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Abstract: Background and aims: gut microbiota (GM) is a complex ecosystem containing bacteria,
viruses, fungi, and yeasts. It has several functions in the human body ranging from immunomod-
ulation to metabolic. GM derangement is called dysbiosis and is involved in several host diseases.
Pre-, probiotics, and symbiotics (PRE-PRO-SYMB) have been extensively developed and studied for
GM re-modulation. Herein, we review the literature data regarding the new concept of postbiotics,
starting from PRE-PRO-SYMB. Methods: we conducted a search on the main medical databases
for original articles, reviews, meta-analyses, randomized clinical trials, and case series using the
following keywords and acronyms and their associations: gut microbiota, prebiotics, probiotics,
symbiotic, and postbiotics. Results: postbiotics account for PRO components and metabolic products
able to beneficially affect host health and GM. The deeper the knowledge about them, the greater
their possible uses: the prevention and treatment of atopic, respiratory tract, and inflammatory bowel
diseases. Conclusions: better knowledge about postbiotics can be useful for the prevention and
treatment of several human body diseases, alone or as an add-on to PRE-PRO-SYMB.

Keywords: gut microbiota; prebiotics; probiotics; symbiotic; postbiotics

1. Introduction

The human microbiota, now considered as a “functional organism“, consists of a
complex community of microorganisms (bacteria, yeasts, fungi, archea, protozoa, and
viruses), living on our skin and mucosal tissues, hence forming an efficient ecosystem
together with the body [1,2].

In humans, gut microbiota is crucial in metabolism, immune tolerance, and nutrients
absorption, within and outside the gut [3]. Thus, an imbalance of gut microbiota, generated
by diet, use of antibiotics, or infections, can be detrimental for host equilibrium [4].

The latter, namely “dysbiosis”, can express as intestinal and extra-intestinal diseases [5].
The first group includes liver steatosis (NAFLD) until the liver cirrhosis stage [5], inflam-
matory bowel diseases (IBD), irritable bowel syndrome (IBS), celiac disease, and gastro-
intestinal cancers [4]. The second group includes obesity, atopic and autoimmune diseases,
autism, and systemic sclerosis [4].

The main measures to re-establish unbalanced gut microbiota are the use of diet,
antibiotics, pre-, and probiotics [6]. However, emerging evidence shows how the use of
living organisms, namely probiotics, is not devoid of virulence emergence and antibiotic-
resistance development over time [6]. Thus, there is a strong need for use of safer and
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equally effective gut microbiota modulatory agents. One very promising chance is repre-
sented by bacterial products and the components of probiotics, namely “postbiotics” [7].

This review summarizes the literature data on nomenclature, the description of emerg-
ing postbiotics. We further describe their potential mechanisms of action and use in disease
prevention/treatment. Finally, due to the tough times we are living in because of the
SARS-CoV-2 pandemic, we briefly describe the potential use of postbiotics in COVID-19
patients.

2. Materials and Methods

We conducted a PubMed and Medline search for original articles, reviews, meta-
analyses, and case series using the following keywords, their acronyms, and their associa-
tions: gut microbiota, prebiotics, probiotics, symbiotic, and postbiotics. When appropriate,
preliminary evidences from abstracts belonging to the main national and international
gastroenterological meetings (e.g., United European Gastroenterology Week, Digestive
Disease Week) were also included. The papers found from the above- mentioned sources
were reviewed by two of the authors (L.A. and E.S.), according to PRISMA guidelines [8].

The last MEDLINE search was dated 30 October 2021.

3. Results
3.1. Gut Microbiota Composition and Main Functions

The human GI tract hosts over 100 trillion microbes, the vast majority being bacteria [3].
The latter are divided in phyla, classes, orders, families, genera, and species [9].

