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Abstract: Solvatochromic probes undergo an emission shift when the hydration level of the
membrane environment increases and are commonly used to distinguish between solid-ordered
and liquid-disordered phases in artificial membrane bilayers. This emission shift is currently
limited in unraveling the broad spectrum of membrane phases of natural cell membranes and their
spatial organization. Spectrally resolved fluorescence lifetime imaging can provide pixel-resolved
multiparametric information about the biophysical state of the membranes, like membrane
hydration, microviscosity and the partition coefficient of the probe. Here, we introduce a
clustering based analysis that, leveraging the multiparametric content of spectrally resolved
lifetime images, allows us to classify through an unsupervised learning approach multiple
membrane phases with sub-micrometric resolution. This method extends the spectrum of
detectable membrane phases allowing to dissect and characterize up to six different phases, and
to study real-time phase transitions in cultured cells and tissues undergoing different treatments.
We applied this method to investigate membrane remodeling induced by high glucose on PC-
12 neuronal cells, associated with the development of diabetic neuropathy. Due to its wide
applicability, this method provides a new paradigm in the analysis of environmentally sensitive
fluorescent probes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Cell membranes are composed of many different types of lipids, including saturated and
unsaturated phospholipids, cholesterol, and fatty acids. Membrane lipids can interchange among
several membrane phases, which are supramolecular structures having relatively uniform chemical
and physical properties. At low temperatures, artificial lipid bilayers composed by a limited
number of phospholipids are laterally ordered and well-packed together in the membrane, in
a solid ordered, gel-like phase (so). Raising temperatures over a transition value (melting
temperature, Tm), characteristic of the phospholipid composition, induces the transition to a fluid-
like, liquid-disordered phase (ld), which is characterized by a larger area occupied by polar heads
of phospholipids. Sufficiently high membrane sterol concentration triggers the emergence of the
liquid-ordered phase (lo), which possesses solid-like qualities similar to so though maintaining
the high rate of lateral diffusion of the ld phase. Cell membranes display more complex behavior,
consisting of a mosaic of multiple phases coexisting in the lipid bilayer [1,2]. The heterogeneity
of cell membranes cannot be simplified to mere differentiation of coexisting lipid domains since
the number of lipid species is significantly higher with respect to artificial bilayers, and high
local concentrations of membrane-associated proteins create lateral pressure that renders lipid
domain separation more thermodynamically favorable, possibly leading to phase transitions
or to the emergence of new phases [2]. The resulting membrane phase dynamic equilibrium
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reflects changes in the lipid and protein composition, as imposed by dietary, environmental,
and cellular conditions. The maintenance of this dynamic equilibrium is a prerequisite for
proper membrane function and it is associated with cell viability and normal cell growth and
division [3]. For example, membrane phase separation has a pivotal role in the potency of ligand
binding to membrane receptors, on direct cell-cell interaction and the modulation of the activity
of membrane enzymes, receptors, channels, and transporters [1,4–7], and membrane phase
alterations have been described in various pathologies, such as thrombocythemia, hyperlipidemia,
hypercholesterolemia, diabetes mellitus, obesity, in Alzheimer’s disease and schizophrenia
[3,6–9].
The fluorescence emission spectrum of solvatochromic and lipophilic probes, as Laurdan or

Nile Red, which incorporates into the lipid phase in the membrane, is traditionally a powerful tool
to resolve in real-time, with pixel resolution, the phase state of membranes, alterations in lipid
composition and modified cell signaling [10–14]. The excited-state relaxation of solvatochromic
probes is highly sensitive to the presence and mobility of water molecules within the membrane
bilayer, resulting in a red-shift of their emission spectrum in going from gel-like phases to
disordered, liquid-crystalline phases. The spatial distribution of coexisting lipid domains,
determined according to distinctive fluorescence spectra and dual-wavelength ratio measurements
[15–17], allows mapping changes in the structure of cell membranes in physiological and
pathological contexts [6,12,18,19]and monitoring lipid storage and lipolysis pathways [20,21].
However, the ratio approach presents some limits, since it is based on a single parameter, not
providing for a specific, pixel-resolved classification of the variety of phases that characterize
membranes of living cells. [14]. At present, even using more sophisticated analysis methods
as the spectral phasors [18], it is only possible a hydration-driven classification of membrane
phases. Here, we aim to improve the confocal analysis based on the dual-channel acquisition
by using spectrally resolved fluorescence lifetime imaging of cells labeled with solvatochromic
probes. This technique captures multiparametric information about the biophysical state of the
membranes, enabling a proficient distinction of membrane phases. Through this technique, each
pixel is labeled by its intensity value, the solvatochromic spectral shift, and the spectrally resolved
fluorescence lifetime of the probe, thus providing information on the partition coefficient of the
probe within the phase, the hydration level and the microviscosity of the phase, respectively. To
perform a quantitative analysis, we introduce an artificial intelligence clustering tool (k-means)
that, leveraging on the multiparametric content of spectrally resolved lifetime images, results in
the extension of the spectrum of detectable membrane phases. This clustering method, which was
already applied to fluorescence intensity and lifetime dataset [22,23], going beyond the classical
two-state classification, provides the classification and the characterization of multiple phases
and enables the real-time investigation with the sub-micrometric resolution of cell membrane
phase transitions in living cells and tissues in different physiological and pathological conditions.
We applied this method to investigate the effects of membrane remodeling induced by high
glucose on PC-12 neuronal cells. High glucose-induced neuronal cell death is responsible for
the development of diabetic neuropathy [24], and although important abnormalities in energy
metabolism have already been assessed, the related effects of membrane remodeling and lipid
metabolism are still unclear.

