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a b s t r a c t 

Given the vast amount of available research in the area of natural fibre composites, a significant step forward 
in the development of next-generation plant fibre-based products would be to devise a framework for rational 
design. The authors use a top-down approach, starting with an example final product to define the product 
specifications for high-performance hemp fibre-reinforced composites. Thereafter, all process steps are critically 
analysed: from textile preform and reinforcement yarn production, to fibre extraction and the agricultural process 
chain, to the microbiology of field retting, to cultivation and selection of crop variety. The aim of the analysis is to 
determine how far the current state of knowledge and process technologies are in order to use hemp fibres in high- 
performance composites. Based on this critical evaluation of the state-of-the-art, it can be stated that hemp will be 
found in high-performance composites in the short-to-medium term. There is, however, a need for performance 
optimisation especially through the selection of crop variety, best practices in retting, and effective fibre extraction 
methods to obtain more consistent fibre qualities suitable for reinforcement spinning and composite preform 

manufacturing processes. 
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. Introduction 

Fibre renewable resources are being increasingly explored and
tilised in engineering polymers and composites due to their combina-
ion of environmental and technical performance. The development of
ublications and the increase in international conferences on the sub-
ect of natural fibre-reinforced composites shows the timeliness of the
opic. The increasing importance of sustainable - social, ecological and
conomic - development of materials and products is also contributing
o the growing importance of composites made of natural fibres. Our
eview is not only intended to present the developments in this area
n recent years. Rather, by analysing the research, we want to show
ays and identify research needs that make it possible to use bast fibres

ike hemp in high-performance composites. This review follows the ap-
roach of developing a framework for rational design, which is in con-
rast to arbitrary choices commonly made in product design. Our objec-
ive is to support the potential use of hemp fibres for high-performance
omposites based on bottom-up and top-down approaches. 
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Here, the authors will use a top-down approach, starting with the
nal product to define the product specifications for high-performance
emp fibre-reinforced composites. The work of Potter is helpful in this
ontext, as it attempts to create a picture of an ideal design cycle for
omposite materials that deals with all the complexities of this group
f materials [1] . We will start with the definition of a product specifi-
ation in which we list all requirements of the rotor of a wind turbine
see Fig. 1 ). Using this list of requirements, we will evaluate the entire
rocess chain from product to the best choice of hemp variety to meet
he composite specifications. In this transdisciplinary approach, we will
eview what is known and what has already integrated appropriately
n the production chain. Our research will be used to discover what is
till unknown and will help to open up new fields of research. Based
n this approach, we will generate basic knowledge that will help map
athways to new practical applications. 

We will divide the entire process chain shown in Fig. 1 into the fol-
owing areas: 
0 
ticle under the CC BY-NC-ND license. 
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Fig. 1. The entire process chain as a top-down approach from product to the best hemp variety choice for reaching the composite specifications for a high-tech 
application like the rotor blade of a wind turbine. 
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. Composite in-service properties 

Twenty-five thousand tonnes of hemp fibre were produced in the EU
n 2013, around 3500 tonnes (14%) of which went into the produc-
ion of bio-based composites, primarily compression-moulded fleeces
nd needle-felt textile materials for the automotive sector [2] . Speciality
ulp and paper (57%), and insulation (26%) were more likely end-uses
or hemp fibre [2] . Nonetheless, the use of short (hemp) bast fibres in
on-structural composites have been state-of-the-art for several years,
f not decades. For instance, in the 1990s, > 95% of hemp was directed
o speciality paper production. As industrial hemp cultivation in Europe
as increased almost three-fold from under 16,000 hectares in 2013 to
ver 45,000 hectares in 2017 [3] , hemp fibre production and their ap-
lication in biobased composites has also increased (at least in absolute
olume), particularly noting that Europe accounts for around a quarter
f global industrial hemp cultivation [3] . 

Today, there is a significant voice, at least in the scientific com-
unity that acknowledges that the real challenges and associated op-
ortunities for market penetration and capture lie in the development
f aligned hemp fibre composites for performance-demanding applica-
ions. Two concept cars – Henry Ford’s hemp car of the 1940s [4] and
otus’s latest Eco Elise – demonstrate that hemp bio-based composites
re potentially applicable for structural body panels, and not just inte-
ior trims, for example. We particularly note that such concept prod-
ct development and full-scale case studies are paramount and much-
eeded in advancing future applications of hemp bio-based composites
y tackling technical, economical, socio-cultural challenges. 