Main gut microbial phyla are: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
Fusobacteria, and Verrucomicrobia. However, the two phyla Firmicutes and Bacteroidetes
account for almost 90% of the entire gut microbiota. Firmicutes includes more than 200
different genera (e.g., Lactobacillus, Bacillus, Clostridium, Enterococcus, Ruminicoccus,
and Clostridium) and Bacteroidetes has two of the most abundant genera (Bacteroides and
Prevotella) [1,9].

The entire genome of the gut microbiota is called “microbiome” and is about 150-fold
bigger than that of a human cell [10].

One-tenth of the total colonizing bacterial species per individual constitutes a dynamic
“microbial fingerprint”: ageing, dietary changes, and use of antibiotics, prebiotics, and
probiotics can make it fluctuate [11]. Indeed, there is an intestinal microbial ‘core’ that
includes 66 species conserved in over 50% of the general population [12].

The use of culture-based methods has limited the study of gut microbiome composition.
However, the advent of new metagenomic technologies has paved the way to the definition
of inter/intra-individual variability of the gut microbiome [11].

Upon delivery, microbial life starts with a limited and unstable repertoire of microor-
ganisms that evolves and adapts to environmental changes during our lifespan [13–15].

Gut microbiota is crucial for nutrient absorption and fermentation, regulation of
intestinal permeability (IP), host metabolism (e.g., carbohydrates absorption and processing,
proteins putrefaction, bile acids formation, insulin sensitivity), and modulation of intestinal
and systemic immunity. This is crucial in childhood and adulthood, for the maintenance of
antigen tolerance and the containment of pathogens expansion [16].

Thus, there is ever-growing interest in the remedies and approach to re-establish
gut microbiota composition through diet and antibiotics as well as with pre- and probi-
otics [3,17].

3.2. Pre-, Probiotics and Symbiotics

Prebiotics are food components beneficially affecting gut microbiota. The main exam-
ples of their group are human milk oligosaccharides, lactulose, fructo-oligosaccharides, and
inulin [18]. Their impact on gut microbiota is relevant. They have been extensively used in
functional food manufacturing and as an add-on treatment for dysbiosis [18]. However,
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adjusted dose-finding and treatment-duration studies are needed to evaluate and assess
the optimal scheme of administration [18].

Prebiotics are very often administered together with probiotics, namely living mi-
croorganisms (e.g., bacteria, yeasts), beneficially affecting host health [17]. Several studies
on probiotics have been analyzing their real impact on human health and diseases [4].
More robust data vs. prebiotics are available on their efficacy and dose- and strain-effect
relationship [19]. Pre- and probiotics, namely symbiotics, can be used together with an
empowering mutual efficacy and multi-effect profile [19].

The spectrum of human diseases where pre- and probiotics are usable alone or in
combination encompasses GI (e.g., NAFLD, cancer, celiac disease, IBD, IBS, diarrhea, func-
tional dyspepsia, constipation) and extra-intestinal diseases (obesity, diabetes, autoimmune
disease, atopic conditions, neurological disorders, psychiatric disorders) [19].

However, use of probiotics is not devoid of potential harmful issues, such as antibi-
otic resistance development as well as the growth and selection of virulent strains for
humans [19].

3.3. A New Concept among the “Bugs”: Postbiotics

Postbiotics are defined as beneficial substances, resulting from microbiota metabolism
and having a beneficial effect on the microbiota itself as well as the host [7,20]. Therefore,
after looking extensively into the real origin of “the egg or the chicken”, and landing on the
probiotics concept as the long-lasting “chicken”, we arrived at the discovery and usage of
“the egg”.

There is still debate about whether this exclusive definition is accurate enough. For
example, Tsilingiri et al. consider postbiotics “any substance released by or produced
through the metabolic activity of the microorganism, which exerts a beneficial (direct or
indirect) effect on the host” [21]. Salminen et al. claimed the concept of postbiotics to be
inclusive of inactivated microorganisms beneficially affecting host health [20]. However,
this definition has not been accepted by the rest of the scientific community [22]. Thus, we
assume that postbiotics include all substances of bacterial/fungal origin with a beneficial
effect on the host. In addition, they fail to meet the criteria for probiotics and prebiotics [22].

