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Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by pro-
gressive degeneration of the corticospinal motor neurons, which ultimately leads to death. The repeat
expansion in chromosome 9 open reading frame 72 (C9ORF72) represents the most common genetic
cause of ALS and it is also involved in the pathogenesis of other neurodegenerative disorders. To
offer insights into C9ORF72-mediated pathogenesis, we quantitatively analyzed the proteome of
patient-derived primary skin fibroblasts from ALS patients carrying the C9ORF72 mutation compared
with ALS patients who tested negative for it. Differentially expressed proteins were identified, used
to generate a protein-protein interaction network and subjected to a functional enrichment analysis
to unveil altered molecular pathways. ALS patients were also compared with patients affected by
frontotemporal dementia carrying the C9ORF72 repeat expansion. As a result, we demonstrated
that the molecular pathways mainly altered in fibroblasts (e.g., protein homeostasis) mirror the
alterations observed in C9ORF72-mutated neurons. Moreover, we highlighted novel molecular path-
ways (nuclear and mitochondrial transports, vesicle trafficking, mitochondrial bioenergetics, glucose
metabolism, ER-phagosome crosstalk and Slit/Robo signaling pathway) which might be further
investigated as C9ORF72-specific pathogenetic mechanisms. Data are available via ProteomeXchange
with the identifier PXD023866.

Keywords: C9ORF72; amyotrophic lateral sclerosis; proteomics; skin fibroblasts; PPI network;
functional enrichment analysis
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1. Introduction

The GGGGCC hexanucleotide repeat expansion of chromosome 9 open reading frame
72 (C9ORF72) gene is the most common genetic mutation in amyotrophic lateral sclerosis
(ALS), where it accounts for approximately 40% and 6% of the familial and sporadic
cases, respectively [1]. ALS is a neurodegenerative disorder characterized by progressive
degeneration of the corticospinal motor neurons leading to paralysis and ultimately death
from respiratory failure [2]. Most patients die within 3–10 years after disease onset and
available treatments are only palliative, thus there is an urgent need to investigate the
molecular processes underlying early pathogenesis by using omics approaches; this will
suggest novel biomarkers and therapeutic interventions.

The GGGGCC hexanucleotide repeat is located between two five-prime non-coding
exons of the C9ORF72 gene resulting in 5′-UTR of the transcript [3]. Affected individuals
usually carry one normal and one expanded allele. The number of repeats in the general
population ranges between 2 and 23, whereas pathological condition results with a mini-
mum of 30 repeats and the number can reach thousands [4]. As in many other non-coding
repeat expansion diseases, the main underlying pathogenetic mechanism involves an RNA
gain-of-function: the aberrant transcripts produced by the expanded allele are retained in
the nucleus and accumulate in RNA foci. The accumulation of expanded transcripts as
nuclear RNA foci has been demonstrated in the frontal cortex and spinal cord of patients
carrying the C9ORF72 repeat expansion [3]. RNA foci can sequester and/or alter the
function of several RNA-binding proteins, which results in changes in expression and
RNA processing of other genes [5]. In addition to this, two other pathogenetic mechanisms
have been proposed: (i) toxicity due to the aggregation of dipeptide repeats produced
by non-ATG-mediated RNA translation; and (ii) loss-of-function of the C9ORF72 protein
by means of haploinsufficiency [6]. In this context, some recent studies have shed light
on the function of C9ORF72 protein, which acts as a guanine nucleotide exchange factor
(GEF) for both Rab- and Rho-GTPases, thus suggesting a function in endocytosis, cytoskele-
ton modulation and autophagy [7–9]. C9ORF72 also regulates actin dynamics [10] and
stress granules formation [11]. Several metabolic, proteostasis and neuronal processes are
known to be impaired in C9ORF72-mediated pathogenesis, including lysosomal function,
ubiquitin-proteasome system (UPS), unfolded protein response (UPR), axonal transport
and immune function [12]. In other words, both loss- and gain-of-function mechanisms
are implicated in C9ORF72-mediated pathogenesis. The gain-of-function ones support
the formation of toxic aggregates (both RNA and proteins), whereas the loss-of-function
mechanisms mainly impair vesicle trafficking and autophagy.

Disease-causing expansions in C9ORF72 were first reported in 2011 in ALS patients
and were then found in other neurodegenerative disorders. Indeed, the C9ORF72 repeat
expansion represents the most frequent genetic mutation also present in patients affected
by frontotemporal dementia (FTD), which can contribute to explaining the partial clinical
overlap between ALS and FTD [3,13,14]. Indeed, although the main clinical manifestation
of FTD is dementia due to the degeneration of frontal and temporal lobes [15], in some
FTD patients, motor impairment is also prominent [16]. On the other hand, ALS patients
can also develop cognitive impairments that are characteristic of FTD [17]. Moreover,
a possible association with Parkinson’s disease (PD), atypical parkinsonian syndromes,
Alzheimer’s disease (AD) and Huntington’s disease (HD) has recently been reported, where
the C9ORF72 repeat expansion has been proposed as either a causative or susceptibility fac-
tor [18,19]. In this frame, elucidating the molecular mechanisms hampered by the presence
of the C9ORF72 repeat expansion will be crucial for the identification of candidate targets
for therapeutic interventions and/or diagnosis and prognosis in several neurodegenerative
disorders.