.1. Specifications for a hemp fibre-reinforced composite rotor blade for a 

mall wind turbine ( < 100 kW) 

Of the various engineering components and structures we come
cross in daily life, the rotor blades of a small wind turbine are chal-
enging, exemplar structural components due to the variety of failure
riteria they have to be designed and tested against for certification [ 5 ,
 ]. To give an idea of size and scale, a small wind turbine is classed
s one with a rotor diameter < 16 m or rated capacity < 100 kW. Ro-
or blades are critical components of a turbine from both technical and
conomic perspectives. At the mercy of the wind, rotor blades need to
unction within specified limits during normal operation conditions (de-
ign wind speeds of 11.9 ms − 1 ), as well as severe conditions (extreme
urricane-like gust wind speeds of 59.5 ms − 1 ). Moreover, rotor blades
ave a typical design life of 20 years and cycling at over 100 rpm, and
hey can accumulate in excess of 10 9 fatigue cycles. 

While the design of structural components from hemp has been rare
ven in scientific literature, a number of studies have explored the poten-
ial of flax composites for small wind turbine blades that range in length
rom 0.6 m [ 7 , 8 ] to 1.2 m [9] to 3.5 m [10] . Shah et al. [ 10 , 11 ], fol-
owing IEC 61,400 standards [ 5 , 6 ], demonstrated the efficacy of a flax
lade through load analysis, fatigue life prediction and full-scale struc-
ural testing. Notably, the recent Green2Green Austrian research project
as concluded similar capabilities of fully hemp-based green composites
hemp woven textiles reinforcing an epoxidised hemp oil resin – for a
evelopmental wind blade in terms of meeting strength requirements
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Fig. 2. (A) Loads on a rotor blade. The loads on small rotor blades can be categorised as aerodynamic loads (in blue, such as drag, lift and shear), inertial loads 
(in orange, such as gravitational, gyroscopic, and centrifugal) and operational loads (in green, resulting from turbine control such as yawing, pitching). Of these, 
aerodynamic loads are most important. These loads can be divided into flap-wise (bending the blade downwind), edge-wise (bending the blade in the rotational 
direction) and axial (along the blade length) directions. Of these, flap-wise loads are most significant. These loads can be further expressed as tension/compression 
fatigue loads (see b). (B) Design of a rotor blade. Typical small rotor blades have a shell-spar composite structure, with a combination of aligned laminates to 
achieve the desired structural performance. The multi-axial fibre reinforcement in the shell and shear webs provide resistance against torsion-related shear loads, 
the unidirectional fibre reinforced spar caps provide axial (tensile) and bending (flexural) stiffness and strength, and the core in the shear webs provides resistance 
against buckling. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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discussion henceforth. 
12] . For reference, the relevant properties of aligned flax and glass
omposites in the design of a turbine blade are presented in Table 2 . 

To tackle the various loads a rotor blade experiences ( Fig. 2 a),
lades are typically designed to have a complex composite structure
 Fig. 2 b). They comprise of a shell, a central spar/shear webs, and
ossibly details for the leading and trailing edge. A combination of
ore and laminate materials are employed, with the composite lam-
nates typically being reinforced by a triaxial [0, ± 45] fabric for the
hell (with nonwoven material for thickness/bulking), biaxial ( ± 45) fab-
ic for the shear webs and unidirectional (0) fabric for the spar caps.
on-crimped fabrics (e.g. stitched multiaxials) are preferred over wo-
en fabrics to avoid loss in property from fibre misorientation, which
an be substantial for plant fibre reinforcements, and better impreg-
ation [ 13 , 14 ]. Glass fibre reinforcements are most commonly used
or small rotor blades, with core materials being low-density polymer
oams or wood (e.g. balsa) [15] . As resin systems, while liquid thermoset
esins are commonly used for processing via hand lay-up or vacuum
nfusion, thermoset prepregs for autoclave moulding and even thermo-
lastics for liquid infusion or autoclave moulding are increasingly being
dopted. 

Hemp rotor blade materials would need to possess a diverse prop-
rty profile, including, stiffness, yield and ultimate strengths, and fa-
igue endurance. Table 1 outlines this property profile, with supporting
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Table 1 

A hemp fibre composite wind turbine blade is required to meet a number of selection criteria. Material properties of interest and routes to achieve these are 
outlined. 