Main representatives of postbiotics are: cell-free supernatants, exopolysaccharides,
enzymes, cell wall fragments, short chain fatty acids (SCFA), bacterial lysates, and gut
microbiota metabolites.

3.3.1. Supernatants

Cell-free supernatants are composed by active metabolites produced by bacteria and
yeast into the surrounding liquid. They can be manifactured directly from cell cultures.
In detail, after an incubation period, the microbes are centrifuged and then removed.
Therefore, the supernatant mixture is filtered for sterility issues.

Different bacterial strains have different supernatants with different functions. For
example, Lactobacilli acidophilus and L. casei supernatants have anti-inflammatory and
antioxidant effects, respectively [9]. Moreover, supernatants derived from L. casei and L.
rhamnosus GG cultures have been shown to prevent the invasion of colon cancer cells [10]
and to reduce the oxidative stress in vivo [23].

Supernatants derived the genera Lactobacillus and Bifidobacterium were also recently
shown to have antibacterial activity. For example, they were able to prevent the invasion
of enteroinvasive E. coli strains into enterocytes in vitro [24]. Indeed, this antibacterial
capability may result from the inhibition of adhesion of the pathogens, strengthening of
the cell barrier, and improved expression of the protective genes [24] (Table 1). L. plantarum
supernatants have a trophic effect on the structure of the intestinal barrier [25]. In fact,
administration of these supernatants to lambs early in life leads to an improved absorption
surface of the intestine and a decrease in intestinal pathogens [25].

Finally, supernatants from two well-known yeasts, namely Saccharomyces cerevisiae and
Saccharomyces boulardii, were shown to be able to reverse the impaired intestinal peristalsis
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stress-induced [26]. Interestingly, S. boulardii supernatants have anti-inflammatory and
antioxidant activity, with improved wound healing and also promising implications for
rebuilding the intestinal barrier [7,27].

3.3.2. Exopolysaccharides

Microorganisms produce bio-polymers with several chemical properties. They can be
released outside the bacterial cell wall, forming the variegate complex of exopolysaccharides
(EPSs). EPSs are not a new postbiotic as they are already used in the food industry
as stabilizing, emulsifying, and water-binding agents [28]. EPSs may also have newer
immunomodulatory properties through the interaction with dendritic cells (DCs) and
macrophages, resulting in enhanced proliferation of T and NK lymphocytes [29]. For
example, EPS derived from L. casei can be used as adjuvant for improvement of the efficacy
of the foot-and-mouth disease vaccine [30].

The antioxidant potential of an EPS obtained from L. helveticus, namely uronic acid,
contained also in green tea, is linked to its iron-binding properties [31]. Among the
variegate properties of EPSs there is the inhibition of cholesterol absorption [32]. Indeed,
consumption of kefiran, EPS produced by L. kefiranofaciens, has shown efficacy delaying the
development of atherosclerosis in an animal model [33].

Another class of EPS, β-glucans may enhance the cell-mediated immune response
against bacteria, viruses, parasites, and cancer cells [34,35]. Interestingly, β-glucans may
also potentiate probiotics effects through a facilitated adhesion of lactobacilli to the intestinal
wall [36]. Similarly, they can increase the bioavailability and absorption of carotenoids in
the GI-tract [37]. Finally, topic application of β-glucans can help improve healing from
atopic dermatitis and prevent it from relapsing [38] (Table 1).

3.3.3. Antioxidant Enzymes and “Bile Salts Hydrolase Case“

Born as defensive mechanism of cells, antioxidant enzymes (namely, glutathione
peroxidase (GPx), peroxide dismutase (SOD), catalase, and NADH-oxidase) are crucial for
microorganism survival. Two strains of L. fermentum were found to have a high content of
GPx [39], with strong antioxidant action in vitro [40]. L. plantarum was also demonstrated
to have increased GPx concentration [41]. Interestingly, genetically modified Lactobacilli
strains synthetizing SOD/catalase showed capability to relieve symptoms of a mouse
model of Crohn’s disease vs. “wild-type” strains [42] (Table 1).