2. Materials and methods

2.1. Cell cultures and fluorescence labeling

PC-12 rat pheochromocytoma cell line, obtained from the American Type Culture Collection
(ATCC), is routinely maintained in standard RPMI 1640 medium (Gibco, USA), completed
with fetal calf serum (FCS), Sodium Pyruvate and HEPES (Sigma-Aldrich, USA), Pen/Strep
and β-Mercaptoethanol (Gibco, USA) and differentiated with Nerve Growth Factor (Gibco,
USA) (50 ng/ml for 2 weeks). For the artificial intelligence-based analysis, 1 µl of 1 mM stock
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solution of Laurdan (Molecular Probes, Inc., Eugene, OR, USA) is added per milliliter of medium
and cells are treated with 11 mM, 50 mM and 75 mM glucose for 48 h before labeling. For
organelle labeling experiments, 1 µl of 1 mM stock solution of Nile Red (Molecular Probes, Inc.,
Eugene, OR, USA) is added per milliliter of medium and incubated for at least 30 minutes in the
dark for staining intracellular lipid droplets (LD). 40 µl of different fluorescent protein-based
markers, CellLight ER-GFP BacMam 2.0, CellLight Golgi-GFP BacMam 2.0 and CellLight
Mitochondria-GFP BacMam 2.0 (Molecular Probes, Inc., Eugene, OR, USA), are used for the
staining of the endoplasmic reticulum (ER), Golgi apparatus and mitochondria, respectively.
Incubation is performed for 16 hours at 37 °C.

2.2. Image acquisition settings

Laurdan emission intensity images are acquired with a Nikon A1-MP confocal microscope
equipped with a 60× oil-immersion objective (1.4 NA), a 2-photon Ti:Sapphire laser (MAI TAI
DEEP SEE EHPDS -007 (2017), Spectra Physics, Newport Beach, CA) producing <70-fs pulses
at a repetition rate of 80± 1 MHz. A PML-SPEC 16 GaAsP (B&H, Germany) multi-wavelength
detector (grating part is the No. 77414) coupled to a SPC-830 TCSPC/FLIM device (B&H,
Germany) working in FIFO mode is used to collect the decay data. Calibration was performed
through the registration of second harmonic generation (SHG) signals registered at several
excitation wavelengths, as recommended by the manufacturer. The software used for acquisition
is SPCM-64 (B&H, Germany). Laurdan fluorophore is excited at 780 nm. This value constitutes a
good compromise between the maximization of absorption and the reduction of autofluorescence
excitation. Signals are integrated into the time window of width 12.5 ns and into the wavelength
region 400-600 nm. For image acquisition, the pixel frame size is set to 512 × 512 and the pixel
dwell time is 60 µs. Imaging is performed at 37°C with 5% CO2 (cage incubator OKOLAB).
The average laser power at the sample is maintained at the mW level (10 mW). For FLIM, data
are acquired, without performing time integration Signals are integrated into the wavelength
region 420–460 nm for the blue channel (Iblue(t,x,y)) and 500–560 nm for the green channel
(Igreen(t,x,y)). FLIM acquisitions provide for the decay curves, for each pixel.

2.3. Fluorescence intensity microscopy for the partition coefficient determination:
construction of the P-image

Fluorescence intensity of a lipophilic probe in the membrane phase is proportional to the partition
coefficient P, defined as the ratio of the emission intensity of the probe between the phase at pixel
(x,y) and a reference phase:

Log[P(x, y)] = log
(
Ix,y
Iref

)
(1)

where Ix,y is the emission intensity of Laurdan at the pixel(x,y) integrated on the whole emission
spectrum, and Iref is the emission intensity of Laurdan in a reference phase. The reference phase
is the phase characteristic of the core of LD, which is characterized by the highest uptake of the
Laurdan probe (Fig. S1), as already qualitatively observed in [25]. Therefore, the log P value we
defined herein is a measure of the hydrophobicity of the membrane taking the LD as a reference.
The use of LD’s Laurdan intensity as reference for maximum has been chosen accordingly to
the high compartmentalization of the probe in these organelles, as also observed in a previous
article [25]. In the Supplement 1, the detailed workflow for the determination of the reference is
described.
P value is dependent on the composition and the physical state of the membrane phase, and

especially on the distribution, length and three-dimensional organization of the hydrophobic tails.
The P value is calculated pixel-by-pixel using the equation [1] yielding the P image, which is
one of the three image inputs for the unsupervised analysis. Background values are measured
and subtracted for each image, and debris or other aggregates are removed to avoid biases in the

https://doi.org/10.6084/m9.figshare.12698609
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analysis. Background values are removed using the software SPC-image 8.1 (B&H, Germany)
through the function ‘Threshold’. This function defines the minimum number of photons in the
peak of a fluorescence curve. Pixel with lower photon number are not analyzed by the fitting
procedure, therefore suppressing dark pixels. This value is sampled on n=100 curves on the area
outside cells, ranging from 5 to 10.