Property of interest Corresponding failure criteria (from IEC 61400[5, 6]) 
Pointers for hemp bio-based composite material and blade 
design 

Stiffness The analysis shows possibility of blade tower collision 

a rotor blade hitting the tower due to substantial tip 

deflection from wind loads 

High stiffness is required. 

Stiffness can be optimised by increasing fibre content 

thanks to process evolution, like using more aligned 

(unidirectional vs multi-axial) reinforcement preforms or 

prepregs with low-twist yarns/rovings and non-crimp 

fabric, produced from minimally-processed (low defect) 

fibres. Other promising process techniques include 

automated fibre placement (AFP). 

Full-scale testing shows functional failure b – stiffness 

degradation of the blade – below worst case loads 

significant (of the order of 5–10%) and irreversible 

reduction in stiffness upon loading 

Evolution of stiffness as a function of applied load (and 

time/damage accumulation) is relevant here . 

Hemp biobased composites show (partly-irreversible) 

non-linear stress-strain response. As the initial stiffness 

(typically measured at below 0.15% applied strain) may 

not be an appropriate indicator of the practical stiffness 

of the composites, use the fairly stabilised residual 

stiffness (above 0.4% applied strain) as a suitable design 

value. Use of twisted yarns may aggravate non-linear 

response. 

Strength The analysis shows that stresses experienced by the blade 

are above material failure stresses along the blade 

cross-section 

High yield and ultimate strengths are required. 

Both can be optimised by increasing fibre content, using 

more aligned (unidirectional vs multi-axial) 

reinforcement preforms with low-twist yarns/rovings and 

non-crimp fabric, produced from minimally-processed 

(low defect) fibres. Process techniques, such as automated 

fibre placement (AFP). Reducing porosity is also 

recommended. 

Plant fibre composites naturally have a low elastic limit 

(of around 0.15% applied strain), and therefore high 

stiffness is desired to ensure high yield strength. 

Observation of damage accumulation behaviour of plant 

fibre composites and their structure is of interest. 

Full-scale testing shows superficial failure a below normal 

operation loads (at design wind speeds of 11.9 ms − 1 ) 

Full-scale testing shows functional failure b – substantial 

permanent deformation upon unloading – or catastrophic 

failure c below worst case load (typically at extreme wind 

speeds of 59.5 ms − 1 ) 

Fatigue endurance The analysis shows inability to survive design fatigue 

cycles at the normal operation loads (at design wind 

speeds of 11.9 ms − 1 ) 

Fatigue strength at 10 6 or 10 9 cycles is relevant here. 

Fatigue strength is known to be proportional to static 

ultimate tensile strength. 

Fatigue life design using a fully-constructed empirical 

constant life diagram is important. 

Desirable objectives 

low density – lighter blades are easier to transport, have reduced centrifugal loads, and reduce loads on the tower structure (and consequently the amount of 

material used in its design). 

cost-effectiveness – through optimal material and manufacturing costs 

environmental durability – vis. effects from UV-light, moisture, lightning – to ensure 20–30 year design life 

low embodied carbon materials and safe end-of-life disposal – to minimise ‘waste’, and have opportunities to re-use, recycle, or recover (including energy through 

incineration), and to avoid land-filling of material/product 

a Superficial failure has no immediate structural consequences. This includes the formation of cracks, fibre buckling or delamination even if there is no strength 
degradation. 

b Functional failure is when there is a substantial loss in functionality of the blade through substantial permanent deformation or stiffness reduction. 
c Catastrophic failure is when there is complete disintegration, collapse or failure of the blade. 
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The requirement of high stiffness can be catered for by optimising
omposite parameters, such as fibre content, textile architecture, and
bre and matrix properties [16] . The fibre properties, themselves are

nfluenced by biochemical and structural properties, as well as fibre pro-
essing steps (including retting and extraction). 

