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Leonardo Montagnani t, Johan Neirynck u, Matthias Peichl v, Corinna Rebmann k, 
Marius Schmidt w, Francisco Ramon Lopez Serrano x, Kamel Soudani y, Caroline Vincke z, 
Jan Pisek a 

a Tartu Observatory, University of Tartu, Estonia 
b Chiba University, Chiba, Japan 
c JAMSTEC, Yokohama, Japan 
d Lund University, Lund, Sweden 
e Fundacion CEAM, Paterna, Spain 
f ARPA Valle d’Aosta, Saint Christophe, Italy 
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A B S T R A C T   

Leaf area index (LAI) is a key ecological indicator for describing the structure of canopies and for modelling 
energy exchange between atmosphere and biosphere. While LAI of the forest overstory can be accurately assessed 
over large spatial scales via remote sensing, LAI of the forest understory (LAIu) is still largely ignored in 
ecological studies and ecosystem modelling due to the fact that it is often too complex to be destructively 
sampled or approximated by other site parameters. Additionally, so far only few attempts have been made to 
retrieve understory LAI via remote sensing, because dense canopies with high LAI are often hindering retrieval 
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algorithms to produce meaningful estimates for understory LAI. Consequently, the forest understory still con-
stitutes a poorly investigated research realm impeding ecological studies to properly account for its contribution 
to the energy absorption capacity of forest stands. This study aims to compare three conceptually different in-
direct retrieval methodologies for LAIu over a diverse panel of forest understory types distributed across Europe. 
For this we carried out near-to-surface measurements of understory reflectance spectra as well as digital surface 
photography over the extended network of Integrated Carbon Observation System (ICOS) forest ecosystem sites. 
LAIu was assessed by exploiting the empirical relationship between vegetation cover and light absorption (Beer- 
Lambert- Bouguer law) as well as by utilizing proposed relationships with two prominent vegetation indices: 
normalized difference vegetation index (NDVI) and simple ratio (SR). Retrievals from the three methods were 
significantly correlated with each other (r = 0.63–0.99, RMSE = 0.53–0.72), but exhibited also significant bias 
depending on the LAI scale. The NDVI based retrieval approach most likely overestimates LAI at productive sites 
when LAIu > 2, while the simple ratio algorithm overestimates LAIu at sites with sparse understory vegetation 
and presence of litter or bare soil. The purely empirical method based on the Beer-Lambert law of light ab-
sorption seems to offer a good compromise, since it provides reasonable LAIu values at both low and higher LAI 
ranges. Surprisingly, LAIu variation among sites seems to be largely decoupled from differences in climate and 
light permeability of the overstory, but significantly increased with vegetation diversity (expressed as species 
richness) and hence proposes new applications of LAIu in ecological modelling.   

1. Introduction 

Leaf area index (LAI), defined as one-half the total green leaf area per 
unit of horizontal ground surface area (Chen and Black, 1992; Fernandes 
et al., 2014), is an important ecological indicator for analyzing canopy 
structure and constitutes a key metric for measuring interactions be-
tween the atmosphere and terrestrial ecosystems (Chen and Black, 1991; 
Thimonier et al., 2010). Since leaves act as a physical interface between 
atmosphere and biosphere, LAI strongly determines biochemical, hy-
drological, and atmospherical processes in canopies via rain water 
interception, evapotranspiration, light interception, and photosynthesis 
(e.g. Badhwar and MacDonald, 1986; Running and Gower, 1991; 
Running, 1994). While light interception in the forest canopy (i.e. 
overstory) is relatively well investigated and understood (e.g. Olivas 
et al., 2013; Schleppi et al., 2011; Thimonier et al., 2010), forest un-
derstory, which comprises all green vegetation below the canopy layer, 
still represents a poorly investigated research realm due to its frequently 
obscured character (Chen and Cihlar, 1996). Nevertheless, the contri-
bution of the understory to the total energy absorption capacity of a 
forest stand can be significant and introduce potential bias of produc-
tivity estimates such as the net primary productivity (NPP) when the 
understory remains unaccounted for (Clark et al., 2001; Law et al., 
2001). In particular, tropical woodlands and boreal forest ecosystems 
are well known examples for this, because the understory can even be 
more productive than the overstory (Clark et al., 2001; Gower et al., 
2001; Black et al., 1996). The overstory and understory vegetation in 
forest ecosystems needs to be treated differently in carbon cycle 
modeling, because carbon fixed through net primary productivity has 
different residence times for different components (Rentch et al., 2003). 
Overstory and understory can possess asynchronous phenology (e.g. Ryu 
et al., 2014) and differences in the greening cycle of the under- and 
overstory species have been reported to complicate the use of simple 
vegetation index techniques to determine the start of growing season 
from Earth Observation data (Doktor et al., 2009). Consequently, 
satellite-derived estimates of total LAI can be strongly confounded when 
understory LAI information is absent (Ahl et al., 2006; Garrigues et al., 
2008; Ryu et al., 2014). 

A global wall-to-wall LAI dataset with separation of forest LAI for 
overstory and understory layers would help to improve the modeling of 
forest carbon and water cycles and the evaluation of forest ecosystem 
functions (Law and Waring 1994). Up to date, very limited efforts have 
been made to meet this goal. Liu et al. (2017) estimated separate 
overstory and understory LAI values for global needleleaf and deciduous 
broadleaf forests by fusing MISR and MODIS observations. Yang et al. 
(2015) proposed an integrating look-up table (LUT) method to remotely 
estimate the overstory and understory LAI for boreal forests. Kobayashi 
et al. (2010) proposed a satellite-based method for the overstory LAI 

estimation in a Siberian larch forest using the simulated relationship 
with the normalized difference between NIR and mid-infrared (MIR) 
spectral channels of Spot-Vegetation and also estimated the understory 
LAI as a by-product. While the efforts for understory LAI mapping with 
Earth Observation data have been limited, the attempts to validate the 
obtained retrievals have been next to non-existent. 