Conjugated bile salts selectively regulate GM composition, in general, and Lactobacilli-
one, in particular, within the gut [43]. For example, some Lactobacilli may confer protection
against the well-known Giardia lamblia parasite, from in vitro and in vivo evidences. In
detail, L. johnsonii and, more recently, L. gasseri CNCM I-4884 strain bile salts hydrolases are
able to generate deconjugated bile salts toxic to the parasite [44]. Thus, these hydrolases
can have a prophylactic use against this parasite.

3.3.4. Cell Wall Components

Bacterial cell wall parts are able to trigger a specific immune response. One of the
well-known components is bacterial lipoteichoic acid (LTA) of gram-positive bacteria [45].
Its immune-modulatory effect is complex: some reports indicate LTA reducing IL-12
production and inducing the production of immunomodulatory cytokines [46]; some others
show LTA not alleviating inflammation, with damage to intestinal tissues [47] (Table 1).

However, LTA use in dermatology is clearer: topical LTA application enhances and
leads to an anti-infectious peptides release (e.g., β-defensin and cathelicidin) [48]. In
addition, Lactobacilli and Bifidobacteria produce significant amounts of LTA that stimulate
skin mast cell response vs. bacterial and viral infections [49]. More interestingly, LTA
has also anti-cancer activity [50,51]. However, further safety evaluation for LTA use is
warranted.
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Table 1. Main representatives of postbiotics and their functions.

Type of Postbiotic
Experimental Model and

Number of Subjects
in Study

Mechanism of Action Effects Overall References

Exopolysaccharides

Mice, n = 88 [29]

Interaction with dendritic
cells and macrophages;

Immunomodulatory,
vaccine adjuvants;

Delay of atherosclerosis
development

[28–38]

In vitro [31]

rabbits, n = 7/8 (control
and treatment group,

respectively) [33]

in vitro [34]
inhibition of cholesterol

absorption;mice and in vitro [35];

in vitro [36]

rats, n = 6/8 and humans,
n = 16 enhancement of immune

response vs. pathogensRCT [37];

105 humans [38]

Enzymes

In vitro [39];
Antioxidant action

Potential relief of Crohn
symptoms

[39–44]

In vitro [40];

Post-weaning male lambs,
n = 12 and in vitro [41]; gut microbiota

modulation;
mice [42];

in vitro [43]; protection against
pathogens (e.g., Giardia

lamblia)in vitro [44]

SCFA

In vitro and 6 + 8 colitis
model mice [52];

Energy source;
immunosuppressive

properties;
energy harvesting and

reduction of fat deposition;
Inhibition of cholesterol

synthesis

Ulcerative colitis
regression;

Atherosclerosis blocking;
Improved insulin

sensitivity;
“statin-like effect“

[52–60]

ulcerative colitis patients,
n = 11 and ex vivo [53];

147 + 195 (male/female)
mice [54];

mice, n = 12–12−12 and
11–12, for experiment 1
and 2, respectively [55];

mice, n = 12 + 12 and ex
vivo [56];

mice [57];

in vitro [59];

Bacterial lysates

232 children, multicenter
RCT [61];

mice and in vitro [62];
152 children, RCT [66]

Stimulation of dendritic
cells and activation of T

and B lymphocytes

Viral/bacterial disease
prevention in children and

adults;
Reduction of asthma and

wheezing episodes

[61–67]

Supernatants

In vitro and in vivo [23];
in vitro [24];

Twelve newly weaned
lambs, randomized [25];

Swiss Webster mice and ex
vivo [26];

in vitro [27]

Anti-inflammatory and
antioxidant actions;

prevention of invasion of
colon cancer cells;

antibacterial activity;
trophic action on the

intestinal barrier;
reverse of the impaired

intestinal peristalsis
induced by stress

Prevention of
enteroinvasive E. coli
strains invasion into
enterocytes in vitro;

improvement of
absorptive surface of the
intestine and reduction of

intestinal pathogens in
lambs;

wound healing

[23–27]
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Table 1. Cont.