Hemp fibres and their composites [ 17 , 18 , 19 ] – and plant fibres
nd their composites in general [ 20 , 21 ] – exhibit a characteristic non-
inear stress-strain response. While traditional fibre-reinforced compos-
tes have a linear stress-strain response showing constant stiffness for
ver 0.5% applied strain, the stiffness (measured through secant or tan-
ent modulus) of hemp fibre composites can drop by over 30%, even
p to 50%, in the strain range of 0–0.4%, due to a low elastic limit of
a . 0.15% [ 14 , 20 ]. While, most studies calculate and report initial stiff-
ess in the strain range of 0–0.1% (below the elastic limit) for hemp
bre composites, for design purposes, it may be more appropriate to
se the fairly stabilised residual stiffness above 0.4% applied strain as a
ractical design value. Consequently, designing a rotor blade with hemp
omposites – and plant fibre composites in general - is more compli-
ated. This is particularly because, as per IEC 61,400–23 [5] , a blade
unctional failure is judged to have occurred when there is a signifi-
ant – of the order of 5–10% – and/or irreversible reduction in blade
tiffness. 

Furthermore, Shah et al. have shown that the stiffness profile along
he blade is different for a similarly constructed flax and E-glass blade,
ith the latter being double over much of the blade length [10] . The

tiffness profile and consequently, the deflection profile of the blade
uring wind loading will inadvertently influence the power characteris-
ics of the turbine. This would be important to characterise and design
or a hemp bio-based composite blade. 

Like stiffness, the ultimate strength of hemp fibre composites can also
e enhanced through optimisation of composite parameters [16] . A no-
able advantage of hemp fibre composites, in comparison to a fibreglass
lade, is the opportunity to substantially reduce mass and therefore the
agnitude of centrifugal/axial loads, provided the need for increased

aminate thickness (and therefore material mass), to achieve the de-
ired stiffness and strength, is limited. Most loads on a blade can be
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Table 2 

Tensile, compressive and fatigue properties of unidirectional [0] and biaxial [ ± 45] flax/polyester and E-glass/polyester composites. Material performance indices 
are shaded. Data from [23] . 

Unidirectional composites Biaxial composites 
Property Flax E-glass Flax/E-glass Flax E-glass Flax/E-glass 

Tensile Fibre volume fraction % 30.9 42.8 – 29.2 28.0 –

Composite density gcm 

− 3 1.31 1.79 0.732 1.30 1.61 0.807 

Composite stiffness GPa 23.4 36.9 0.634 5.70 8.77 0.650 

Composite specific stiffness GPa/gcm 

− 3 17.9 20.6 0.869 4.38 5.45 0.804 

Effective fibre stiffness a GPa 67.6 81.6 0.828 – – –

Composite strength MPa 277 826 0.335 51.4 139 0.370 

Composite specific strength MPa/gcm 

− 3 213 461 0.462 39.5 86.3 0.458 

Effective fibre strength † MPa 883 1920 0.460 – – –

Composite failure strain % 1.70 1.90 0.895 3.76 4.12 0.913 

Compressive Fibre volume fraction % 32.5 30.0 – N/A b N/A b N/A b 

Density gcm 

− 3 1.30 1.64 0.793 N/A b N/A b N/A b 

Composite stiffness GPa 11.3 21.0 0.538 N/A b N/A b N/A b 

Composite specific stiffness 

GPa 1/3 /gcm 

− 3 
1.73 1.68 1.03 N/A b N/A b N/A b 

Composite strength MPa 101 313 0.323 N/A b N/A b N/A b 

Composite specific strength 

MPa 1/2 /gcm 

− 3 
7.73 10.8 0.717 N/A b N/A b N/A b 

Composite failure strain % 3.44 3.70 0.930 N/A b N/A b N/A b 

Fatigue 

( R = 0.1) 

Fibre volume fraction % 26.9 30.0 – 29.2 28.0 –

Density gcm 

− 3 1.29 1.64 0.787 1.30 1.61 0.807 

Single cycle strength MPa 236 567 0.416 51.4 139 0.370 

Fatigue strength at 10 6 cycles MPa 115 204 0.564 22.1 57.3 0.386 

a The effective fibre properties are ‘back-calculated’ using the rule of mixtures. 
b N/ A = not measured. 
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xpressed as tensile or compressive loads along the blade length. It is
vident from literature that there is a gap in characterisation and un-
erstanding of compressive behaviour of hemp (and other plants) fibre
omposites, which can be a limiting design case, given the low compres-
ive strength reported for plant fibre composites [ 22 , 23 ]. Yield strength
f the blade also needs to be optimised as a functional failure is deemed
f there is substantial permanent deformation (e.g. tip deflection) upon
nloading. As it is known that the characteristic yield point of plant fibre
omposites is around 0.15% applied strain, to maximise yield strength,
nitial stiffness needs to be maximised [ 14 , 20 ]. 