Accurate, cost-efficient, and easy-to-implement field approaches for 
assessing understory leaf area index (LAIu) are highly required in order 
to validate the retrievals from Earth Observation data and assist with 
improving productivity estimates in forest ecological studies. While a 
direct assessment of LAI is possible (e.g. through litter fall traps, leaf 
harvesting or vegetation removal), such methods have similar draw-
backs to sampling overstory component, i.e. being destructive, non- 
repeatable, and labour-intensive. Direct approaches are also nearly 
impossible for some understory vegetation types such as mosses, lichens, 
and grasses (Weiss et al., 2004). Consequently, direct assessments are 
usually limited to small study areas and upscaling over different vege-
tation types will necessarily lead to significant bias (Jonckheere et al., 
2004; Zheng and Moskal, 2009). As an alternative to direct assessment 
of LAIu, a few indirect methodologies were developed that made use of 
either empirical or deterministic relationships between the forest 
background structure, light absorption patterns and reflectance prop-
erties (Campbell, 1986; Kuusk et al., 2004; Deng et al., 2006; Canisius 
and Chen, 2007; Yang et al., 2014). Empirical approaches make use of 
the fact that the amount of absorbed light in a canopy or vegetation layer 
is directly proportional to the concentration of absorbing elements in the 
layer (i.e. the Beer–Lambert–Bouguer law of light absorption). When the 
concentration or density as well as some key geometrical attributes of 
the vegetation are known, LAIu can be approximated by exploiting this 
empirical relationship (e.g. Campbell, 1986; Kuusk et al., 2004; Eriksson 
et al., 2006; Schleppi et al., 2011). With semi-empirical and determin-
sitic methodologies it is assumed that the forest understory has a similar 
composition to the mixture of shrubland, grassland, and moss (Caetano 
et al., 1998). LAIu can be then retrieved using reflectances of the forest 
understory based on the LAI algorithms which are applicable for shrub, 
grass, and other non-forest biomes (Deng et al., 2006; Yang et al., 2015). 

The above outlined concepts of understory LAI estimation were built 
upon different assumptions, vary considerably in complexity and 
computational requirements, and their capability of accurately assessing 
LAIu depends on the spatial scale of application. However, so far no 
study has evaluated the comparability of these methods when applied to 
a common spatial scale across various understory vegetation types and 
when data is acquired in-situ (that is: via near-surface data aquisition). 
For this objective, we selected and produced in situ LAIu estimates at 29 
forest ecosystem sites across Europe, mainly belonging to the Integrated 
Carbon Observation System (ICOS) network. The rationale behind this is 
two-fold: first, the selected sites represent a diverse biogeographical 
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array of forest understory types harbouring sufficient variation for 
evaluating and comparing the three concepts of LAIu assessment. Sec-
ond, since one of the main objectives of the ICOS network is to provide 
accurate data on carbon balance (e.g. through the ICOS carbon portal 
(https://www.icos-cp.eu/) in forest ecosystems, our dataset can poten-
tially inform ICOS station managers and researchers about the LAIu 
range and methodological bias. Currently, the understory is often 
treated as unknown quantity in carbon models due to the difficulties to 
measure it properly in-situ (Luyssaert et al., 2007). Hence, the objectives 
of this study are: i) retrieve understory LAI estimates over the extended 
network of ICOS forest ecosystem sites across Europe, ii) compare re-
trievals among three conceptually different methodologies, ii) define 
levels of agreement across the measured understory LAI spectrum, and 
iv) discuss and evaluate potential areas of application in a broader 
ecological context by incorporating environmental variables such as 
climate, overstory properties and species diversity. 

2. Materials and methods 

2.1. Study area 

The selected 29 study sites (Fig. 1, Table 1) comprise a large variety 
of forest over- and understory types and which span a latitudinal dis-
tance across Europe from 67◦N (Sodankylä, Finland) to 38◦N (Yeste, 
Spain). The investigated sites belong to five International Geosphere- 
Biosphere Programme (IGBP) land cover types comprising evergreen 
needleleaf forests (ENF, 16 sites), deciduous broadleaf forests (DBF, 7 
sites), evergreen broadleaf forests (EBF, 2 sites), mixed forests (MF, 2 
sites), deciduous needleleaf forests (DNF, 1 site), and open shrubland 
(OSH, 1 site). 

2.2. Measurements of fractional cover for understory 

Vertically oriented Sony Xperia Z5 Compact phone equipped with a 
23 MP 1/2.3-inch multi-aspect BSI CMOS sensor, paired with an F2.0 
lens was used to photograph 1 m × 1 m plots every 8 m along two 50 m 

long transects at each site at 3840 × 2160 pixel resolution. Fractional 
cover of understory vegetation was determined from the ground photos 
by utilizing the image analysis software ImageJ2 (Rueden et al., 2017). 
Photosynthetically active plant tissue was separated from bare soil, 
rocks, deadwood and litter by manually adjusting hue, brightness, and 
saturation of digital images until all non-green background was entirely 
masked out. We used the analyze 

2.3. Measurements of understory spectra 

In this work the reflectance factors measured by the field spec-
trometers are referred similarly to the satellite derived hemispherical- 
directional reflectance factors (HDRFs, terminology following Schaep-
man-Strub et al. (2006)). We approximate the field of view of the ground 
spectrometers to be angular, and some anisotropy was captured corre-
sponding to normal remote sensing viewing geometry. Overview of in-
dividual in situ campaigns at each site as well as their characteristics is 
provided in Table 1. 