2.4. Fluorescence ratio imaging microscopy for membrane hydration determination:
construction of the GP image

For the fluorescence ratio imaging approach, the same experimental setup and the same
acquisition data are used, but signals are integrated in the time window of width 12.5 ns and
into the wavelength region 420–460 nm for the blue channel and 500–560 nm for the green
channel to evaluate the spectral shift of the probe. The fluorescence spectrum of the probe
Laurdan, which incorporates into the lipid phase in the membrane, is correlated to its physical
state. Laurdan’s excited-state relaxation is highly sensitive to the presence and mobility of
water molecules within the membrane bilayer, yielding information on membrane hydration by
a shift in its emission spectrum depending on the surrounding lipid phase state (i.e. bluish in
ordered, gel phases and greenish in disordered, liquid-crystalline phases) [26]. By using this
probe, coexisting lipid domains are labeled according to their distinctive fluorescence spectra and
dual-wavelength ratio measurements. As a normalized ratio of the intensity at the two emission
wavelength regions, the generalized polarization (GP) provides a measure of membrane order
(high membrane micropolarity, low GP; low membrane micropolarity, high GP). The GP index
is calculated for each pixel using the two Laurdan intensity images Iblue(x,y) and Igreen(x,y) [27],
according to the following formula:

GP =
Iblue(x, y) − GIred(x, y)
Iblue(x, y) + GIred(x, y)

(2)

G is a correction factor calculated by using the following Eq.

G =
GPtheo + GPtheo × GPexp − 1 − GPexp

GPtheo × GPexp − GPtheo + GPexp − 1
(3)

where GPtheo is the GP theoretical value of a standard solution of 5µM Laurdan in DMSO,
which has a known value (GPtheo=0.207), where-as GPexp is the GP value of the same solution
measured in our confocal microscope [28].
GP index is independent of excitation intensities, probe concentrations, and other artefacts,

relying on the ratiometric properties of the probe [6,15].

2.5. Fluorescence lifetime microscopy for microviscosity determination: construction
of the η image

To determine the lifetime, especially when the decay time exceeds 30% of the 12.5 ns time
window, a good estimate of τgreen and τblue is retrieved by fitting the data with an incomplete-decay
model which includes the fluorescence remaining from the previous laser pulses in the model
function. This is the case of Laurdan lifetime as in [29]. The model is a sum of exponential
terms, taking into account the fluorescence that does not fully decay within a single laser pulse
period. Based on ‘Repetition Time’ the fluorescence leftover from all previous excitation pulses
is included in the model [30]. The ‘offset’ is kept fixed and set to zero. With the PML-16-GaAsP
detector, this situation is achieved by strictly avoiding pickup of room light. This was obtained
by using obscuring panels applied to the OKOLAB cage incubator, thus realizing total dark
in the acquisition chamber. The value of the background was measured for our setup and the
average photon count for each pixel on a 512× 512 image is 0.48± 0.8. In membranes, the
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solvent relaxation (decrease in GP), analyzed so far, depends on the number of the surrounding
water molecules, and thus increases with membrane hydration levels [31]. This effect can be
also revealed by a decrease of the fluorescence lifetime due to the enhanced emission from the
relaxed state, which is characterized by a lower lifetime. Another quantity that can be measured
analyzing the fluorescence decay is the rate of solvent relaxation, obtained by measuring the rate
of the spectral shift [31,32]. The speed of solvent relaxation is related to the rotational mobility
of the water molecules within the membrane and is referred to as membrane microviscosity [29].
When the rate of spectral relaxation is in the picosecond scale, the temporal resolution of the
time-correlated single photon counting devices is not able to resolve any changes. However, in
very viscous environments the time scale of relaxation can increase up to the nanosecond time
scale. In this context, the change in membrane polarity due to water hydration from the effects
due to viscosity can be uncovered by analyzing the decay time of the blue channel (emission:
450/50 nm) and the green channel (emission: 540/50 nm) [32]. The excited-state decay in
the blue channel presents an apparent decay time that reduces the standard decay time of the
fluorescence emission from the relaxed state because the depopulating process from the locally
excited state to the relaxed state contributes to the overall decay. Conversely, the excited-state
decay in the green channel increases due to the populating process from the locally excited
state to the relaxed state. Overall, the populating and depopulating processes due to the solvent
relaxation lead to a contextual decrease of the fluorescence lifetime in the blue channel, and an
increase of the measured lifetime in the green channel. Thus, the ratio between the blue and
green apparent lifetimes

η(x, y) =
τgreen(x, y)
τblue(x, y)

(4)

provides for a measure of the extent of the solvent relaxation. The rationale of using the ratio is to
summarize a common effect due to solvent relaxation in the two channels: from previous studies
[29,31–33], as already explained upwards, the main effect of solvent relaxation is to increase
the lifetime of the green channel and decrease concomitantly the lifetime of the blue channel.
The ratio allows to reduce the extent of lifetime variations due to fluidity (which are already
accounted by GP). Amplitudes are more strongly affected by fluidity variations. We added this
explanation and this reference to justify this choice.
This parameter, independent from the probe concentration, uneven illumination, and other

artefacts gives a further characterization of the membrane phase, thus providing information
about its microviscosity. An increase in η(x, y)Z indicates a slower spectral relaxation, which
is related to slower motility of water molecules due to the formation of hydrogen bonds with a
membrane phase that presents a high grade of structured water, increasing the microviscosity of
the phase. In several works, an increase in structured water is linked to the presence of cholesterol
[14,32,33]. The η value is calculated pixel-by-pixel using the equation [4] yielding the η-image,
which serves as one of the inputs for the unsupervised analysis. Background values are measured
and subtracted for each image, and debris or other aggregates are removed to avoid biases in the
analysis.