Type of Postbiotic
Experimental Model and

Number of Subjects
in Study

Mechanism of Action Effects Overall References

Metabolites (vitamins,
phenols, aromatic

aminoacids, bioactive
peptides)

children [71]

Increased production of
folate, B12, K vitamin,

biopeptides.

Lower risk of stroke

[68–84]

mice, n = 6 + 6 + 6 + 6,
randomized [73] Reduction of anemia

mice [75];

Acceleration/reversal of
carcinogenesis in at risk
subjects/colon cancer

patients

mice [78]; Coagulation modulation

healthy, sedentary elderly
humans, RCT [79];

Progression of chronic
kidney disease

middle-aged Japanese
women, n = 74 [80];

Weight loss and improved
insulin resistance

non-equol-producing
menopausal Japanese

women, n = 93 [81]

Significant carotid arterial
stiffness reduction;

improvement of
cholesterol profile

Whole body bone mineral
density increase in

postmenopausal women

immune-modulation and
anti-allergic properties

3.3.5. SCFAs

SCFAs are well-known products of fermentation of plant polysaccharides by gut
microbiota. They include acetic, propionic, and butyric acids as well as the corresponding
fatty acid salts.

Butyrate is the most important energy source and trophic agent for enterocytes. How-
ever, butyrate has also shown immunosuppressive properties [52] as is able to induce food
tolerance. This effect is due to its capability to increase the expression of some immunosup-
pressive cytokines such as type 1 interferons [IFNs], IL-10, and TGF-β [52]. In fact, rectal
administration of butyrate results in significant regression of inflammation of the colon of
patients with ulcerative colitis vs. a placebo [53].

Interestingly, intestinal colonization by Roseburia intestinalis, one of the major pro-
ducers of butyrate in the intestine, is able to block atherogenesis in a mouse model [54].

SCFAs can contribute to energy harvesting through stimulation of G-protein coupled
receptors (GPCRs) and secretion of the glucagon-like peptide 1 (GLP-1). Indeed, increased
serum and fecal levels of acetate is associated with improved insulin sensitivity and related
reduction of fat deposition in vivo [55]. More interestingly, acetate can also direct food
intake through appetite down-regulation in the central nervous system [56].

A diet rich in acetate significantly increased resistance to enterohaemorrhagic E. coli
O157:H7 infection in a mouse model [57].

Propionate is one of the main substrates for gluconeogenesis within the liver. In addi-
tion, it has a “statin-like” effect due to the inhibition of cholesterol synthesis [58]. Propionate
also shows an in vivo anti-inflammatory activity comparable to that of butyrate [59].

Indeed, the ratio of SCFAs used is important for cholesterol homeostasis maintenance.
A therapeutic or preventive perspective of SCFAs use in neurology derives from the

evidence of symptom relief using an animal model of multiple sclerosis [60].

3.3.6. Bacterial Lysates

Bacterial lysates (BLs) are obtained by the chemical/mechanical degradation of gram-
positive and -negative bacteria. Their safe clinical use is a consolidated practice in pedi-
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atrics [61] as well as in internal and infectious disease medicine. The rationale for their
use in viral/bacterial infection prevention relates to the concept of “gut-lung axis” that
describes the interplay between the enteric system (namely, GALT) and the respiratory
immune system [62]. Several mechanistic studies show orally administered lyophilized BLs
reaching Peyer’s patches in the small bowel, with stimulation of dendritic cells (DCs) and
activation of T and B lymphocytes [61] that migrate within the mucous membrane of the
respiratory tract. This results in innate immune system stimulation and IgA secretion [63].