Individual sites were visited between April 2017 and August 2019, 
mostly during the vegetation period. The understory spectra were ob-
tained following the protocol of Rautiainen et al. (2011). The understory 
spectra were measured under diffuse light conditions covering the 
visible/near-infrared region depending on the spectrometer (see Table 1 
for more details). All measurements were taken when the Sun was 
completely blocked by the clouds, or when direct solar radiance was 
totally attenuated by the long path length in tree crown layer at low 
solar elevations close to sunset. The understory spectra were measured 
every 2 m along two 50 m long transects located within the tower’s 
footprint at each site, resulting in 25 measurement points (with three 
understory spectra per each measurement point) per transect. The 
downward-pointed spectroradiometer was held by the out-stretched 
hand of the operator. The area sampled during each spectral measure-
ment was estimated to correspond approximately to a circle with a 
diameter of 50 cm. No fore-optics was used. Three spectra above a 10- 
inch 99% reflecting Spectralon SRT-99–100 white panel were recor-
ded at the beginning and end of each transect and also along it after 
every four understory spectra measurement points (every 8 m). 

Spectral measurements were then processed to correspond to HDRFs. 
Two Spectralon reflectance measurements made before and after each 
understory spectrum quadruplet along given transect were interpolated 
linearly in time to estimate the spectral irradiance for the moments 
when the understory spectra were recorded. A hemispherical-conical 
reflectance factor was obtained with an “uncalibrated” Spectralon 
reflectance spectrum and the interpolated irradiance. 

Finally a relative spectral response function was used for Moderate 
Resolution Imaging Spectroradiometer (MODIS) on-board Terra to 
compute broadband HDRFs for red (620–670 nm) and NIR (841–876 
nm) wavelengths. A simple ratio and normalized difference vegetation 
index (NDVI; Rouse et al., 1973) were calculated from red and near- 
infrared band. MODIS wavelengths were selected because its bands 
represent typical wavelengths that are used in vegetation remote 
sensing. 

2.4. Models and LAIu retrieval 

2.4.1. Retrieval of LAIu from fractional vegetation cover (LAI FC) 
First, LAIu was determined by exploiting the empirical relationship 

between light absorption and the fraction of ground that is covered with 
photosynthetically active vegetation. This relationship can be mathe-
matically expressed as (Kuusk et al., 2004): 

W = 1 − exp
(

−
G0LAIu

μ0

)

(1)  

with W representing the vegetation ground cover, G0 the geometry 
factor describing the orientation of leaves, LAIu is leaf area index of 

Fig. 1. Overview, geographical distribution and land cover type of the 
analyzed forest ecosystem research sites particles function in ImageJ2 and 
calculated median and standard deviation of fractional vegetation cover for 
each of the 29 sites. 
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understory, and μ0 the cosine of the viewing angle. Assuming that G0 for 
understory vegetation is 0.5 (i.e. all leaf angles are spherically distrib-
uted and foliage is randomly distributed) and that μ0 = 1 (i.e. viewing 
angle at nadir view is 0◦) Eq. (1) can be written as: 

LAIu = − 2ln(1 − W) (2)  

where leaf area index is solely a function of fractional vegetation cover 
(W) and follows the Beer-Lambert- Bouguer law of light absorption. 

2.4.2. LAIu from NDVI and radiative transfer model FLiES (LAI NDVI) 
The second method for estimating LAIu was based on the relationship 

between LAI and NDVI of understory vegetation derived from radiative 

transfer simulations (Yang et al., 2015). First, a look-up table (LUT) 
containing LAI and the corresponding refectance at red and near- 
infrared bands was generated by using the canopy radiative transfer 
model FLiES (Kobayashi and Iwabuchi, 2008). The vegetation structure 
is assumed to be homogeneous and the understory vegetation is domi-
nated by grass and shrubs. The reflectance and transmittance of the grass 
category provided by Myneni et al. (1997) were used for the understory 
vegetation. The reflectance of the soil layer was set as the average 
reflectance of moss and lichen collected at a black spruce boreal forest in 
Alaska, USA (Kobayashi et al., 2018). Combinations of one solar zenith 
angle (i.e., SZA = 45◦), four view zenith angle (i.e., VZA = 0◦, 10◦, 20◦, 
30◦), and two view azimuth angle values (i.e., VAA = 40◦, 140◦) were 
used in the simulation. The average NDVI for each angle combination 

Table 1 
Site information and measurement device specification.  

Site name Country Side 
code 

IGBP land 
cover type 

Sampling 
date 

understory tree/shrub layer understory herb/moss layer Spectrometer model 

Fontainebleau- 
Barbeau (ICOS) 

FR FR- 
Fon 

DBF 2018/06 Corylus spec.  Ocean Optics FLAME- 
S-VIS-NIR-ES 

Bilos-Salles (ICOS) FR FR-Bil ENF 2018/06 Ulex europaeus Molinia coerulea, Pteridium 
aquilineum 

Ocean Optics FLAME- 
S-VIS-NIR-ES 

Bosco Fontana (ICOS) IT IT-BFt DBF 2018/07 Corylus spp., Ruscus aculeatus Hedera helix Ocean Optics FLAME- 
S-VIS-NIR-ES 

Brasschaat (ICOS) BE BE-Bra ENF 2019/01 Betula spec, Quercus robur, Sorbus aucuparia Ocean Optics FLAME- 
S-VIS-NIR-ES 

Castelporziano2 
(ICOS) 