2.6. Confocal microscopy of intracellular organelles

For the detection of intracellular organelles, petri dishes with GFP or Nile Red labeled cells are
placed on the inverted confocal microscope (Nikon A1 MP) equipped with an on stage incubator
(T = 37 °C, 5% CO2, OKOLAB) and a 32 channel spectral detector [21]. The 32 channel
spectral images are obtained using a 60× objective (NA 1.4) under 488 nm excitation in the
emission range 510-700 nm (6 nm bandwidth). Internal photon multiplier tubes collected 16
bit, 1024×1024-pixel images at 0.125 ms dwell time. To isolate intracellular organelles from
the background an intensity-based segmentation is applied. For the intracellular GFP-stained
organelles segmentation, the intensity image is integrated into the spectral range 510-520 nm.
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For the Nile Red labeled LD, the intensity image is integrated into the spectral range 534-557
nm. Organelles segmentation is obtained through the open-source software ImageJ (NIH) by
applying the Max Entropy method (built-in function ‘Threshold’). Plasma membranes (PM) are
isolated by applying the ‘Find Edges’ tool.
The quantification of the fraction of area covered by a specific organelle (central sections of

the cells are sampled as reference) is evaluated as the ratio of the number of pixels covered by the
organelle (N pixelORG) and the total number of pixels covered by the cell (N pixelCELL)

N (%) =
N pixel ORG
N pixel CELL

· 100 (5)

Because of the possibility of an overlap between the organelles (especially ER and Mitochondria),
the values given in graph represent upper estimates.

2.7. Statistics

Statistical tests for sets of biological/biophysical data (Fig. 2(F), 2(G), 5(B), 7) are performed
by R Studio (https://www.rstudio.com/). For image quantification, a minimum of n=40 cell per
sample is analyzed. Baseline characteristics among groups have been compared with ANOVA for
parametric variables. Quartile-quartile plots checked data normality graphically. A comparison
between groups’ couples has been made with Tukey’s Test.

3. Results

3.1. Analysis of P maps, GP maps, and η maps of PC-12 cells

The pixel resolved parameters extracted from the hyperspectral lifetime acquisitions are visualized
in the P maps, the GP maps and η maps, reflecting pixel-resolved differences in the partition
coefficient of the probe within the phase, in the hydration levels and in the microviscosity of the
phase, respectively. In Fig. 1(A)–1(B)–1(C), P maps, GP maps and η maps of a representative,
untreatedPC-12 cell are reported. In Fig. 1(D)–1(E)–1(F) the spatial distributions of normalized
intensity (contour plots generated with Image-J, NIH), GP and η values are visibly different
since each quantity reflects a peculiar property of the membrane phase. P maps present peaks
in correspondence of LD [25], which are resolved and display the highest P value (P=1, white
regions), and an intermediate value (P∼0.5, yellow regions) in the intracellular regions different
from LD. Based on its location and extent within the cell (Fig. 6), these internal regions
correspond to ER membranes, mitochondrial membranes and the membrane of Golgi apparatus.
Perinuclear and peri-PM regions display the lowest P values. The GP distribution (Fig. 1(E)) is
more homogeneous in LD and in the regions around them. In the other intracellular regions, it is
possible to observe subsets of pixels characterized by a flat spatial P distribution, but with a GP
distribution dominated by a wrinkled landscape (Fig. 1(D) and 1(E), red arrows). The η spatial
distribution (Fig. 1(F)) provides an additional informative content: the corrugated landscape is
very different from the one characteristic of P and GP distributions, highlighting the presence of
several membrane regions characterized by a range of diverse spectral relaxation values.

3.2. P maps, GP maps, and η maps of PC-12 cells in glucose overload conditions

In Fig. 2(A)–2(B)–2(C) representative PMaps, GPMaps and ηmaps of PC-12 cells, respectively
at 11 mM, 50 mM and 75 mM glucose are reported. The average variations of GP and η with
increasing glucose concentration (averages of the image histograms over the entire dataset) are
not significant (Fig. 2(F)–2(G)). However, from the GP histogram calculated for n=40 cells (Fig.
2(D)), a rearrangement of the membrane domains following the glucose treatment, consisting of a
decrease of the high GP pixels (in the dark-green colored region around GP∼0.9, low hydration)
and an increase of the low GP pixels (in the light-green colored region around GP∼0.5), can be

https://www.rstudio.com/


Research Article Vol. 11, No. 10 / 1 October 2020 / Biomedical Optics Express 5734

Fig. 1. P maps, GP maps and η maps of a representative untreated PC-12 cell. (A) P maps,
(B) GP maps and (C) η maps of a representative PC-12 cell. (D) Spatial distributions of
normalized intensity, GP (E) and η values (F) are visibly different since each quantity reflects
a peculiar property of the membrane phase. Subsets of pixels characterized by a flat spatial
intensity distribution, but with a GP distribution dominated by a wrinkled landscape are
indicated by red arrows. Scale bar is 10 µm.

seen. Concomitantly, a slight shift of the η distribution towards lower values can be observed
(Fig. 2(E)).