It is observed that fatigue strength is proportional to static ultimate
ensile strength, as the rate of strength loss per decade of cycles is fairly
onstant – this is true for a range of plant fibre types, fibre contents, and
extile architectures [ 24 , 25 , 26 ]. However, designing against fatigue
equires extensive material characterisation in terms of obtaining stress-
ife curves for a range of stress ratios to construct a constant-life diagram.
or hemp composites, only limited data exist in literature on fatigue
ehaviour [ 24 , 25 , 26 ]. 

In light of the above discussion, three key future research directions
re envisaged at the product scale. 

Firstly, full-scale and multi-scale studies on hemp fibre composites
nd their products are needed. There are only limited full-scale compar-
tive case studies showing the potential of plant fibre composites. While
t is interesting and expected that a hemp composite turbine blade, like a
emp fibre and its composite, have a non-linear stress–strain behaviour,
t is interesting and unexpected that a hemp or flax composite blade can
eet strength requirements, but underperform with regards to stiffness

n comparison to a fibreglass blade [10] . More full-scale and multi-scale
tudies, across labs, will enable better understanding of the behaviour
nd performance of hemp fibre composites, to facilitate better design of
roducts. 

Secondly, materials development of hemp bio-based composite
eeds to be more combined with product design. In engineering design,
aterial selection and design embodiment go hand-in-hand. How can
e better design with hemp fibre composites? For example, by altering

urbine design and having higher tip clearance (to avoid tower colli-
ion), we can design around the lower stiffness of hemp fibre composites.
e can also have a graded and stepped spar (e.g. varying thickness along
he blade length) to produce a blade stiffness and deflection profile that
ould yield better turbine power characteristics. Similarly, towards the
evelopment of high-performance bio-based composites, exploring av-
nues such as hybridisation strategies (e.g. with carbon or basalt fibres
27] , for stiffness or fire performance), routes to produce cost-viable
ligned hemp fibre reinforcements (non-crimped vs woven, rovings vs
wisted yarns) and generating end-of-life re/down-cycling options (e.g.
sing blade materials for nacelle cases) is of interest. 

Thirdly, extensive materials characterisation of hemp bio-based com-
osites is needed. There is limited data on hemp bio-based compos-
te properties necessary for the detailed design of products. Compres-
ive, fatigue and creep behaviour of hemp fibre composites need bet-
er evaluation [ 22 , 13 , 24 , 25 , 26 ]. Besides, development of numer-
cal/computational analysis of bio-based composite components (e.g.
ith finite element methods) for design purposes is a necessary step for-
ard, particularly noting the multi-scale nuances of hemp bast fibres.
or instance, the non-circular, non-uniform cross-section of the coarse
emp fibres [28] , and their prevalence as bundles as opposed to single
bres, stands in contrast to uniform synthetic fibres. 

. Composite mechanical properties 

In Asia, North America and Europe, the hemp industry primarily
roduces short fibre bundles in a disordered line, in contrast to the
treamlined flax industry producing wet-spun yarns in a longitudinal
ine. In Europe, hemp fibre bundles are mainly used in the paper indus-
ry, for regular or specialized products such as bill paper money, thanks
o an efficient industrial sector. However, this plant, whose fibres are
tructure-supporting tissues, can also provide long fibre bundles with a
igh potential for the textile and composites industry. In this section,
e will first present the particularities of this fibre in terms of growth,
orphology and mechanical performance. The link between fibre ul-

rastructure and mechanical properties will also be discussed. Second,
e will review the state-of-the-art performance of two mains subfami-

ies of hemp-reinforced composites. We will explore unidirectional (UD)
omposites for high-performance applications, but start with injection-
oulded composites as mid- or low-performance composites, due to the
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Table 3 

Main properties of hemp fibres. Mechanical properties, diameter and length are given for single hemps fibres. Density is given for cell wall and not apparent fibre. 