IT IT-Cp2 EBF 2019/01 Phyllirea latifolia, Pistacia 
lentiscus  

Ocean Optics FLAME- 
S-VIS-NIR-ES 

Cuenca de Las 
Majadas 

ESP ES- 
CMu 

ENF 2018/07 Juniperus communis, Juniperus 
oxycedrus, Crataegus monogyna  

Ocean Optics FLAME- 
S-VIS-NIR-ES 

Cortes de Pallas ESP ES- 
CPa 

OSH 2018/07 Rosmarinus officinalis, Ulex 
parviflorus 

Brachypodium retusum Ocean Optics FLAME- 
S-VIS-NIR-ES 

Davos (ICOS) CH CH- 
Dav 

ENF 2018/07  Vaccinium spp. Ocean Optics FLAME- 
S-VIS-NIR-ES 

Hainich (ICOS) DE DE- 
Hai 

DBF 2018/04  Anemone nemorosa, Allium ursinum Ocean Optics FLAME- 
S-VIS-NIR-ES 

Hesse (ICOS) FR FR- 
Hes 

DBF 2018/08 Fagus sylvatica, Rubus spp.  Ocean Optics FLAME- 
S-VIS-NIR-ES 

Hohes Holz (ICOS) DE DE- 
HoH 

MF 2018/04  Anemone nemorosa Ocean Optics FLAME- 
S-VIS-NIR-ES 

Hurdal (ICOS) NO NO- 
Hur 

ENF 2018/09 Picea abies Vaccinium spp. Ocean Optics FLAME- 
S-VIS-NIR-ES 

Hyltemossa (ICOS) SE SE- 
Htm 

ENF 2018/09  Sphagnum spp. Ocean Optics FLAME- 
S-VIS-NIR-ES 

Hyytiälä(ICOS) FI FI-Hyy ENF 2018/06 Picea abies Vaccinium spp. Ocean Optics FLAME- 
S-VIS-NIR-ES 

Lanžhot (ICOS) CZ CZ- 
Lnz 

DBF 2017/04  Allium ursinum, Asarum europeum ASD FieldSpec 4 

Loobos (ICOS) NL NL- 
Loo 

ENF 2018/08 Prunus serotina Vaccinium Myrtilus, Deschampsia 
felexuosa 

Ocean Optics FLAME- 
S-VIS-NIR-ES 

Montiers sur Saulx 
(ICOS) 

FR FR- 
MsS 

DBF 2019/01  Sphagnum spp. Ocean Optics FLAME- 
S-VIS-NIR-ES 

Norunda (ICOS) SE SE- 
Nor 

ENF 2018/10  Vaccinium spp. ASD FieldSpec Pro 

Puechabon (ICOS) FR FR- 
Pue 

EBF 2018/06 Buxus sempervirens  Ocean Optics FLAME- 
S-VIS-NIR-ES 

Renon (ICOS) IT IT-Ren ENF 2018/07  Deschampsia flexuosa, Vaccinium 
myrtillus, Rhododendron ferrugineum 

Ocean Optics FLAME- 
S-VIS-NIR-ES 

San Rossore 2 (ICOS) IT IT-SR2 ENF 2018/07 Ligustrum vulgare  Ocean Optics FLAME- 
S-VIS-NIR-ES 

Sodankylä (ICOS) FI FI-Sod ENF 2017/06  Calluna vulgaris, Vaccinium spec. ASD FieldSpec Pro 
Soroe (ICOS) DK DK- 

Sor 
DBF 2018/09 Fagus sylvatica Pteridium Aquilinum Ocean Optics FLAME- 

S-VIS-NIR-ES 
Svartberget (ICOS) SE SE- 

Svb 
ENF 2019/08  Vaccinium spp. ASD FieldSpec Pro 

Tharandt (ICOS) DE DE- 
Tha 

ENF 2018/04 Fagus sylvatica, Abies alba Deschampsia flexuosa Ocean Optics FLAME- 
S-VIS-NIR-ES 

Torgnon-LD IT IT-Tor DNF 2018/07 Juniperus communis Rhododendron ferrugineum, Festuca 
varia 

Ocean Optics FLAME- 
S-VIS-NIR-ES 

Vielsalm (ICOS) BE BE-Vie MF 2018/08  Pteridium Aquilinum Ocean Optics FLAME- 
S-VIS-NIR-ES 

Wustebach (ICOS) DE DE- 
RuW 

ENF 2018/08  Deschampsia flexuosa, Deschampsia 
cespitosa and Molinia caerulea 

Ocean Optics FLAME- 
S-VIS-NIR-ES 

Yeste ESP ES-Yst ENF 2018/07 Rosmarinus officinalis Thymus vulgaris, Cistus clusii Ocean Optics FLAME- 
S-VIS-NIR-ES  
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was computed from the simulated red and near-infrared reflectances. 
Finally, LAIu was estimated by searching the closest NDVI values 
through the previously constructed LUT with view zenith angle at nadir 
(VZA = 0◦). 

2.4.3. LAIu retrieval from simple ratio and four-scale optical model (LAI 
SR) 

The third method evaluated in our study was originally devised for 
global applications of LAI estimation (Deng et al., 2006). Briefly, the 
method uses land cover type-dependent relationships between LAI and 
vegetation indices such as the reduced simple ratio (RSR) for forests and 
simple ratio (SR) for grass, shrubs, and other non-forest cover types. 
Effective LAI is calculated based on Four Scale model simulations (Chen 
and Leblanc 1997) and Chebyshev polynomials with land cover type- 
specific algorithm coeffcients taken from look-up tables (Deng et al., 
2006). The relationship between effective LAI and vegetation index is 
formulated as (Deng et al., 2006): 