Herein, the results of an in-depth mass-spectrometry-based proteomics analysis of
primary skin fibroblasts in ALS patients are reported. The study was designed to compare
ALS patients carrying the C9ORF72 repeat expansion with ALS patients who tested negative
for the expansion, with the aim to highlight a proteomics signature associated with the
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presence of this mutation and possibly unveil C9ORF72-related pathogenetic mechanisms
in ALS. Combining proteomics and systems biology analyses led us to identify a list of
differentially expressed proteins and generate protein-protein interaction (PPI) networks
to highlight molecular pathways that were significantly altered by comparing the two
groups of ALS patients. Eventually, ALS patients were compared with a small cohort of
C9ORF72-mutated FTD patients.

2. Results
2.1. Experimental Design: Exploring the Impact of C9ORF72 Repeat Expansion on the Proteome of
Primary Skin Fibroblasts of ALS Patients

Primary skin fibroblast cell lines were obtained from ALS patients carrying the
C9ORF72 repeat expansion (ALS_C9; n = 8) and ALS patients who tested negative for
the C9ORF72 repeat expansion (ALS_N; n = 8). Among ALS_N, six patients also tested
negative for the remaining three main ALS genes (SOD1, TARDBP and FUS) while two
patients carried a mutation in SOD1.

The proteome of fibroblasts was quantitatively analyzed by LC-MS/MS. A total of
1198 quantifiable proteins were identified with no missing values (Supplementary Table S1).
The raw quantification of the proteins was normalized by quantile before proceeding with
the identification of the targets of interest (Figure 1).
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Figure 1. Experimental workflow. Proteins extracted from primary skin fibroblasts of all patients were digested with
trypsin and the peptides were analyzed by LC-MS/MS. The resulting raw data were used to query the UniProt database
and proteins were identified. The list of identified and quantified proteins was used for subsequent analyses, including
differential expression analysis, PPI networks generation and functional enrichment analysis (cell and proteins images from:
https://bioicons.com/ (accessed on 9 July 2021)).

At first, we decided to explore the dataset in order to identify the main source of vari-
ation. We therefore performed a principal component analysis (PCA) over the normalized
dataset and, interestingly, we identified that PC1 was mainly separating the samples by

https://bioicons.com/
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condition (Figure 2). Three ALS_C9 samples were segregating with the main bulk of ALS_N
samples; therefore, we decided to check the disease history and the clinical anamnesis of
these three ALS_C9 patients, looking for the possible presence of some exclusion criteria.
We noticed that one of them was affected by dementia, while a family history of FTD was
reported for the other two. We concluded that the evidence provided by the PCA and the
clinical phenotype was enough to label the three samples as outliers; therefore, we decided
to exclude these three patients from the ALS_C9 group, thus keeping five ALS_C9 patients
for further analyses.
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Figure 2. PCA comparing ALS_C9 and ALS_N patients’ proteome. The PCA analysis was performed
considering all quantified proteins in fibroblasts from patients included in the two groups (n = 16).
Each dot represents a patient. Pink: ALS_C9. Light blue: ALS_N.

2.2. Differential Expression Analysis

A differential expression analysis of all proteins quantified by LC-MS/MS
(FC = ALS_C9 over ALS_N) was then performed to determine the effect of C9ORF72
repeat expansion on the proteome of skin fibroblasts of ALS patients. Thresholds for
significance have been defined as absolute log2(FC) > 0.3 and adjusted p value < 0.05
(Figure 3a). Proteins with significantly altered levels between the two groups were 216
(Supplementary Table S2), of which 77 proteins were upregulated and 139 proteins were
downregulated in ALS_C9 patients compared with ALS_N. To verify the goodness of the ar-
bitrary thresholds imposed for filtering the significant proteins, we checked the expression
levels of this panel of significant proteins across all samples. As expected, all patients were
correctly grouped into two separate clusters (Figure 3b). Differentially expressed proteins
were also annotated based on the cellular process of their components and rendered as a
Voronoi plot (Figure 3c,d). The results showed that the significant proteins were involved
in different cellular processes, such as RNA processing, protein homeostasis and several
signaling pathways.