3.3. Artificial intelligence clustering of multiparametric fluorescent images

The separate analysis of the three maps, though indicating that some changes are occurring,
lacks the specificity needed to fully describe the phases of intracellular membranes. To extend
the spectrum of detectable membrane phases, we report in Fig. 3 the workflow for obtaining
AI images. In the first step, multiparametric images are acquired with a hyperspectral imaging
system. For each pixel, intensity values and lifetime values for the blue channel (400-470 nm)
and green channel (490-600 nm) are obtained, for a total of 4 parameters. These parameters
are further processed (Materials and Methods), adding additional information in the form of
two factors: the G factor and the referenced normalization of intensity (Eq. (1) and Eq.3),
transforming them in the P value, the GP value and the ratio η of the lifetimes. In the second
step, images are stacked, creating a multiparametric map in which each pixel is associated with a
real phase-vector ®ϕ = (P,GP, η). The parameters are then rescaled and the pixels of the entire
dataset analyzed are sent to a k-means classifier. K-means clustering aims to partition the n
observations into k (≤ n) sets S=S1, S2, . . . , Sk to minimize the within-cluster sum of squares
(WCSS) (i.e. variance). The obtained cluster center is the representative of its cluster. The
number of observations n corresponds to the total number of pixels analyzed (n=512× 512*m,
where m is the number of images).

All the m images of the experiment (m∼ 15, resolution 512× 512) are sent to the classifier. In
each image from 6 to 10 cells are present. The k-means algorithm [34,35] represents each of the
k clusters Cj by the mean (or weighted average) cj of its points (centroid). The sum of distances
between elements of a set of points and its centroid expressed through an appropriate distance
function is used as the objective function. We employed the L2 norm-based objective function,
i.e. the sum of the squares of errors between the points and the corresponding centroids, which is
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Fig. 2. P maps, GP maps and η maps of PC-12 cells in glucose overload conditions. (A) P
maps, (B) GP maps and (C) η maps of representative PC-12 cells at 11mM, 50mM and
75mM glucose, respectively. (D) GP histogram and (E) η histogram calculated over the
whole dataset (see section 2.6) show a subtle rearrangement of the membrane domains
following the glucose treatment. (F) Average values of GP histograms at different glucose
concentrations. (G) Average values of η histograms atdifferent glucose concentration. Scale
bar is 20 µm.

equal to the total intracluster variance

E(C) =
∑

j=1:k

∑
xiεCj
| |xi − Cj | |

2 (6)

k-means iterative optimization consists of two-step major iterations that: (1) reassign all the points
to their nearest centroids, and (2) recompute centroids of newly assembled groups. Iterations
continue until a stopping criterion is achieved (no reassignments with tolerance <10−5). This
version, known as Forgy’s algorithm [35] works with any Lp norm and it does not depend on
data ordering. The k-means algorithm also has certain shortcomings which are minimized or
mitigated according to the following:

1) Dependence from the initial guess of centroids: To mitigate the effects of cluster initializa-
tion we applied the method suggested by Bradley and Fayyad [36]. First, we performed
k-means on several small samples of data with a random initial guess. Each of these
constructed systems is then used as a potential initialization for a union of all the samples.
Centroids of the best system constructed this way are suggested as an intelligent initial
guess to ignite the k-means algorithm on the full data.

2) Computation of local minima: No initialization guarantees a global minimum for k-means.
This is a general problem in combinatorial optimization, which was tackled by allowing
uphill movements and determines the global minimum of a given set of n-dimension
functions with constraints using simulated annealing (SA) method [37].

3) Problem of k-selection: The optimal number of clusters (k=8) is determined by the elbow
method and validated with the Silhouette method (Fig. 4). The elbow method consists in
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Fig. 3. Workflow for the artificial intelligence clustering of multiparametric fluorescent
images. In the first step, multiparametric images are acquired with a hyperspectral imaging
system. For each pixel, the P value, the GP value, and the ratio η are measured to quantify
the spectral properties of the solvatochromic probe. In the second step, images are stacked,
creating a multiparametric map in which each pixel is associated with a 3D phase state-vector
(P, GP, η). The dataset of phase state vectors is then sent to a k-means classifier. K-means
clustering aims to partition n observations into k clusters in which each observation belongs
to the cluster with the nearest mean, serving as a prototype of the cluster. Each classified
pixel is then remapped to the pseudo-image, that we called AI image. Phases are then
ranked and pseudo-colored and the computed distribution of the phases is reported in the
phase-profile graph.

the determination of the within-cluster-sum of squared errors (WSS) for different values
of k, and in the selection of the k value for which WSS becomes first starts to diminish.
In the plot of WSS-versus-k, this is visible as an elbow (Fig. 4). Silhouette is a method
to validate consistency within clusters of data. The silhouette value is a measure of how
similar an object is to its cluster compared to other clusters. The silhouette ranges from
−1 to +1, where a high value indicates that the object is well matched to its cluster and
poorly matched to neighboring clusters. The silhouette plot displays a local maximum at
the chosen k=6 and has an average Silhouette value of 0.88 (Fig. 4).

4) Sensitivity to outliers: The parameters are rescaled using as an offset the mean value of the
distribution, and as scaling factor αs, where s is the standard deviation of the distribution
and α a tunable parameter. If the distributions are almost Gaussians, α >3 ensures that
more than 99% of the values are considered. This was verified by visual inspection and
qq-plots. When there are significant deviations from Gaussians the α factor is adjusted to
include at least 99% of values by direct calculation.