Biochemical Composition in% of dry matter a 

Cellulose Hemicellulose Lignin Pectin Fat and Wax References 

55–90 (70) 12 (16) 2–5 (6) 3 (2) 1.7 (0.7) [ 29 , 37 , 192 , 193 , 47 , 194 , 113 , 195 ] 

Structural properties a 

Length in mm Diameter in μm MFA in ° Density in g/cm 

3 Cristallinity index in% References 

5–55 10.9–42.0 2–11 1.4–1.6 55 [ 29 , 47 , 33 , 31 , 196 , 138 , 197 , 198 , 199 , 200 , 201 , 202 , 203 ] 

Mechanical properties (single fibre) a b 

Young’s Modulus in GPa Strength at break in MPa Strain at break in% References 

14.4–90 (65) 285–1110 (800) 0.8–3.3 (3)) [ 47 , 138 , 200 , 196 , 204 ] [205] [206] 

Mechanical properties (fibre bundle) 

Young’s Modulus in GPa Strength at break in MPa Strain at break in% References 

17.2–40 315–1011 2.1–6.5 [207] [208] [209] [142] ] 

Behaviour towards moisture 

Absorption regain in% at 65% relative humidity. 20 °C Water retention in% References 

6–12 50–55 [ 210 , 211 , 212 , 205 , 213 , 214 , 215 , 216 , 217 , 218 ] 

a Most frequent published in brackets according to [33] . 
b To illustrate the possible differences between the strength of a single fibre and a single fibre bundle, it is worth referring to the work of Bos et al. [102] . The 

authors describe for flax that for a clamping length between 100 and 25 mm the strength of a single flax fibre bundle is about 500 MPa. At clamping lengths smaller 
than 25 mm, the strength increased and reached a value of about 850 MPa (clamping length 3 mm). Single fibres prepared from the fibre bundles achieved strengths 
of 1522 MPa to 1834 MPa, depending on the pre-treatment condition. 
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Fig. 3. Literature review of single plant fibres tensile performances [46] .. 
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imited literature on the former (hemp UD composites). Finally, we will
dentify the barriers that need to be broken down to optimise the per-
ormance of hemp fibres and their composites, especially in link with
etting, separation of fibre bundles and quality of fibre extraction. 

.1. Hemp fibre properties 

.1.1. Growth and structural properties of hemp fibres 

Among fibre plant crops, hemp is one of those whose fibres impart
ending stiffness to the plant. Primary hemp fibres develop in an intru-
ive way, which gives them a significant length. After a stage of phloem
ell division at the apex of the plant [29] , coordinated growth begins,
uring which the cell develops at the same rate as the surrounding tis-
ues to reach a few hundred microns [30] . Then begins the intrusive
rowth phase, which lasts only a few days but during which the fibres
engthen by several mm per day [31] ; thanks to their pointed ends and
he multiplication of the nuclei, they can reach extraordinary lengths,
p to several tens of mm. In the case of hemp, the average length of the
rimary fibres is around 15 mm [32] , but there is scatter in generally
eported values [33] , from a few mm to more than 50 mm [34] (see
able 3 ). When intrusive growth is complete, the filling of the fibres’
ell walls with cellulose and encrusting polymers begins and continues
hrough the growth life of the plant, which gives the fibres their high
echanical properties, particularly stiffness. In hemp, there is also a
etwork of secondary fibres that can form in the vascular cambium,
epending on both the harvest time and the plant section (basal in-
ernode) [35] . These secondary fibres develop intrusively about 600–
00 mm from the apex of the plant [31] . These fibres grow in already
ormed tissues, and for this reason, they do not reach the lengths of the
rimary fibres and rarely exceed 2 mm in length [ 36 , 37 ]. These sec-
ndary fibres have smaller diameters than the primary fibres [ 34 , 38 ].
owever, after extraction of the secondary fibres, it may be challenging

o distinguish them from primary fibres because a bundle of secondary
bres can have morphological characteristics very similar to those of a
undle of primary fibres [39] . Depending on several factors, notably the
ultivar, it is known that the fibre yield may also vary considerably [40] .
n terms of biochemical composition, hemp fibres, like flax fibres, can be
lassified into the family of gelatinous cell walls [41] , with a high con-
ent of cellulose and non-xylan hemicellulose [42] (see Table 3 ). Within
he cell walls, the cellulose microfibrils are embedded in a matrix of
on-cellulosic polymers and oriented with the axis of the fibre at an an-
le of about 11° [43] , though some authors report smaller angles; see
able 3 . Hemp fibres have a moderate lignin content, not exceeding
% [37] . The hydric expansion of the hemp bundles under hygro- and
ygro-thermal conditions is notable (about 0.9) [44] . Indeed, there can
e wide variation in cell dimensions due to swelling mechanisms which
nduce notable anisotropic deformation of the hemp bundles between
dry’ and ‘wet’ states. Recent investigations of the nanomechanical prop-
rties of hemp bast fibres confirmed the multi-physical implications of
he moisture level within the cell wall matrix polymers, reporting that
ndentation modulus decreased with increasing moisture content [45] . 