2.3. Functional Enrichment Analyses

The protein annotation described above was not yet contextualized with the global
proteome. Indeed, it did not represent a functional enrichment analysis; rather it only
assigned a functional class to all differentially expressed proteins. Thus, the protein list of
differentially abundant proteins (n = 216) was subjected to an over-representation analysis
(ORA) to highlight the molecular pathways specifically enriched by the presence of the
C9ORF72 repeat expansion in fibroblasts of ALS patients (Figure 4).
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Figure 4. Functional enrichment analysis of differentially expressed proteins. Volcano plots displaying the most significantly
enriched terms distributed by enrichment ratio and FDR in log scale. (a) Reactome database, nineteen terms labelled.
(b) KEGG database, four terms labelled.

By using Reactome as pathway database, the functional enrichment analysis high-
lighted 141 enriched pathways (Supplementary Table S3), then grouped in nineteen terms
after the application of “affinity propagation” as redundancy reduction method (Figure 4a).
The most significantly enriched terms were: (i) neutrophil degranulation (R-HSA-6798695;
FDR = 1.7 × 10−7), which included proteasome 26S subunits, glycolytic enzymes, proteins
involved in actin filament dynamics, translation elongation factors, members of the HSP90
family, late endosomal/lysosomal adaptors and lysosome-associated proteins; (ii) infec-
tious disease (R-HSA-5663205; FDR = 1.5× 10−6), which included proteasome 26S subunits,
members of the HSP90 family, translation elongation factors, ribosomal proteins, RAN and
RAN-GTPase-activating proteins; (iii) gluconeogenesis (R-HSA-70263; FDR = 4.0 × 10−4),
which included several glycolytic enzymes and members of the mitochondrial solute carrier
family. Similarly, by using the KEGG database, a total number of eight enriched pathways
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have been identified (Supplementary Table S4), reduced to four terms by applying the
“affinity propagation” method for redundancy reduction (Figure 4b). The most significant
in terms of FDR were: (i) glycolysis/gluconeogenesis (hsa00010; FDR = 2.4 × 10−4), includ-
ing several metabolic enzymes; (ii) citrate cycle (TCA cycle) (hsa00020; FDR = 3.6 × 10−3);
(iii) proteasome (hsa03050; FDR = 1.8 × 10−2), including mainly proteasome 26S subunits.

2.4. PPI Network Generation and Analysis

In order to better highlight connections among proteins and to perform a further func-
tional enrichment analysis, a PPI network was then generated using the list of significantly
altered proteins. The whole list of differentially expressed proteins (n = 216) generated a
network including a main component of connected nodes (n = 129, p value < 1 × 10−4;
Supplementary Table S5; Figure 5) and some unconnected nodes (n = 87), which were
excluded from subsequent analysis.
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Figure 5. Main component of the PPI network of differentially expressed proteins. Each node
represents one protein (n = 129). Node color is associated with the FC. Blue: proteins downregulated
in ALS_C9 vs. ALS_N; red: proteins upregulated in ALS_C9 vs. ALS_N. Node size is proportional to
the −log10(adjusted p value): the larger the size, the lower the protein-associated p value.



Int. J. Mol. Sci. 2021, 22, 10385 8 of 18

An ORA was then performed using the list of proteins included in the main component
as input list and Reactome as pathway database. The analysis highlighted 161 enriched
pathways (Supplementary Table S6). After redundancy reduction, the most significant
enriched terms were: (i) infectious disease (R-HSA-5663205; FDR = 7.6 × 10−8), which
included translation elongation factors, members of the HSP90 family, proteasome 26S
subunits, ribosomal proteins, RAN and RAN-GTPase-activating proteins, the solute carrier
family 25 member 5 (SLC25A5) and the vacuolar protein sorting 4 homolog B (VPS4B); (ii)
regulation of ornithine decarboxylase (ODC) (R-HSA-350562; FDR = 4.1 × 10−4), which
included proteasome 26S subunits; (iii) translation (R-HSA-72766; FDR = 4.1 × 10−4),
including translation initiation and elongation factors, ribosomal proteins, some aminoacyl-
tRNA synthetases and SRP receptor subunits.

The main component was then segmented into sub-clusters by the GLay community-
finding algorithm to find out highly interconnected proteins and possibly unveil some
pathways that were otherwise hidden in the main component. Ten sub-clusters were
generated by the segmentation of the main network (Supplementary Table S7; Figure 6).
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Figure 6. Sub-clusters obtained by the segmentation of the main component. Ten sub-clusters are shown. Node color is
associated with the FC. Blue: proteins downregulated in ALS_C9 vs. ALS_N; red: proteins upregulated in ALS_C9 vs.
ALS_N. Node size is proportional to the statistical significance.
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Each sub-cluster was further analyzed by ORA and results are listed in Supplementary
Table S8. Significantly enriched functional terms were highlighted in seven out of ten sub-
networks; some of them had already emerged from the analysis of the main component
while some others were newly identified. As examples, sub-cluster #1 was enriched in
proteins belonging to the heat shock protein family and proteins involved in signal trans-
duction (e.g., STAT1), sub-cluster #2 unveiled TCA cycle, respiratory electron transport and
ATP synthesis (COX2, COX5A, VDAC1), sub-cluster #3 further highlighted translation (ribo-
somal proteins RPL7 and RPL38; initiation and elongation factors EIF3B, EIF4A1, EEF1A1,
EEF1A2), sub-cluster #8 highlighted tRNA aminoacylation (Leucyl- and Arginyl-tRNA
synthetases LARS and RARS) and sub-cluster #9 unveiled the ER-phagosome pathway. No
significant functional terms emerged in sub-clusters #4, #7 and #10.