Thus, the extreme “hygiene” of the western and “westernized” world can be bypassed
by using BLs. The case of BLs is of special interest for clinicians, as their use allows for the
mimicry of the presence of bacteria in order to stimulate the immune system, without the
harmful effects of their actual presence. Therefore, we can assume that they work as “mild
and broad vaccine“.

Robust data support these observations: a 2018 meta-analysis including more than
4800 children highlighted a significantly lower incidence of respiratory tract infections in
those receiving BLs vs. a control group [64]; a 2020 systematic review showed BLs as an
add-on treatment to be effective in the reduction of wheezing episodes and the frequency
of asthma exacerbations in children [65–67].

3.3.7. Metabolites

This section describes a variegate of molecules produced by bacteria. They include
vitamins, phenolic-derived metabolites, and aromatic amino acids. They are highly bioavail-
able, possessing antioxidative and signaling effects. Thus, they are crucial in the bug-host
“cross-talk” (Table 1).

Intestinal-bacterial-produced folate may have both beneficial and detrimental effects.
On one hand, folate supplementation leads to a lower risk of stroke vs. controls [68]. On
the other hand, folate supplementation or hyper-production can accelerate carcinogenesis
in subjects at risk of, and patients with, colorectal cancer. Thus, from a clinical point of view
this postbiotic use can show a “U-shaped relationship” with health and disease [69].

Vitamin B12 and the other B complex vitamins de novo synthetized by intestinal
bacteria are a potential source for the host [70]. In fact, an L. acidophilus add-on to a yogurt
matrix has been associated with increased synthesis of vitamin B12 and, more importantly,
reduced prevalence of anemia [71].

In humans, vitamin K maintains normal blood coagulation and there are differ-
ent iso-forms with different anti-coagulant activity. Some forms of vitamin K2, namely
menaquinones, are present in ingested food such as cheese, natto (a Japanese food), and
curd. Interestingly, they are also produced by some bacteria genera of GM, as most intestinal
anaerobic and aerobic gram-positive bacteria use menaquinones in their electron transport
pathways. Some menaquinone-producing bacteria are: Eubacterium lentum, which pro-
duces MK-6; Lactococcus lactis ssp. lactis and spp. cremoris that mainly produce MK-8 and
MK-9; and Bacteroides fragilis, which produces MK-10, MK-11, and MK-12 [72]. Finally,
K2-vitamin form, produced also by L. casei, has shown some promising anti-cancerogenic
properties [73].

GM is involved in the synthesis and metabolism of aromatic amino acids (AAA) that
act as “biochemical bullets” on the kidneys, brain, and cardiovascular system [74]. In fact,
genetic manipulation of GM-synthetizing indoxyl sulfate contributes to the progression of
chronic kidney disease [75].

Dietary polyphenols are actively metabolized by gut microbiota. Thus, evidence
from different metabolic phenotypes supported the hypothesis of the existence of different
“metabotype” deriving from dietary components and GM interactions [76]. This is one of
the mainstays of the “personalized nutrition” build-up [77]. In detail, postbiotics derived
from dietary polyphenols include urolithin A (UA), equol, and 8-prenylnaringenin (8-
PN). Mice administered with UA for 10 weeks lost 23.5% more weight vs. controls with
consensual improvement of insulin resistance [78,79].
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Intriguingly, middle-aged Japanese women supplemented with equol for one year
showed a significant carotid arterial stiffness reduction, an improvement of the cholesterol
profile [80]. Even more interestingly, the same scheme of administration led to a whole
body bone mineral density increase in postmenopausal women [81].