LE = fLE VI [fbiome(VIobs)⋅fBRDF(θv, θs,ϕ) ] (3)  

where LE is the effective LAI of the understory and fLE_VI a biome-specific 
function describing the relationship between LAI and the BRDF- 
modified vegetation index (VIobs) at a specific view and sun angle 
combination (fBRDF(θv,θs,ϕ). fbiome defines the algorithm that is used 
(forest, shrub, grass) and fBRDF quantifies the BRDF effect of the vege-
tation index as a function of the angular reflectance behaviour. Since the 
understory across all our investigated sites consisted mainly of shrubs, 
grasses, and other annual plants and reflectance measurements were 
obtained below the tree layer, we used the simple ratio (SR) and biome- 
specific functions designed for non-forest cover types. Non-forest cover 
types and their associated model coeffcients as defined in Deng et al. 
(2006) refer to several different vegetation classes such as open shrub-
lands, closed shrublands and others, and we used three different cover 
type-dependent functions with similar characteristics (open shrubland, 
closed shrubland, forest savanna) for LAIu retrieval at each site in order 
to better capture variation in LAIu caused by varying model assump-
tions. All calculations were done in C++ with scripts provided from the 
study of Deng et al. (2006), which were slightly modified in order to fit 
our data input structure. 

2.5. Method comparison and relationship between LAIu and 
environmental variables 

The three LAI retrievals were compared among the 29 sites by 
pairwise calculation of Pearson-moment-correlation, coeffcient of 
determination (R2), and root-mean-square error (RMSE). Furthermore, 
since we were particularly interested to know whether the LAI ranges 
within the three methods give comparable estimates, we calculated 
pairwise limits of agreement (Altman and Bland, 1983). Limits of 
agreement (LoA) have been widely used in evidence-based medicine in 
order to quantify the bias between two or more clinical test settings. 
Since our three methods differ greatly in model complexity, computa-
tional demand, and physical assumptions, non-significant deviations 
among the three methods across the investigated LAI range would speak 
in favour of the method that makes least model assumptions and is also 
easiest to implement. We pairwisely regressed the difference between 
methods against the mean (the so-called Bland-Altman-plot). The pair-
wise relative bias among methods was calculated as the mean of all 
differences across the 29 sites. The agreement interval in which 95% of 
the differences fall was calculated as ±1.96 × SD with SD being the 
standard deviation of the pairwise differences. 

Finally, we explored the relationship between LAIu retrievals and 
environmental variables at the 29 sites. Strong correlations between 
retrieved LAIu estimates and variables that are nowadays relatively easy 
to obtain from databases (e.g. latitude, longitude, and climate parame-
ters) may suggest that an approximation of understory LAI is possible 

without the need for time-consuming data gathering and computation. 
For example, Iio et al. (2014) revealed significant relationships between 
field-observed LAI and temperature/precipitation across plant func-
tional types. On a global basis their results suggest that LAI is mainly 
limited by temperature and water availability, in particular under cool 
and dry climate conditions. In order to test this hypothesis for LAIu, we 
obtained 80 long-term climatic variables with 1 km2 spatial resolution 
for the ICOS sites from the ECLIPS 2.0 dataset (Chakraborty et al., 2020). 
Briefly, the ECLIPS dataset contains gridded annual, seasonal, and 
monthly climate variables for past periods (1960–2010) and wasvali-
dated with observations from a >4000 weather stations (Klok and Klein 
Tank, 2009). A detailed description of the 80 climatic variables can be 
found in the Supplementary Material S1. In order to reduce the 
complexity of this dataset, LAIu was regressed against the first two 
principal components of this climatic site information. Additionally, we 
used overstory LAI (LAIo) and understory species richness as a predictors 
of LAIu. Information on overstory LAI for the analyzed ICOS sites was 
obtained for 25 of the analyzed sites from already published literature 
(Supplementary Material S2) and was aggregated to mean values in 
cases where several measurements per site were made or reported. Since 
overstory LAI was assessed by using different methods and at different 
dates compared to LAIu, we are using this information only as a broad 
surrogate for understory light availability and for this purpose only. 
Species richness is simply defined as the total number of species which 
are represented in a biological community and was assessed by visually 
inspecting the ground photos. We used the prcomp function in R (R Core 
Team, 2017) for the principal component analysis of climate data and 
performed linear models between LAIu retrievals and the four environ-
mental predictors (two climate PCs, LAIo, and species richness) with the 
lm function in the R computational environment. 

3. Results 

3.1. Understory LAI variation among study sites and land cover types 

Overall the retrieved understory LAI estimates varied strongly 
among the investigated sites at the given point in a season when in situ 
measurements were taken. The majority of sites had low to moderate 
LAIu values in the range between 0 and 1 (18 sites), 9 sites had LAIu 
values between 1 and 2, and 2 sites showed relatively higher LAIu values 
>2 (Table 2). LAIu was higher in evergreen and decidous needleleaf 
forests, and in decidous broadleaf forests (0.96, 2.48, 1.05, respectively) 
compared to evergreen broadleaf forests, mixed forests, and open 
shrubland (0.53, 0.41, 0.89, respectively; note that DNF and OSH are 
each represented by only one site) (Fig. 2). 

3.2. Correlation among retrieval methods 

Since we obtained one LAI estimate per site for the fractional cover 
method and the NDVI method, LAI values that were derived for the three 
cover types with similar characteristics from the simple ratio method 
were averaged for subsequent analyses. However, the standard devia-
tion of LAIu among the three chosen cover types was low for all sites and 
was on average 0.05 m2/m2 (Fig. 3). 

The three applied methods showed moderate to high correlation 
when compared pairwisely. LAI derived from fractional vegetation 
cover was moderately correlated with both methods that used vegeta-
tion indices (correlation coefficients 0.63 and 0.68, respectively). In 
contrast, LAI derived from NDVI and LAI obtained from SR showed very 
strong correlation and the lowest root mean square error among the 
three comparisons (r = 0.99, RMSE = 0.53) (Fig. 4a-c). 