2.5. Comparison between ALS and FTD as Both Are C9ORF72-Associated Diseases

The C9ORF72 repeat expansion is also the main causative genetic alteration in FTD.
Since we had the opportunity to collect and analyze skin fibroblast samples also from two
C9ORF72-mutated FTD patients (FTD_C9), we decided to perform a preliminary assess-
ment to compare the proteome among the three groups (ALS_C9, ALS_N and FTD_C9).
To this end, a supervised multivariate analysis was performed in order to verify whether
the composition of the proteome of fibroblast cells was able to discriminate between the
three groups of patients. Specifically, a sparse partial least squares discriminant analysis
(sPLS-DA) was applied, including all proteins quantified in all samples. As shown in
Figure 7, the three groups were actually separated: ALS_C9 separated by ALS_N through
the PC1 and the two FTD patients separated by all ALS through the PC2. Interestingly,
by looking into the features whose contribution was high in the second component, we
found two mitochondrial proteins (Q04837: single-stranded DNA-binding protein; P12236:
ADP/ATP translocase 3) and one protein involved in vesicle dynamics (Q96CW1: AP-2
complex subunit mu).
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3. Discussion

In this study, we showed the results of a proteomics analysis performed on primary
skin fibroblast cell lines from ALS patients with the aim of unveiling pathogenetic mecha-
nisms related to the C9ORF72 repeat expansion. This genetic variant is the main causal
factor of familial forms of ALS and other neurodegenerative diseases; nevertheless it is
currently unclear which pathogenetic mechanisms are implied, which molecular pathways
are mainly altered and how the disease course is affected by the mutation, eventually
leading to a broad spectrum of clinical phenotypes. Here, by using a proteomics approach
coupled to a network-based systems biology analysis, we shed some light on the molecular
mechanisms underlying C9ORF72-mediated pathogenesis.

Investigating molecular mechanisms in neurodegenerative diseases is always com-
plicated by the experimental unavailability of the actual diseased cell type, i.e., patients’
neurons. Thus, one of the trickiest aspects of neurodegeneration research is to identify
and use a proper patient-derived cell model for experimental purposes, which mirrors
neuronal cell alterations. As the experimental model in our study, we used primary skin
fibroblast cell lines cultured from patients’ skin biopsies. This model presents multiple
advantages: (i) these cells are easily available, robust and serve as an accessible source
of patient-derived proliferating cells; (ii) they can be sub-cultured, maintained for longer
durations and used to generate pluripotent stem cells; and (iii) they are effective for study-
ing disease pathogenesis even though they do not represent the actual cells in which the
pathogenetic process occurs. The use of this cellular model has been extensively reported
in neurodegeneration literature in order to unveil molecular mechanisms and/or candidate
biomarkers [20–27]. However, a thorough characterization of ALS fibroblast cells as model
in the context of the C9ORF72 repeat expansion is currently lacking in literature.

The study design included two groups of patients sharing the disease phenotype
though bearing a different genetic background (ALS_C9 and ALS_N). In the context of
this comparison, the total proteome of fibroblasts from ALS patients carrying the C9ORF72
repeat expansion was analyzed against that of ALS patients who tested negative for
the C9ORF72 repeat expansion, including patients also negative for the remaining three
main ALS genes (SOD1, TARDBP and FUS) and patients carrying a mutation in SOD1.
Differentially expressed proteins emerging from this setup are central to highlight which
molecular mechanisms are specifically affected by the presence of the C9ORF72 repeat
expansion in ALS patients. The functional enrichment analysis performed on the list of
differentially expressed proteins unveiled glucose metabolism and protein homeostasis
(translation, folding and degradation) as main altered pathways. This is consistent with
the fact that the C9ORF72 repeat expansion has a strong impact on general proteostasis due
to the accumulation of aberrant transcripts and proteins [28,29]. Moreover, the enrichment
of the “protein folding” pathway in ALS patients carrying the C9ORF72 repeat expansion
in comparison to ALS patients negative for the C9ORF72 repeat expansion also emerged
from a recent and extensive RNA sequencing study performed on frontal cortex tissue [30].
Notably, we noticed that several proteins involved in the translation process, especially
ribosomal proteins, were strongly downregulated in ALS_C9 if compared with ALS_N. This
evidence suggests a general inhibition/blockade of protein synthesis in ALS_C9, which
could represent a counteractive response to the accumulation of toxic protein aggregates.
Collectively, the results of our differential expression and functional enrichment analyses
clearly support the use of skin fibroblasts as a reliable model to investigate pathogenetic
mechanisms in ALS; indeed, the molecular alterations that we have highlighted in these
cells nicely mirror those reported in neuron cells. In this context, our proteomics data
from fibroblasts further support the possibility of identifying candidate therapeutic targets
among proteins involved in general protein homeostasis.