Once the optimization is performed, each pixel is classified in 8 classes, with value going from
1 to 8, and then remapped to the pseudo-image, that we called AI image. Phases are ranked
according to the | | ®ϕ| | value. The distribution of phases is calculated by reporting the fraction of
pixels belonging to each class k.
We selected P, GP and eta as input parameters because they provide a referenced and thus

comparable measure of probe concentration (P) and phase shift (GP) among different samples,
from experiment to experiment, and from lab to lab. Using these data, instead of the raw data,
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Fig. 4. Elbow plot and Silhouette plot for the determination of the optimal cluster number
of PC-12 cells treated with increasing glucose concentration.

adds additional information in the form of two factors: the G factor (Eq. (3)) and the referenced
normalization of intensity (Eq. (1)). Eta is intrinsically independent from these detrimental
fluctuations, and it was introduced to summarize a common effect due to solvent relaxation in
the two channels: in several studies [29,31–33], it is clear that the effect of solvent relaxation
is to increase the lifetime of the green channel and decrease concomitantly the lifetime of the
blue channel. This ratio allows to reduce the extent of lifetime variations due to fluidity (which
are already accounted by GP). The usage of processed data allows also employing in k-means
clustering three parameters instead of four, thus reducing the number of parameters employed in
the model (if the number of dimensions (n) increases to four, with k=8 cluster the number of free
parameters (equal to n×k) will increase from 24 to 32).
Keeping all the settings fixed, the usage of raw data shows a convergence of the algorithms

nearly on the same clusters, but the 4p clustering is less optimal than the 3p clustering (Silhouette
value=0.81). Therefore, we conclude that our approach based on processed quantities has to be
preferred, allowing comparison on the same clusters of results coming from different experimental
settings, different labs, different days, long acquisition times. Moreover, the maximum Silhouette
value denotes an overall reduction of noise: while noise can be added in retrieving indirect
quantities, the increase of specificity of these parameters and the removal of noise related to
intensity fluctuations and other spurious fluctuations can lead to optimization of data clustering.

3.4. AI images of PC-12 cells undergoing glucose overload and characterization of
the phase profiles

In Fig. 5(A), AI images, obtained as described in the previous section, are reported. The retrieved
phases are labeled by a number going from 1 to 8. In Fig. 5(B), the average fraction of the
phase is reported. Each class is characterized by the mean values of (P, GP, η) calculated on the
respective clusters. These values are shown in Fig. 5(C), ranked in four classes (white= fourth
quartile-lowest values, light blue= third quartile, blue= second quartile, dark blue= first quartile-
highest values). While clusters 1 and 2 correspond to background values (BK1-BK2), class 3 (P,
GP, η) =(Q3-Q3-Q3) represents a fluid phase with low viscosity and low permeability. This phase
is localized on the cell PM, the fraction occupied is ∼5% and it is organized in macro-domains.
Since fluidity and low viscosity are characteristic of the liquid-disordered phase [2,3], we label
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this phase as lPMd . Class 4 (Q3-Q4-Q1) represents a hyper-fluid, hyper-viscous phase with low
permeability. Also, this phase is mainly localized on the cell PM, organized in macro-domains,
with an occupied fraction ∼5%. Since hyper-viscosity is characteristic of the liquid-ordered
phase [29,32], we define phase 4 as lPMo phase. The sum of the area fractions occupied by the
two phases is coherent with the area fraction occupied by PM (§3.5 and Fig. 6–7). Class 5
(Q2-Q3-Q2) represents a fluid and viscous phase, with intermediate permeability, localized in
the inner part of the cell. This phase is organized as a region formed by a limited number of
connected blocks with a networked structure and represents the larger fraction of the cell (Fig.
4(B)). In §3.5 and Fig. 6–7 a comparison with the spatial distribution of the major intracellular
organelles of PC-12 cells labeled with ER-GFP, Golgi-GFP and Mitochondria-GFP constructs
and Nile Red is reported. The spatial organization and the area fraction covered by this phase
indicates that it is characteristic of some portions of ER, the Golgi and the mitochondrial network.
The phase has the same fluidity of the liquid-disordered phase [2,3] but has a higher viscosity.
Thus it is defined as lNETd . Class 6 (Q2-Q2-Q1) represents probe-permeable, rigid, hyper-viscous
domains. These membranes constitute a network of spread structures, which are less connected
than class 5. Class 6 may constitute another phase of the above-mentioned networked structure,