3.3. Limits of agreement (LoA) and pairwise bias among methods 

Mean bias among methods ranged from 0.016 (fractional cover vs. 
NDVI) to − 0.34 (NDVI vs. SR) with errors of pair-wise differences 
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between 0.07 and 0.50 (Table 3). Systematic bias among the three re-
trievals appeared at high LAIu ranges (LAIu of 2–3) where the NDVI 
method gave significantly higher LAIu estimates than the other two 
methods (Fig. 4d-f, black points outside the blue dashed lines). LAIu 
derived from simple ratio gave two significantly lower estimates when 
compared to the fractional cover method at medium (LAIu ~ 1.3) and at 
high ranges (LAIu ~ 2.0), but the deviations were of rather random 

character. 

3.4. Relationship between understory LAI and environmental site 
parameters 

The first two principal components of the 83 long-term climatic 
variables explained 73.4% and 13.7%, respectively. PC1 was mainly 
associated with temperature variables while PC2 included mainly vari-
ables associated with precipitation regime at the investigated sites. 
However, the relationships between both PCs and LAIu were not sig-
nificant (p > 0.05 in both linear models, Supplementary Material S1). 

Species richness varied significantly among the 29 sites and ranged 
from 2 counted species (Hyltemossa) to 15 understory species (Lanžhot). 
Highest LAIu was found at sites with intermediate overstory leaf area 
index (LAIo ~ 4 m2/m2), but there was otherwise no significant rela-
tionship among indices (Fig. 5a). In contrast, the number of species that 
were counted within sites had a significant positive effect on understory 
LAI when calculated as average across the three methods (slope: 0.07, 
R2 = 0.14, p < 0.001, Fig. 5b) as well as for each method separately 
(data not shown). 

4. Discussion 

Assessing biophysical properties of the forest understory is an 
important field of research in order to inform forest ecological research 
and modeling of forest ecosystem productivity. The understory layer still 
constitutes a cryptic quantity in many ecological studies due to the fact 
that it is often too complex to be directly assessed at larger spatial scales 
(Luyssaert et al., 2007; Clark et al., 2001). Neverthless, our data gives 
evidence that the contribution of understory to the entire energy ab-
sorption capacity of a forest stand can be significant, since we found LAIu 
values that were partly in the range of forest overstories, especially in 
boreal forests and temperate woodlands (e.g. Black et al., 1996; Gower 
et al., 1999). Satellite-based assessments of understory LAI would be 
preferable, because they could provide information at regional and 
global scales in relatively short time. However, its usability is often 
limited to rather sparse and open canopies, because dense and closed 
canopies will retain the reflection signal of the forest background (Pisek 

Table 2 
LAIu retrievals per site and mean LAIu across the three methods. LAIFC = Frac-
tional cover method, LAINDVI = NDVI-based retrieval, LAISR = Simple-ratio 
based method.  

Site LAIFC LAINDVI LAISR mean LAIu 

FR-Fon  0.96  0.71  1.23  0.97 
FR-Bil  2.48  1.48  1.58  1.85 
IT-BFt  1.75  3.28  2.46  2.50 
BE-Bra  0.12  0.16  0.73  0.34 
IT-Cp2  0.06  0.20  0.80  0.36 
ES-CMu  0.02  0.17  0.79  0.32 
ES-CPa  1.11  0.45  1.10  0.89 
CH-Dav  1.79  0.34  0.89  1.01 
DE-Hai  0.43  0.58  1.07  0.69 
FR-Hes  0.01  0.06  0.55  0.21 
DE-HoH  0.29  0.23  0.83  0.45 
NO-Hur  1.67  1.59  1.55  1.61 
SE-Htm  1.04  1.18  1.45  1.22 
FI-Hyy  1.67  1.32  1.49  1.50 
CZ-Lnz  1.34  1.92  1.78  1.68 
NL-Loo  0.43  0.13  0.74  0.43 
FR-MsS  0.05  0.55  1.07  0.56 
SE-Nor  1.45  1.04  1.34  1.27 
FR-Pue  0.87  0.37  0.89  0.71 
IT-Ren  1.36  0.93  1.40  1.23 
IT-SR2  0.14  0.23  0.96  0.44 
FI-Sod  0.99  0.24  0.81  0.68 
DK-Sor  0.28  0.47  0.97  0.57 
SE-Svb  1.40  1.96  1.73  1.70 
DE-Tha  0.55  0.54  1.01  0.70 
IT-Tor  1.24  3.60  2.58  2.48 
BE-Vie  0.19  0.17  0.74  0.37 
DE-RuW  0.92  0.38  1.00  0.77 
ES-Yst  0.22  0.05  0.60  0.29  

Fig. 2. Understory LAI distribution for each retrieval method and investigated forest cover type.  
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et al., 2016). Since LAI algorithms using satellite products are usually 
landcover type-dependent, missclassifications of the forest type in the 
underlying land cover map can induce errors to the retrieved LAI 
product (Jiao et al., 2014). Hence, we carried out an assessment 

approach based on in-situ measurements below the overstory by 
comparing three conceptually different retrieval methodologies for leaf 
area index of the understory layer. 

Fig. 3. Understory LAI variation among the three different land cover types as defined in Deng et al. (2006) for the LAISR method.  