Dysfunctional protein homeostasis and accumulation of protein inclusions in neuronal
cells of ALS patients have been recently demonstrated by several studies; however, it is
still unclear whether these mechanisms are causal in the neurodegenerative process or
represent the “symptoms”. In this frame, proteomics approaches are central to identifying
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both primary pathological proteins and those proteins involved in downstream events.
Several proteomics platforms have been applied to ALS models to uncover pathological
mechanisms and to perform biomarker discovery, as recently summarized by Hedl and
colleagues [31]. In particular, Narayan and coworkers applied a SILAC approach to
quantitatively analyze the proteome of fibroblasts from ALS patients and matched controls,
thus identifying 33 proteins differentially regulated, among which ApoB48, Hsp20 and
Fibulin-1 were proposed as novel biomarkers and therapeutic targets [32]. In another
recent study, a tandem mass tag (TMT) approach was used to analyze the proteome of
fibroblast-derived iPSCs in order to validate genome-wide RNA instability in ALS and
FTD patients [33]. In this context, our proteomics analysis of fibroblasts is the first one
reporting a comparison between ALS patients carrying the C9ORF72 repeat expansion and
ALS patients who tested negative for it, thus specifically investigating C9ORF72-related
pathogenetic mechanisms in ALS.

The generation of a PPI network including all differentially expressed proteins allowed
us to highlight a significant main component of highly interconnected nodes (129 out of
216 nodes; p value < 1 × 10−4) to be used as input for a new functional enrichment analysis.
This network-based strategy was crucial to unveil additional C9ORF72-related pathways,
thanks to the exclusion of unconnected proteins. As expected, the ORA of the proteins of
the main component further highlighted “proteostasis” as a crucial enriched term (trans-
lation initiation and elongation factors, members of the HSP90 family, proteasome 26S
subunits, ribosomal proteins, aminoacyl-tRNA synthetases, SRP receptor subunits) but
also unveiled nuclear and mitochondrial transports (RAN and RAN-GTPase-activating
proteins, SLC25A5) and vesicle trafficking (VPS4B). Moreover, by the fragmentation of
the main component of the PPI network into sub-communities, other pathways emerged
from the enrichment analysis, such as signal transduction (STAT1), mitochondrial pro-
cesses including TCA cycle, respiratory electron transport and ATP synthesis (COX2,
COX5A, VDAC1) and the ER-phagosome pathway. Strikingly, these pathways (i.e., nu-
clear and mitochondrial transports, vesicle trafficking, mitochondrial bioenergetics and
the ER-phagosome network) are new in the context of C9ORF72-mediated pathogene-
sis of ALS, thus demonstrating that our network-based strategy was a powerful tool to
suggest candidate molecular mechanisms to be further investigated in ALS. In keeping
with our results, altered bioenergetics has been reported in fibroblasts from ALS patients
carrying the C9ORF72 repeat expansion [34]. Moreover, Mehta and colleagues recently
demonstrated that MNs obtained from patient-derived iPSCs (C9ORF72-mutated ALS
patients) have shorter axons, impaired axonal transport of mitochondrial cargos and al-
tered mitochondrial bioenergetics [35]. RNAseq also revealed reduced gene expression of
mitochondrially encoded electron transport chain transcripts and the analysis of autoptic
samples confirmed the selective dysregulation of such mitochondrial transcripts in ventral
horn spinal MNs [35]. In addition, there is growing evidence from in vitro and in vivo
models of C9ORF72-related ALS supporting a crucial role in pathogenesis for endoplasmic
reticulum stress (which activates the unfolded protein response, UPR) and mitochondrial
dysfunction. In particular, the disruption in the signaling between the ER and mitochon-
dria through calcium ions has been proposed as a trigger for mitochondrial dysfunction
and apoptosis, constituting a candidate therapeutic target in ALS [36]. Eventually, the
functional enrichment analysis of the main component of the PPI network also led us to
the identification of a peculiar pathway, which has never been associated with C9ORF72-
mediated pathogenesis and is still poorly investigated and understood, i.e., the Slit/Robo
signaling pathway (see Supplementary Table S6). Slit proteins are secreted glycoproteins
which interact with Robo transmembrane receptors, thus regulating several processes
in different cell types, such as neuronal axon guidance, cell proliferation, cell migration
and angiogenesis [37]. Robo therapy with monoclonal antibodies (mAb) is currently un-
der investigation to treat cancer and vascular diseases. However, Slit/Robo signaling is
also crucial for axonal development and radial migration of neurons [38–40]; therefore,
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this pathway is also attracting increasing interest as a possible target in the treatment of
neurological disorders.