Fig. 5. AI images of cell membrane phases. (A) AI images of PC-12 cells treated with
increasing glucose concentrations and phase profiles. Retrieved classes are labeled with a
number in the range 1 - 8. Class 1 (black) and 2 (red) represent background clusters. Class 3
(green) represents the liquid-disordered phase of PM, lPMd . Class 4 (blue) represents the
liquid-ordered phase of PM, lPMo . Class 5 (light blue) represents the liquid-disordered phase
of the network of intracellular organelles, lNETd . Class 6 (violet) represent the liquid-ordered
phase of the network of intracellular organelles, lNETo . Class 7 (yellow) represents the
solid-ordered phase of the ER, sERo . Class 8 (white) represents the solid-ordered phase of the
LD, sLDo . (B) Phase profile of PC-12 cells treated with increasing glucose concentration (11-
50-75mM). Statistical analysis: ANOVA for parametric variables (* stands for p<0.05; **
stands for p<0.01). (C) Phase characterization by the mean values of (P, GP, η) calculated on
the respective clusters. These values are ranked in four classes (white= fourth quartile-lowest
values, light blue= third quartile, blue= second quartile, dark blue=first quartile-highest
values). 15 images are sent to the classifier. In each image from 6 to 10 cells are present.
The values represent quantities calculated on these images. Scale bar is 20 µm.
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which includes vesicular membranes like endosomes and synaptic vesicles (Fig. 6). Apart
from the different morphology which comes out from k-means analysis, further investigation
is required to understand exactly which organelles take part to class 5 or class 6. This is not a
straightforward since our technique requires the exploitation of a wide portion of the visible
spectrum making it difficult to separate the fluorescence contributes. The hyper-viscosity of this
phase is characteristic of the liquid-ordered phase, thus we define this phase as lNETo . Differently
from lPMo , this phase is less hydrated, thus indicating a higher lipid packing. Class 7 represents
hyper-permeable, hyper-rigid, viscous domains (Q1-Q1-Q2). This class is contiguous to class 5
and class 8 (LD). Therefore, this region can be localized in the ER, in correspondence of the
LD formation sites. These quantities are characteristic of the gel-like phase; thus, we define this
phase as sERo . Though this phase was recognized by the k-means clustering as an independent
phase, at the moment is it not possible to confirm the direct colocalization of these sites, for the
same reason as above. Finally, class 8 (Q1-Q1-Q3) represents hyper permeable, hyper-rigid, low
viscosity domains. This class is localized in LD (Fig. 6), as shown in Fig. S1 (Supplement
1). Since these quantities are characteristic of the gel-like phase [2,3], we call this phase sLDo .
Glucose treatment causes an increase in the extent of phase 5 (80%) at the expenses of phases 6
and 7 (Fig. 5(A)-B). Thus, glucose overload induces a major transitions lNETo → lNETd along with a
minor transition sERo → lNETd Z.

Fig. 6. AI images of control PC-12 cells and comparison with the spatial distribution of the
major intracellular organelles with AI images In AI images, (black) and 2 (red) represent
background cluster; green pixels represent the liquid-disordered phase of PM, lPMd ; blue
pixels represent the liquid-ordered phase of PM, lPMo ; light blue pixels represents the liquid-
disordered phase of the network of intracellular organelles, lNETd ; violet pixels represent the
liquid-ordered phase of the network of intracellular organelles, lNETo ; yellow pixels represent
the solid-ordered phase of the ER, sERo ; white pixels represent the solid-ordered phase of
the LD, sLDo . In the organelle images (LD: Lipid droplet, LDs; Golgi: Golgi apparatus; ER:
endoplasmic reticulum; Mito: Mitochondria; PM: plasma membrane), the red pixels belong
to the organelles, the green pixels represent the cell area. Scale bar is 20 µm.

https://doi.org/10.6084/m9.figshare.12698609
https://doi.org/10.6084/m9.figshare.12698609
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Fig. 7. Organelle Area fraction of PC-12 Cells.

3.5. Spatial distribution and organelle area fraction of PC-12 cells

In Fig. 6, AI images for control PC-12 cells and a comparison with the spatial distribution of
the major intracellular organelles are reported. The organelles are labeled with organelle-GFP
constructs as indicated in Materials and Methods. NGF-treated PC-12 cells present a polarized,
elongated shape along a major axis.

lPMd and lPMo are localized on PM, covering ∼ (11± 3)% of the total cell area (Fig. 5(B)). The
area of the PM is about (15± 3)% consistent (within 2σ) with the value retrieved for the phase
area fraction (Fig. 7).
The phases lNETd and lNETo and sERo cover ∼ (76± 12)% of the area fraction (Fig. 5(B)). This

value is consistent with the area fraction occupied by Golgi, ER and Mitochondria and other
organelles (73± 10)% (Fig. 7). The spatial distribution of the phases is constituted by less
connected and more connected, scattered domains, as one of the organelles. sLDo phase presents the
same spatial distribution of LD labeled with Nile Red. This spatial distribution is characterized by
a limited number of perinuclear connected regions consisting of LD clusters which are localized
along the major axis of the cell. The average organelle area fraction of LD (12± 3)% (Fig.
7) is consistent (within 2σ) with the value retrieved for the phase area fraction (7± 3)% (Fig.
5(B)). This value slightly deviates systemically because sLDo labels only the core of LD, while the
external layer consists mainly of phase sERo .