Bioactive peptides are oligopeptides consisting of 2–20 amino acids. They derive
from food proteins such as milk, egg, fish, rice, soybean, pea, chlorella, spirulina, oyster,
and mussel. They have mainly immunomodulatory and anticancer activities [82]. These
peptides can be produced using various methods: in vitro enzymatic hydrolysis, autolytic
process using endogenous enzymes, and, last but not least, microbial fermentation. The
latter is operated mainly by Lactobacilli with their proteases. Among the most interesting
and clinically relevant biopeptides, we can find milk-derived peptides. They have complex
immune-modulating activities via cytokines regulation, resulting in attenuation of allergic
reactions both in animal and preliminary in vitro and in vivo studies [83,84].

3.4. Actual and Future Applications of Postbiotics

Although postbiotics can be considered pleiotropic agents on humans’ health, there
are different effects that deserve a deeper description.

3.4.1. Immunomodulation and Anti-Cancer Effects

Immunomodulatory effects of postbiotics have been reported in the last 30 years. In de-
tail, SCFAs, and, more in detail, propionate, are able to up-regulate Tregs [85]. Supernatant,
cell wall fragments from Bacillus coagulans culture also promote T helper (Th)2-dependent
immune response [86]. In addition, supernatant from Bifidobacterium breve culture is able
to limit the Th1-mediated and enhance Th2-mediated responses [87,88]. These effects are
often observed in mice models of atopic diseases [88].

The SCFA propionate is able to selectively induce apoptosis in gastric cancer cells [89].
Interestingly, SCFAs can also modulate onco- and suppressor genes expression through
epigenetic modifications: L. rhamnosus GG supernatant increases ZO-1 expression (respon-
sible for intercellular permeability) and decreases MMP-9 expression that facilitates cancer
cell penetration [7] (Table 1).

3.4.2. Anti-Infectious Effects

Some postbiotics can competitively bind to receptors for pathogenic bacteria, are able
to change the expression of host genes, and modulate host environmental components [90].
Starting from this paradigm, it is interesting to note that the newer combination of postbi-
otics and probiotics can efficaciously prevent rotavirus-associated diarrhea [91]. However,
this finding about a new kind of “symbiotic” is only preclinical. In a group of children aged
12–48 months, the daily intake of L. paracasei postbiotic leads to reduction in the incidence
of diarrhea [92], acute gastroenteritis, pharyngitis, laryngitis, and tracheitis [93].

3.4.3. Metabolism Modulation and Anti-Atherosclerotic Effects

Postbiotics can regulate and reshuffle lipid metabolism. This can result in a significant
reduction of cardiovascular risk and related accidents. Propionate is well-known, having
a “statin-like” effect (similarly to nutraceuticals, e.g., curcumin, K-monacolin) [94]. It is
interesting to note that the case of kefiran conjugates antiatherogenic (e.g., prevention of
cholesterol accumulation in macrophages and reduction of lipid concentration) and anti-
inflammatory actions [95]. Lactobacilli BLs reduce the levels of triglycerides and LDL choles-
terol, while increasing the level of beneficial HDL cholesterol in an obese mouse model [96].
These effects are explained by activation of the peroxisome proliferator-activated receptor
(PPAR), the same therapeutic target of fibrates [96].

3.4.4. Detoxification and Wound Healing Effects

Autophagy is a self-degradative process, cleaning out cells and their components
from tissues. It is an efficacious response to various stress stimuli such as those from diet.
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Bacterial peptidoglycan promotes autophagy through the NOD1 receptor [97]. More in
detail, L. fermentum postbiotics trigger autophagy in hepatic cells HepG2, resulting in a
protective effect towards induced liver toxicity [98]. Furthermore, urolithin A inhibits
mitophagy, namely autophagy of mitochondria, and can potentially prevent or delay
muscle ageing [99].

Non-experts often ignore that oxytocin, an important gynaecologic neuropeptide, can
also stimulate and accelerate wound healing. BLs obtained by sonication of L. reuteri signifi-
cantly increase the number of oxytocin-producing cells in the hypothalamic periventricular
nuclei, raising hormone blood concentration in animal models [100]. The subsequent
probiotic-generating postbiotic administration to both animal and human models con-
firmed these results, with a good safety profile [100].