Lastly in our experimental workflow, we also analyzed the proteome of skin fibroblasts
from two C9ORF72-mutated FTD patients and compared them with the proteomics profiles
of ALS patients. Due to small sample size, we preferred the use of a supervised multivariate
approach instead of a differential expression analysis so as to try and identify a combination
of features that was able to separate the three groups (FTD_C9, ALS_C9 and ALS_N).
This last comparison allowed us to highlight as discriminating features (i.e., separating
FTD from ALS patients) some proteins involved in mitochondrial dynamics and vesicle
trafficking. This result represents a proof of concept that disease-specific (ALS vs. FTD)
and C9ORF72-specific (ALS_C9 and FTD_C9 vs. ALS_N) proteomics signatures might be
identified through this analysis, by increasing the number of FTD patients involved in
the study.

4. Materials and Methods
4.1. Patients Recruitment, Skin Biopsy and Primary Fibroblast Cell Lines

Three groups of patients were recruited for this study (Table 1): (i) ALS_C9, i.e.,
ALS patients carrying the solely C9ORF72 repeat expansion (n = 8; five males and three
females; mean age 59); (ii) ALS_N, i.e., ALS patients negative for mutations in the main
causative ALS genes (C9ORF72, SOD1, TARDBP and FUS) or carrying mutations other
than the C9ORF72 repeat expansion (n = 8; four males and four females; mean age 55);
and (iii) FTD_C9, i.e., FTD patients carrying the C9ORF72 repeat expansion (n = 2; two
males; mean age 60). Full thickness skin biopsies were obtained from deltoid through
the punch technique under local anesthesia after obtaining patient informed consent.
This study was approved by the local Ethics Committee (“Comitato Etico interaziendale
Novara”, protocol name: PATSLA, code: CE 54/17, approved on 3 April 2017). The
investigations were carried out following the rules of the Declaration of Helsinki of 1975 re-
vised in 2013 (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-
principles-for-medical-research-involving-human-subjects/ (accessed on 15 July 2018)).

Table 1. Outline of primary skin fibroblast samples from ALS and FTD patients.

Subject Group Age at Biopsy Sex Cell Passage Mutation Note

A610 ALS_C9 69 M 6 C9ORF72 expansion /

A670 ALS_C9 64 M 4 C9ORF72 expansion /

A863 ALS_C9 45 M 4 C9ORF72 expansion /

A899 ALS_C9 52 F 5 C9ORF72 expansion /

9848 ALS_C9 57 F 3 C9ORF72 expansion Dementia

10008 ALS_C9 59 M 3 C9ORF72 expansion /

10879 ALS_C9 80 M 4 C9ORF72 expansion Familial history of FTD

10881 ALS_C9 52 F 4 C9ORF72 expansion Familial history of FTD

2284 ALS_N 42 F 3 Neg. four ALS genes /

2293 ALS_N 50 F 3 Neg. four ALS genes /

5786 ALS_N 53 M 3 Neg. four ALS genes /

8729 ALS_N 65 M 2 Fus 3′-UTR (c.87 C > G) /

8873 ALS_N 53 M 3 SOD1 ex 5 p.I149T /

9718 ALS_N 49 F 3 SOD1 ex 5 p.L145F /

9799 ALS_N 70 M 4 SOD1, intron 1 Schizophrenia

9847 ALS_N 57 F 3 Neg. four ALS genes /

10234 FTD_C9 57 M 3 C9ORF72 expansion Dementia

10946 FTD_C9 64 M 8 C9ORF72 expansion Dementia

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
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4.2. Cell Culture

Primary skin fibroblast cell lines were isolated from skin biopsies as follows. Skin
specimens were washed with 70% ethanol and physiological solution and incubated with
2 mg/mL Dispase II (Merck KGaA, Darmstadt, Germany) overnight at 4 ◦C. Then, the
dermis was separated using sterile tweezers, cut into 2–4 mm pieces and plated on a 6-well
microplate. A squared sterile glass was put above and 1 mL of high glucose Dulbecco’s
modified Eagle’s medium, DMEM (Euroclone, Milan, Italy) supplemented with 20% fetal
bovine serum, FBS (Euroclone, Milan, Italy) was added to each well. After 3 weeks, dermis
and glasses were removed and fibroblasts were detached with 0.25% Trypsin and 0.02%
EDTA (Euroclone, Milan, Italy) and plated in 25 cm2 flasks. Cells were then cultured in
DMEM supplemented with 15% (v/v) FBS, 100 U/mL penicillin, 100 mg/mL streptomycin
(Euroclone, Milan, Italy) and 2 mM L-glutamine (Euroclone, Milan, Italy) and maintained
at 37 ◦C under humidified conditions and 5% CO2. Cells were sub-cultured twice weekly,
detached with Accutase (Euroclone, Milan, Italy) and centrifuged at 500× g for 10 min
at room temperature. Cells were used for proteomics analysis at passage number lower
than 10. Cell pellets were collected, washed in PBS, frozen in liquid nitrogen and stored at
−80 ◦C.