Fig. 4. Pairwise correlation of the three evaluated retrieval methodologies (a-c) and their respective biases expressed as Bland-Altman-diagrams (d-f). The red 
dashed line in plots d-f shows the mean bias and the blue dashed lines show proportional biases expressed as 95% confidence intervals of error distribution. The blue 
lines can be interpreted as upper/lower limits of agreement. Black dashed lines show the linear regression of bias against mean of the two methods per site. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article. 
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4.1. Magnitude and variation of understory LAI across forest ecosystem 
ICOS and fluxnet sites 

Our study area encompassed boreal, temperate as well as mediter-
ranean ecosystems with diverse forest ecosystem understory types. 
Highest LAIu values were found in a decidous needleleaf forest (Torg-
non: 1.2–3.6 m2/m2) as well as in decidous broadleaf forest (Bosco 
Fontana: 1.7–3.3 m2/m2). Both sites are characterized by an interme-
diate and light permeable overstory (oak and hornbeam in Bosco Fon-
tana; European larch in Torgnon) with a densely developed shrub layer 
(Ruscus, Corylus in Bosco Fontana; Juniperus and Vaccinium in Torgnon) 
in the understory. In particular, Ruscus aculeatus is known to be an 
extremely shade- and drought-tolerant understory species having green 
and photosynthetically active stems (Pivovaroff et al., 2014). Since the 
species occurred along the transect at the Bosco Fontana site at high 
frequency, we presume that this strongly contributed to the high LAIu 
value retrieval. The fractional vegetation cover in Torgnon was very 
similar to those previously reported from other larch forests. Kushida 
et al. (2007) assessed the influence of understory vegetation in a Sibe-
rian larch forest and found a very high contribution of the understory 
vegetation to total leaf area because of the relatively high proportion of 
light transmitted through the sparse overstory canopy. The median 
fractional cover in Torgnon was very similar as compared to the study 
with Siberian larch (46% in Torgnon vs. 52% in Kushida et al. (2007)) 
and this probably explains the high LAIu found in our study. It should be 
however noted that deciduous needleleaf and evergreen broadleaf for-
ests were only poorly represented in our dataset (n = 1 for DNF and n =
3 for EBF), which makes it difficult to generalize our findings. 

Intermediate LAIu retrievals were found in evergreen needleleaf 
forests situated at high latitudes (Hurdal, Hyltemossa, Hyytiälä, Nor-
unda, Svartberget) and were in the range between 0.7 and 1.6. This 
finding corroborates earlier studies which found the strongest influence 

of the understory vegetation in forest ecosystems situated at high lati-
tudes (e.g. Liu et al., 2017; Jiao et al., 2014). The values that were 
retrieved in this study are close to those that were obtained by inversion 
of a two-layer canopy reflectance model that was applied over a diverse 
panel of understory types in boreal forest ecosystems (Kuusk et al., 
2004). For example, Kuusk et al. (2004) reported effective LAI values in 
Vaccinium-dominated Scots pine and Norway spruce forests in the range 
between 0.4–2.3 m2/m2. These understory types come closest to those 
analyzed in our study, since Vaccinium spec. was the dominating un-
derstory species in all mentioned sites above except Hyltemossa. 

4.2. Differences among retrieval methodologies and limits of agreement 

Substantial differences among retrieval methodologies will neces-
sarily bias LAI estimates, because the obtained values will change 
depending on the applied method. Some methodologies may capture LAI 
better at low or intermediate LAI ranges, while others provide more 
realistic estimates at higher LAI ranges. We analyzed the uncertainty, 
pairwise bias and limits of agreement (LoA) among the three method-
ologies. We found differences (expressed as RMSE) in the range of 
0.53–0.7 LAI units, which is slightly lower compared to uncertainties 
among retrieval methodologies of total LAI. These were found to be 
between 0.56 and 1.25 LAI units when the most common retrieval 
methods ECOCLIMAP, CYCLOPES, GLOBCARBON, and MODIS were 
compared (Garrigues et al., 2008). However, an important aspect is 
whether the bias among methods is of random or systematic nature, 
because only the latter would allow to recommend one method instead 
of the other. LAIu derived from NDVI gave significantly higher estimates 
compared to the other two methods at higher LAI ranges (LAIu > 2) 
(Fig. 4d,f). This resulted in unrealistically high retrievals for the Bosco 
Fontana and Torgnon site with this method, which were twice as high 
compared to the fractional cover method. Technically, the dependency 
of the retrieved LAI from the main parameter has a different strength 
among the three methods: while LAIFC and LAISR show a relatively 
moderate LAI increase towards higher vegetation cover or SR values, 
LAINDVI exhibits a strong exponential relationship between LAI and 
observed NDVI (Fig. 6). Consequently, the method most likely over-
estimates LAIu at very productive sites with dense understory and NDVI 
> 0.7. 

In contrast, LAISR showed higher values most notably at low LAI 

Table 3 
Pairwise mean bias and standard deviation (in parentheses) among the three 
methods.   

LAIFC LAINDVI LAISR 

LAIFC –   
LAINDVI 0.016 (0.74) –  
LAISR − 0.320 (0.501) − 0.336 (0.425) –  

Fig. 5. Relationship between retrieved LAIu and environmental parameters: a) overstory LAI for the 29 sites from published literature and b) species richness 
obtained from ground photos. Errorbars display variation among the three LAIu retrieval methods. Note that overstory LAI values were not available for four sites 
(Cortes de Pallas, Hurdal, and Montiers). 
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ranges compared to the other two methods, although the bias was inside 
the credibility intervals in both cases. LAI values below 0.5 were not 
retrieved at all by LAISR, which questions its suitability in areas with 
very sparse ground vegetation such as temperate forests with dense 
overstory and dry mediterranean shrublands with low site productivity. 
Sites with low LAIu appeared in our dataset mainly at low latitudes 
(Yeste, San Rossore, Cuenca de las Majadas, Castelporziano) as well as in 
broadleaf forest ecosystems with dense overstory vegetation (e.g. Hohes 
Holz, Vielsalm). The simple ratio is indeed known to be vulnerable 
against occurrence of litter and bare soil which often leads to consid-
erably higher LAI values when compared to other vegetation indices (e. 
g. Zhu et al., 2010). As such, very high NIR reflectances were observed at 
the Hohes Holz and Cuenca de las Majadas (CdM) sites and both were 
characterized by high amount of exposed leaf litter and dessicated grass 
remnants, respectively. 