3.4.5. Functional Foods Preparation

Functional foods (FF) resemble dietary components with a clear nutritional value and
other beneficial health effects. Postbiotics and probiotics are already part of the preparation
of functional foods.

One of the main advantages of FF enrichment by postbiotics is the host’s immune-
stimulation. For example, the cell-free fraction of fermented milk is able to prevent
Salmonella infection in mice [101]. Furthermore, postbiotics from B. breve and Strep-
tococcus thermophilus are currently used in the production of modified milk, in order
to obtain a long-lasting reduction in the incidence of food intolerance and/or respiratory
allergy in the first months of the life of children [102]. Importantly, only mild diarrhea was
recorded in these trials [103].

3.4.6. Future Perspectives and the COVID-19 Issue

As postbiotics are able to beneficially affect the maturation of the immune system,
improve the regulation of intestinal permeability, and, last but not least, modulate gut
microbiota composition, their future uses are expanding. They could be used to prevent
and, further, treat several diseases devoid of an efficacious cure, such as Alzheimer’s
disease and multiple sclerosis. Preliminary reports on the first clinical trials on the use of
postbiotics for the abovementioned diseases seem promising [7].

Gut microbiota modulation with probiotics seem to affect the inflammatory storm
of COVID-19 and to directly counteract replication of SARS-CoV-2 [104]. Thus, GM re-
modulation via postbiotics can be crucial in preventing SARS-CoV-2 infection in pre-
disposed humans [105]. In addition, GM remodulation can change the natural story of
COVID-19 towards a milder form [105]. Similarly to probiotics, postbiotics could directly
inhibit SASR-COV-2 replication.

In an in vitro and in silico study by Rather et al., an extract from L. plantarum Probio-88
(P88-CFS) was able to significantly inhibit the replication of SARS-CoV-2. In addition,
P88-CFS-treated cells showed a significant reduction of inflammatory cytokines. Based
on the in silico molecular docking data, it was unraveled that the antiviral activity of
this strain derives from plantaricin E (PlnE) and F (PlnF), which is able to bind on the
SARS-CoV-2 helicase. Thus, these postbiotics can act as a “blocker” of viral ss-RNA during
its replication. This strain and/or its postbiotic substances can be used as an integrative
approach, along with a vaccine, to contain the spread of SARS-CoV-2 and, most importantly,
its variants [106].

A special mention is deserved for the emergence of “biological doping”. GM modu-
lation can change humans’ metabolism and the availability of energy sources for a better
sport performance [7]. For example, an increased abundance of Veillonella in our gut, able
to metabolize lactic acid to propionate, significantly increases animals’ physical perfor-
mance [106]. Similarly, enteral administration of propionic acid leads to similar results [106].
Another issue is represented by the recognition of this form of doping, which is emerging
as an efficient road to skipping health controls for athletes.
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4. Conclusions

After almost 40 years of “puzzle-making” about our gut microbiota composition,
products of bacteria and their metabolites have found a nomenclature as “postbiotics”.
Knowledge on their usability for the improvement of human health has rapidly grown
in the last ten years. They can prevent/treat atopic, immune-mediated respiratory, and
gastrointestinal diseases. They can change human metabolism until “biological doping”
acquires harmful usability.

From an economic point of view, postbiotics have several pros: long life, easy storage,
and a reduced need to maintain at a low temperature vs. pro- and symbiotics.

From a safety point of view, postbiotics lack the issue of antibiotic-resistance gene
development, such as acquiring virulence factors for probiotics [101]. The latter have the
emerging issue of living microorganism exposure to an immature immune system and a
relatively “leaky” intestinal barrier, especially in children [7].

Finally, the potential usage of postbiotics in the frame of GM re-modulation paves the
way for them to be set up as vaccines and real “silver bullets” for COVID-19 and other
infectious diseases.

Strong industry affords are required to fulfill an accurate case-control development of
the therapeutic field of postbiotics for action in human health.
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