4.3. Quantitative Proteomics by LC-MS/MS

Whole cell pellets were lysed in RIPA buffer (50 mM Tris-HCl pH 8.0; 5 mM EDTA pH
8.0; 250 mM NaCl; 1% Triton X-100; 0.1% SDS; 0.25% sodium deoxycholate) plus 1% v/v
protease inhibitor cocktail (Merck KGaA, Darmstadt, Germany) and protein content was
quantified by Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA). Thirty micro-
grams of proteins for each sample was transferred to a Microcon-10 centrifugal filter with
10 kDa MWCO (Merck KGaA, Darmstadt, Germany) and processed following a digestion
protocol previously described [41]. Briefly, proteins were denatured upon filter-aided
buffer exchange to urea buffer (UB: 8 M urea, 100 mM Tris-HCl, pH 8.5) and subsequently
reduced in 8 mM DTT in UB (15 min at 56 ◦C) and alkylated in 0.05 M iodoacetamide in
UB (20 min at RT). All the samples underwent proteolytic digestion by trypsin enzyme
upon filter exchange to 0.05 M ammonium bicarbonate (AMBIC) solution, using a pro-
tease:protein ratio of 1:50 (w/w), overnight at 37 ◦C. Digestions were blocked by adding
formic acid (FA) to a final concentration of 0.2% (v/v) and the peptides were recovered
from the filter in 0.05 M AMBIC, concentrated in a speedvac and stored at −80 ◦C until
use. Digested peptides were then diluted in a solution of 0.1% FA and 3% acetonitrile
(ACN) in order to load 0.25 ng of each sample, spiked with 100 fmol of EColiClpB Hi3
standard (Waters Corporation, Milford, MA, USA) on a symmetry C18 trap column, 100 Å,
5 µm, 180 µm × 20 mm, (Waters Corporation, Milford, MA, USA). Peptides were thus
separated by a 125 min reverse phase gradient at 1.2 µL/min (linear gradient, 2–40% ACN
over 90 min) using an HSS T3 100 Å 1.8 µm, 150 µm × 100 mm iKey (Waters Corpora-
tion, Milford, MA, USA) maintained at 40 ◦C on an ACQUITY M class UPLC system
(Waters Corporation, Milford, MA, USA). Separated peptides were analyzed in a shotgun
experiment on a Synapt G2-Si mass spectrometer (Waters Corporation, Milford, MA, USA)
directly coupled to the chromatographic system. Data were acquired in high definition MSE

(HDMSE), a data-independent acquisition (DIA) protocol where ion mobility separation
(IMS) has been integrated into LC-MSE workflow [42]. Mass spectra were acquired in
positive polarity and resolution analyzer mode. TOF MS was operating over 50–2000 m/z
using a scan time of 0.5 s and a continuum data format. Data were post-acquisition lock
mass corrected using the doubly charged monoisotopic ion of (Glu1)-Fibrinopeptide B
(Waters Corporation, Milford, MA, USA) sampled every 30 s. For IMS, wave height at 40 V,
wave velocity of 1000 m/s and transfer wave velocity of 175 m/s were applied. Instru-
ment settings were defined to apply a drift time specific transfer collision energy ramp
as previously described [27]. Data from two replicate experiments for each sample were
processed for qualitative and quantitative analysis using the Progenesis QI for Proteomics
v4.1 software (Waters Corporation, Milford, MA, USA). The qualitative identification of
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proteins was obtained by searching in human database (Uniprot 2019_11, restricted to
Homo sapiens taxonomy). Search parameters were set as: 6 ppm for peptide tolerance and
10 ppm for fragment tolerance, minimum one fragment ion matched per peptide, minimum
three fragment ions matched per protein, minimum one peptide matched per protein, one
missed cleavage accepted, carbamidomethylation of cysteines as fixed modification and
oxidation of methionines as variable modification and false discovery rate (FDR) of the
identification algorithm at 1%. Quantifications for all identified proteins are reported
in Supplementary Table S1. Label-free quantitative analysis was obtained by using the
“absolute quantification using HiN” option integrated in the software [43] that averaged
the most abundant n peptides (n = 3) for each protein to provide a reading for the protein
signal. The Hi3 E. coli standard (Waters Corporation, Milford, MA, USA) was used as
reference. The expression analysis was performed considering the technical replicates for
each experimental condition, following the hypothesis that each group is independent.
Under this quantification scheme, 1198 quantifiable proteins have been included.