4. Discussion

In this work, we introduced an artificial intelligence clustering tool that leverages the multipara-
metric content of spectrally resolved lifetime images, resulting in an extension of the spectrum of
detectable membrane phases. This method allows to reveal the phase organization inside PC-12
cell, dissecting and characterizing up to six different phases, with pixel resolution, and to study
in real-time phase separations induced by different treatments. We found that PM of PC-12 cell
is divided into two principal phases: a liquid-disordered phase lPMd (class 3) and a hyper-fluid,
hyper-viscous, liquid-disordered phase lPMo (class 4). The developed method enabled the imaging
of liquid-ordered domains of lPMo , which are characterized by a higher cholesterol concentration
[32,33]. The liquid-ordered phase induced by the presence of cholesterol in the membranes
has intermediate physical properties between so and ld. While it increases the fluidity in high
packed membranes, as the ones composed by saturated fatty acid tails, cholesterol brings order in
highly fluid domains [38]. The imaging of liquid-ordered domains, which are characterized by a
higher cholesterol content, though possible with a visual inspection of the traditional analysis
and comparison of the several parametric images (Fig. 2(A)), cannot distinguish with enough
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specificity these two different phases in which a deep restructuration of lipid domains induced by
cholesterol is present. We point out that the phase scenario of a PM is more complex and a more
specific clustering, especially with the aid of Total Internal Reflection Fluorescence microscopy
(TIRF) or Supercritical Angle Fluorescence (SAF) techniques, can in principle be achieved with
the presented analysis method. The inner part of the cell is divided into four different phases: the
first is a liquid-disordered phase lNETd (class 5) which is characteristic of intracellular connected
regions with a networked structure, with the same fluidity of the liquid-disordered phase [2,3], but
with a higher viscosity, which can be functional to the three-dimensional organization of these
structures [38]. The spatial organization and the area fraction covered by this phase indicates that
it is peculiar to some portions of ER, Golgi and the mitochondrial network membranes. This
finding is supported by recent research, showing that ER and mitochondria cannot be considered
as individual organelles in the cell, as they are structurally and functionally linked through contact
points defined as mitochondria-associated membranes (MAMs) [39–43]. The first described
function of ER-mitochondria contact sites is the exchange of phospholipids between organelles
[44], thus facilitating their phase homogenization. This interconnected family of organelles
can undergo a transition towards a liquid-ordered phase lNETo (class 6). Differently from lPMo ,
this phase is less hydrated thus indicating a higher packing. Its hyper-viscosity indicates the
presence of cholesterol or a peculiar membrane protein organization, which can eventually
favor the formation of more scattered vesicular membranes, like endosomes and synaptic-like
vesicles. These isolated structures can account for the observed fragmented distribution of this
phase. Then, the unsupervised learning of hyperspectral information detected a phase at ER
sites surrounding LD (phase sLDo , class 8). This phase may be characteristic of LD formation
sites (phase sERo , class 7), that are specialized ER sites in which LD formation occurs, whose
presence is supported by evidence in both yeast and mammalian cells [45]. Proteins involved in
triacylglycerol synthesis are enriched at these sites within the ER, suggesting that neutral lipids
could be synthesized at these discrete zones and that these platforms can help the clustering of
specific domains allowing the LD budding-off. The sites retrieved by this method reveal that their
phase is highly non-polar (phase sERo ), thus enriched in triglycerides [20]. The distribution and
the fraction of LD formation sites can, therefore, be revealed, providing insights in alterations of
the activation of lipid storage and lipolysis pathways like the one we found, following glucose
overload, on PC-12 cells, a well-established model to monitor the effects of diabetic neuropathy.
Diabetic neuropathy is the most common microvascular complication of diabetes [46], and
hyperglycemia has a relevant role in its development [47], inducing oxidative stress, apoptosis,
and dysfunctions in neurons [48], glycation [49], the lack of neurotrophins and proinflammatory
processes [50,51]. We observed that glucose treatment triggers a main transition lNETo → lNETd and
a minor transition sERo → lNETd Z. The main transition indicates a decrease of the less connected,
vesicular phase inside cells. Since these vesicles originate mostly from the ER, this transition
could be an early indication of the reduction of vesicle biogenesis rate. The alteration of these
membrane phases leads to a visible rearrangement of the inner organelles, both in shape and
dimensions, which can play an important role in affecting calcium homeostasis and signaling
and in altering the pattern of neurotransmitter release [52,53], by impairing vesicle fusion and
impedance of the membrane. This transition can also be linked to the high glucose level-induced
disruption of MAM integrity and function through the activation of the pentose phosphate-PP2A
pathway [54]. Indeed, MAM plays a crucial role in organelles biogenesis, being the site of
autophagosome formation [55]. The second transition reveals a reduction of the LD formation
sites, indicating the trigger of a metabolic switch turning off LD formation, though the number
of LD stays nearly constant. The biological interpretation of these transitions, though needing
further morphological and functional investigation, underlines the role of membrane phase
remodeling in organelles biogenesis, and cannot be provided by contextual examination of the
single parameter images (Fig. 2). A limitation of this technique is the requirement of a complex
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experimental setup (time resolved spectral detectors, two –photon laser). Moreover, because
this technique requires the exploitation of a wide portion of the visible spectrum, it is difficult
to perform co-labeling experiments and separate fluorescence contributes. A setup exploiting
detection of far-red/infrared probes could in principle overcome this limit. Also spatial resolution
can constitute a limit, especially when dealing with phase boundaries. With respect to TIRF and
SAF microscopy for studying membrane dynamics [56], this technique lacks the selectivity for
studying plasma membrane dynamics and phase transition. An advantage, however, is that it
provides the possibility to analyze and dissect phase transitions for inner membranes.
The artificial intelligence clustering of multiparametric fluorescent images, by extending the

spectrum of detectable cell membrane phases with the sub-micrometric resolution, opens the
possibility to deeply investigate organelles biogenesis, a central focus of cell biology, and enables
contextual insights on membrane remodeling and lipid metabolism. The real-time visualization
of the biophysical alterations, by fully exploiting the information content of the photons emitted
by solvatochromic probes, provides for a deeper understanding of the mechanisms linking the
supramolecular emergent properties to cell functions.
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