The purely empirical method (LAIFC) which is based on a simple 
physical law seems to capture the whole spectrum of LAIu well without 
significant bias at either high or low ends. However, for the ease of 
simplicity and for reasons of comparability we assumed that all under-
story vegetation has spherical leaf angles and random distribution. 
While species-specific information on leaf inclination angles exists 
nowadays for many trees and shrubs (e.g. Chianucci et al., 2018), future 
development of such databases for other forest perennials and annual 
plants could further improve LAIu estimation when the fractional 
vegetation cover method is used. 

4.3. LAI variation among selected land cover types for simple ratio 

For comparison we used direct retrievals obtained from vegetation 
cover and NDVI, since both are land cover-independent. However, the 
method by Deng et al. (2006), which is based on the simple ratio, was 
designed in a way that model coeffcients are selected depending on the 
respective land cover type. We ran the model with three different land 
cover types which refer to different shrub biomes and used the average 
across the three types for comparison. Nevertheless, the variation among 

the three selected cover types was small in all cases and did on average 
not exceed 0.05 LAI units. Consequently, choosing one shrub biome 
instead of the other for LAIu calculations will most likely not lead to a 
significant bias of LAIu retrieval. This corroborates earlier studies which 
investigated the effect of different land-cover type assumptions on 
global LAI retrieval and which found only little differences among them 
as well (Liu et al., 2017). 

4.4. Relationship between understory leaf area index and environmental 
parameters 

Since productivity of forest ecosystems in general is largely driven by 
climatic conditions such as winter temperatures or drought regime 
(Schuur, 2003), we wanted to test whether biogeographical variation in 
leaf area index of the understory (as a surrogate of site understory 
productivity) shows similar strong relationships with such drivers. 
However, differences in LAIu were poorly correlated with long-term site 
climatic conditions. Iio et al. (2014) demonstrated that field-based LAI 
shows strong relationship with temperature and water availability when 
analysed at global scale, but pointed out that such relationships can 
strongly differ among plant functional types. In addition, Wright et al. 
(2004) found that most of the global variation in leaf traits occurs among 
co-existing species within sites rather than among different climates 
across sites. In the light of these studies we conclude that the non- 
significant relationship between LAIu and key climatic parameters can 
be best explained by the diverse panel of understory plant functional 
types and plant ecological communities that were analyzed. Addition-
ally, variation in LAIu showed no causal relationship with increasing or 
decreasing leaf area index of the overstory, although such relationships 
were found in earlier studies at smaller spatial scale (e.g. Chianucci 
et al., 2014; Eriksson et al., 2006). Nevertheless, our findings suggest 
that biogeographical differences in LAIu are not soley driven by light 
availability, but also by other factors such as soil properties, fire 
occurrence, and other abiotic stress regimes (e.g. Gentry and Emmons, 
1987). 

Fig. 6. Retrieved understory LAI in relation to its main parameter - fractional cover [%], NDVI, and SR, respectively. Black dots represent the mean LAIu of the 
investigated sites. 
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In contrast to climate and overstory properties, species richness had a 
significant effect on LAIu variation so that sites that are harbouring more 
species show greater understory LAI (Fig. 5b). The relationship was 
significant over all three retrieval methodologies, but was most strongly 
pronounced for LAINDVI which showed a steep slope towards higher 
species richness values. Such relationships between vegetation indices 
and vegetation diversity parameters were found in other studies as well 
(e.g. Gould, 2000; Oindo and Skidmore, 2002) and discussed as a po-
tential remote sensing tool in order to predict plant diversity from 
vegetation indices at larger spatial scales (Rocchini et al., 2004). In turn, 
we hypothesized that LAI of the forest understory may be inversely 
predicted when key vegetation parameters are known, for instance from 
detailed survey data available for most of the investigated sites. Our 
assessment represents a first step that may be more thoroughly inves-
tigated and probably substantiated with more data and additional pa-
rameters in the future. Such approximations could indeed assist energy 
exchange modelling in forest ecosystems by approximating the largely 
unkown quantity that the understory LAI still constitutes in most of the 
studies. 

5. Conclusions 

In this study we compared three conceptually different retrieval 
methodologies for understory LAI across a wide panel of 29 different 
understory types. We found significant heterogeneity of LAIu in space 
that can be attributed to differences in vegetation diversity, but not to 
variation in biogeography and climate among sites or differences in 
overstory properties. Retrievals obtained from the three methods were 
significantly correlated with each other, but performed differently at 
specific LAI ranges. In order to derive meaningful and reliable in situ 
LAIu estimates, we recommend the given method might be selected 
depending on the overall conditions of the respective site. LAIu derived 
from fractional vegetation cover (previously applied by e.g. Heiskanen 
et al. (2012)) seems to be a good compromise for indirect in situ LAIu 
estimation given that it was capable of retrieving LAIu at both low and 
high LAI ranges without constraints of reflectivity issues related to 
presence of bare soil or dense vegetation and saturation. Furthermore, 
this method makes least model assumptions and is easy-to-implement by 
using standard equipment such as a digital camera and open-source 
image analysis software. Our results are pertinent to future efforts to 
provide more field data for further evaluation and comparison of 
regional and global understory LAI products such as GLOBMAP (Liu 
et al., 2017) and others. 
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