The mass spectrometry proteomics data have been deposited in the ProteomeXchange
Consortium via the PRIDE [44] partner repository with the dataset identifier PXD023866
and DOI 10.6019/PXD023866.

Protein quantifications were averaged feature-wise per technical replicate to obtain
one column per sample in the raw quantification table. Protein amounts were normalized
using the normalize.quantiles function implemented by preprocessCore package [45].
Differential expression was performed by fitting a linear model over the log-transformed
normalized level of expression. The coefficients for each feature were extracted for the
comparison ALS_C9 vs. ALS_N. p values were adjusted for multiple testing using the
Benjamini–Hochberg (BH) correction. Thresholds for significance were set to FDR ≤ 0.05
(≥1.3 in −log10 scale) and |log2(FC)| ≥ 0.3 (equal to 1.23-fold increase/decrease). Volcano
plots were generated with ggplot2 [46]. Heatmaps were generated using the R package
ComplexHeatmap [47]. The matrix used contained the normalized expression values for
the significant features after z-score normalization (feature-wise).

Over-representation analysis was performed using WebGestalt 2019 (http://www.
webgestalt.org/ (accessed on 10 June 2021)), where “genome protein-coding” was used as
reference set for Fisher’s test and either “Reactome” or “KEGG” was used as the functional
database (https://reactome.org/ (accessed on 10 June 2021) and https://www.genome.jp/
kegg/ (accessed on 10 June 2021)).

4.4. Network Analysis

All significantly altered proteins were considered for network construction and
functional enrichment analysis. The protein–protein interaction network was generated
and visualized using Cytoscape 3.8.2 [48]. The public database IMEx (https://www.
imexconsortium.org/ (accessed on 20 July 2021)) was queried through Cytoscape using
the Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) standard. The
network was filtered for human proteins to remove homology inferences. All self-loops
and duplicated edges were removed. The main component of the PPI network thus
generated was used to perform an over-representation analysis using WebGestalt 2019
(http://www.webgestalt.org/ (accessed on 20 July 2021)), where “genome protein-coding”
was used as reference set for Fisher’s test and “Reactome” was used as the functional
database (https://reactome.org/ (accessed on 20 July 2021)). Clusters were built with
the GLay community-finding algorithm [49]. The GLay environment provides layout
algorithms optimized for large networks and allows the exploration and analysis of highly
connected biological networks. Proteins included in the sub-clusters were analyzed by
ORA as described above.

Voronoi plot were generated using Proteomaps (https://proteomaps.net/ (accessed
on 30 June 2021)) [50]. The input was a table of the significant features. The size of the tile
was mapped to the −log10(FDR).

http://www.webgestalt.org/
http://www.webgestalt.org/
https://reactome.org/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://www.imexconsortium.org/
https://www.imexconsortium.org/
http://www.webgestalt.org/
https://reactome.org/
https://proteomaps.net/
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4.5. Supervised Multivariate Analysis

Multivariate analysis for the classification of the subjects included in the three experi-
mental groups was performed by supervised partial least squares discriminant analysis
(sPLS-DA) using the R package mixOmics [51]. The parameter tuning for both the number
of components and features was performed using leave-one-out cross-validation method,
following the recommended guidelines.

All data analysis was written using the R environment for statistical computing [52].

5. Conclusions

Herein, we investigated for the first time the proteome of ALS fibroblast cells in the
context of the C9ORF72 repeat expansion, thus demonstrating that the presence of this
genetic variant affects the proteome of these cells. Moreover, we demonstrated that the
molecular pathways altered in fibroblasts nicely mirror the main alterations observed in
C9ORF72-mutated neuron cells, such as dysfunctional protein homeostasis. This evidence
supports the use of fibroblasts as an experimental model to study the pathogenesis of ALS.
In addition, proteostasis alteration represents a hallmark of neurodegeneration and it is
attracting increasing interest as a potential therapeutic target [53]. Eventually, by means of
a network-based strategy, we unveiled novel pathways involved in C9ORF72-mediated
pathogenesis: nuclear and mitochondrial transports, vesicle trafficking, mitochondrial
bioenergetics, glucose metabolism, ER-phagosome crosstalk and Slit/Robo signaling path-
way. These processes might be further explored to deepen the knowledge about the role
of the C9ORF72 repeat expansion in neurodegeneration and to find candidate disease
biomarkers and therapeutic targets.
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Abbreviations

ALS Amyotrophic Lateral Sclerosis
FTD Frontotemporal Dementia
C9ORF72 Chromosome 9 Open Reading Frame 72
PPI Protein-Protein Interaction
LC-MS/MS Liquid Chromatography Tandem Mass Spectrometry
sPLS-DA Sparse Partial Least Squares Discriminant Analysis
ORA Over-Representation Analysis
BH Benjamini–Hochberg
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