects of cloud
uncertainty and deadline and budget constraints on the solu-
tions of the optimization problem. In particular, not to clutter
the presentation, we present the results for one workflow,
i.e., Epigenomics, and one distribution type, i.e., Uniform.
Similar results can be obtained with the other workflows and
distribution types.

To analyze the effects of constraints under a fixed vari-
ability factor VF (equal to 0.4), we solve the optimization
problem where we vary the constraints as follows:

o deadline d under a fixed budget (equal to 2.5 USD)

and probabilistic guarantees of satisfying deadline and
budget (equal to 0.9);
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FIGURE 10. Pareto fronts obtained varying deadline (a) and budget
(b) constraints and their probabilities (c) for the Epigenomics workflow.

« budget b under a fixed deadline (equal to 300 minutes)
and probabilistic guarantees of satisfying deadline and
budget (equal to 0.9);

« probabilistic guarantees pr and pc of satisfying fixed
deadline (equal to 300 minutes) and budget (equal to
2.5 USD) constraints.

In particular, we vary deadline and budget in the range
of the feasible solutions, namely, we set d equal to 300,
600 and 900 minutes, and b equal to 1.5, 2, 2.5 and
3 USD. With respect to the probabilities, to represent increas-
ing levels of guarantees, we consider pr and pc ranging
from 0.60 to 0.99.

Figure 10 summarizes the solutions of the constrained
optimization problem for the Epigenomics workflow. As
can be seen, the choice of deadline and budget heavily
affects the Pareto fronts. In fact, for a given budget, relax-
ing the constraint on time leads to longer bottom-right
extreme of the Pareto front, that is, slow and cheap solutions
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(Fig. 10(a)). In particular, the largest expected values for
execution time are 238.92, 470.08, and 692.33 min for d
equal to 300, 600 and 900 min, respectively. The differences
between these expected values and the corresponding dead-
lines are due to the probabilistic constraints expressed in
terms of the 90th percentile of the execution time probability
distribution.

Similarly, for a given deadline, a budget increase leads
to a longer top-left extreme of the Pareto front, that is, fast
and expensive solutions (Fig. 10(b)). For example, for a
2 USD budget, the solution of minimum time is (158.72 min,
1.70 USD), while for 3 USD the solution is (40.72 min,
2.67 USD). As expected, larger budgets allow faster exe-
cutions, whereas the feasible solutions obtained under a
small budget combined with a short deadline are limited to
small ranges. In particular, for b» = 1.5 USD and d =
300 min, the expected execution times range from 226.72 to
238.53 min, and expected monetary costs from 1.35 to
1.36 USD.

The Pareto fronts referring to the probabilistic guarantees
to satisfy deadline and budget are presented in Fig. 10(c),
where we investigate the effects of strengthening these guar-
antees. For the sake of simplicity, we assign the same value to
both probabilities, i.e., pr = pc. The figure suggests that the
Pareto fronts are strongly affected by these probabilities. In
fact, a stronger guarantee, that is, larger pr and pc, reduces
the span of the solutions of Pareto fronts. More precisely,
these solutions must ensure that larger percentiles of the
probability distributions of execution time and monetary cost
are smaller than deadline and budget. For example, for pr
and pc equal to 0.6 (blue line) the solution of minimum cost
is (275.15 min, 1.34 USD), whereas (50.13 min, 2.37 USD)
is the solution of minimum execution time. When these
probabilities increase to 0.99 (purple line), the correspond-
ing solutions are (214.37 min, 1.43 USD) and (135.99 min,
2.14 USD), respectively.
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FIGURE 11. Pareto fronts as a function of the variability factor VF for the
Epigenomics workflow.

Finally, we study the effects of the variability factor under
fixed constraints. As an example, Figure 11 shows the Pareto
fronts for a problem with the variability factor VF ranging
from 0.1 to 0.9 and with a deadline of 300 min, a budget
of 2.5 USD and probabilistic guarantees equal to 0.9. Sim-
ilarly to what observed for Fig. 9, cloud uncertainty strongly
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affects the solutions and in particular a larger variability
leads to scheduling plans characterized by larger expected
execution times and costs. These effects combined with the
constraints result in shorter Pareto fronts for larger VF. In
particular, for VF=0.9 the Pareto front consists of one single
point, that is, (251.93 min, 2.20 USD). Finally, we outline that
no feasible solutions of the constrained optimization problem
might be obtained for larger VF.

In summary, the analysis of the combined effects of uncer-
tainty and probabilistic deadline and budget constraints has
shown that the solutions of the optimization problem are
strongly affected by these factors. In fact, to cope with
the constraints and uncertainty, scheduling plans tend to be
characterized by larger expected execution times and costs.
In addition, under tight deadlines and budgets, as the variabil-
ity increases, the solutions of the optimization problem might
not exist. These outcomes suggest once more the importance
of explicitly modeling uncertainty.

VII. CONCLUSION

In this paper we addressed the offline identification of optimal
resource provisioning and scheduling plans in uncertain cloud
environments with the intention of allowing cloud users to
select the plan that satisfies their requirements and prefer-
ences. In particular, we proposed a probabilistic formula-
tion of a multi-objective optimization problem with deadline
and budget constraints. For the solution of this problem,
we defined an evaluation approach based on the combined
application of the Monte Carlo method and a Genetic Algo-
rithm properly customized to take account of the nature of
the problem. The extensive testing on scientific workflows
representative of different application domains has clearly
shown the effects of uncertainty on the Pareto fronts. In
particular, the solutions of the optimization problem are
strongly affected by the combined effects of uncertainty and
probabilistic constraints. In fact, to cope with these factors,
scheduling plans tend to be characterized by larger expected
execution times and costs. In addition, under tight dead-
lines and small budgets the solutions of the optimization
problem might not exist as the uncertainty increases. In
summary, these outcomes suggest that to properly provi-
sion cloud resources it is compelling to precisely quantify
uncertainty and explicitly model its effects in the decision
process.

Future research directions will focus on evaluating the
impact of edge technologies in the framework of uncertain
cloud environments and on the exploration of these schedul-
ing plans in real world settings. In addition, we will study
more complex optimization problems combining user and
provider perspectives.
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