.1.2. Mechanical performance of hemp fibres 

Due to their short length, the mechanical characterisation of sec-
ndary hemp fibres is difficult. However, a comparative study by Bour-
aud et al. showed that the indentation moduli of the cell walls of sec-

ndary fibres was close to those of the primary fibres. This is reassuring
rom the point of view of reinforcement development for the composites
ndustry as the separation of primary and secondary fibres is practically
mpossible during the extraction process [38] . In this section, we will
ocus mainly on the mechanical performance of primary hemp fibres. 

Fig. 3 shows the mechanical properties of different plant fibres from
he literature [46] . All these values were obtained by tensile tests on
ingle fibres. Table 3 gives an overview of important properties of hemp
bres; mechanical properties from literature are given for both single
bres or fibre bundles. When a bundle is considered, the reader must
eep in mind that the gauge length and therefore the loaded volume
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s a crucial parameter that can make comparisons between published
orks difficult. 

There is a marked hierarchy in fibre performance between plant
pecies, with hemp fibres generally performing less well than flax or
amie, both in terms of modulus and strength at break. Indeed, consid-
ring their microfibrillar angle, their biochemical composition and their
rystallinity rate [47] , the plant cell walls of hemp display characteris-
ics very similar to those of flax and the differences in terms of mechan-
cal performance cannot be explained by these endogenous parameters
lone. As mentioned above, the presence of secondary fibre bundles may
e responsible for the lower average properties. However, one of the key
easons is related to the size of the lumens [ 48 , 49 ]. Comparative stud-
es have highlighted that size of the lumen is more pronounced in hemp
47] and which, assuming equal wall stiffness, leads to a decrease in the
pparent properties of the fibres. This hypothesis is further supported
y low mechanical properties of kenaf fibres which exhibit even larger
umen size [50] . In the 1950s, Hayward reported that at fibre maturity,
he lumens occupied as much as 30% of a hemp fibre cross-section area
48] , which is in stark contrast to recent reports stating the value to be
 few per cent to up to 10%; perhaps, a consequence of agro-breeding
tudies and cultivar development and selection over the decades [49] .
he extraction methods, which we will discuss in one of the following
ections, may also be responsible for this difference. The widespread use
f hammer mills is particularly detrimental to plant cell walls [51] and
an lead to the creation of defects, leading to reduced mechanical prop-
rties in the extracted hemp fibre [ 52 , 47 ]. 

The middle lamella binds adjacent fibres together in a fibre bundle.
elelli et al. employed peak-force quantitative nanomechanical prop-

rty mapping (PF-QNM) give an indication as to measure the indenta-
ion modulus of the middle lamella and examine why hemp fibre bun-
les were more difficult to individualise than flax fibre bundles [53] .
hey show that the mean indentation modulus of the middle lamellae
f field-retted hemp is in the range of 16 GPa, whereas in flax bundles
 value of only 10 GPa was found. Thus, in line with the higher lignin
ontent and cohesive performance of its middle lamellae, the processing
f hemp fibres is more challenging [54] ; this will be discussed in detail
n later sections. 

.2. Hemp fibre composites 

The performance specifications of a reinforcement are dependent
n the application of the composite produced. Injection moulded
hort-fibre reinforced parts are generally described as low- or mid-
erformance composites. Composite performance is highly dependent
n the orientation of the reinforcements, and it has been shown that this
arameter is of major importance in relation to the intrinsic properties
f plant cell walls [55] . For such injection moulded parts, intended for
igh-volume markets, price is also an important factor. In this context,
emp fibres are of great interest. In addition, according to Melelli et al.,
emp fibre bundles are more lignified than flax in most commercial
atches [53] . Due to the increased stiffness of the hemp fibre bundles,
hey orient themselves in the flow direction during plastic processing
nd facilitate higher anisotropy of properties in the component. Fig. 4. a
hows the stiffness values for parts injected with a range of plant fibres
nd with a similar polypropylene matrix; all samples have the same fibre
raction (30%-mass) [46] . Recently, a comparison of mid-performance
emp-based composites was published, illustrating how hemp has been
esearched for such applications in recent years [56] . Hemp fibre prop-
rties also allow their use in the field of thermo-compressed nonwo-
ens (like fleeces or needle felts) widely used in the automotive sector
57] . Alone, or in combination with flax or kenaf, the fibres guaran-
ee a low price and sufficient mechanical performance for these non-
tructural interior automotive parts. In addition, the heterogeneity of
heir morphologies, particularly in terms of diameter, is an advantage
or the acoustic performance of these parts [58] . 
For structural applications, composites with continuous fibres or sta-
le fibres in the form of yarns are preferred. These composites are gen-
rally assimilated as high-performance composites. While hemp can be
onverted into reinforcements for such applications, as we will discuss in
ater sections, the industrial sectors currently in place do not provide ac-
ess to the same consistent quality of hemp fibres as those provided, for
xample, by the flax industry. Fig. 4. b compares the maximum strength
f epoxy matrix unidirectional composites reinforced with hemp fibres
ith similar materials made from other plant fibres [46] . For unidi-

ectional composites, the tensile modulus is directly correlated with fi-
re volume fraction [21] . In addition to fibre content, the strength is
trongly influenced by the aspect ratio of fibres or fibre bundles, and by
he quality of the interface between the fibres and the matrix [ 59 , 60 ,
1 ], as well as by the degree of individualisation of the bundles [62] .
n the case of hemp, the intrinsic properties of the fibre penalise the
trength at break, because they are shorter and possess a smaller aspect
atio, compared to flax, for example [63] . 

Moreover, the quality of retting and fibre extraction is also a major
arameter. These processes have a major impact on the individualisa-
ion [64] and surface quality of the fibre bundles [65] , and it is impor-
ant to control them to guarantee long fibre bundles without cortical,
oody core or middle lamellae residues. These non-structural elements
enalise the interface with the resin [66] , significantly reducing inter-
acial strength and promoting the presence of fibre bundles, which are
referred fracture zones within a composite. Hemp exhibits more ligni-
ed bundles than flax, so their individualisation is more difficult, and
nly a near-perfect control of retting can promote optimal fibre divi-
ion. Unfortunately, this is still poorly controlled by hemp fibre produc-
rs [67] . Furthermore, as mechanical processing may have a negative
mpact on the fibre quality [ 68 , 65 , 54 ], this should be carefully de-
ided in order to ensure that the fibres have the mechanical properties,
orphology and surface characteristics required for the production of
igh-performance composites. For hot-melted quasi-isotropic short fibre
hermoplastic composites, typically made by extrusion and injection, the
echanical extraction of the fibre must be optimised for the same rea-

ons as expressed above. Even though these composites are dedicated
o non-structural applications, the higher individualisation rate can be
 challenge. The aspect ratio of the reinforcing elements is also known
o be an influencing factor impacting composites properties, like the
trength at break or the Young’s modulus [69] . The tensile properties
ncrease with aspect ratio up to a maximum value, and decrease ther-
fter, leading to a well-known bell-shaped curve [ 70 , 71 , 72 ]. 

. Textile preforms & low-twist reinforcements for composites 

Reinforcement form has a property-governing effect on the resulting
omposites (see Fig. 5 [16] . Pellets used for injection moulding produce
emp fibre composites with very short fibres/fibre bundles (sub-mm)
nd nominally random orientation in 3D (with some local orientations
ue to shear effects at the boundaries and edges). The low reinforce-
ent efficiency factors relating to length and orientation [ 73 , 74 , 16 ]

esult in low mechanical properties, comparable to that of the unrein-
orced polymer, which is suitable for non-structural, aesthetic applica-
ions. Semi-finished textile products like fleeces and needle-felts as re-
nforcements have fibre bundles of moderate length, but nominally ran-
om 2D orientation, leading to composites with good properties suit-
ble for semi-structural (self-mass supporting) applications only. For
tructural applications, long fibre bundles, aligned reinforcements, in
he form of woven, non-crimped, stitched or unidirectional fabrics, are
ore appropriate, as high length efficiency factors, and optimised orien-

ation efficiency factors are obtained. However, the production of such
ligned textiles requires specific processing of hemp into intermediate
roducts such as yarns and rovings. The use of aligned carded slivers
s quasi-UD layers is also possible, which can additionally have a lower
nvironmental impact as the energy-intensive spinning process is omit-
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Fig. 4. Comparison of tensile modulus of injection moulded (30 mass%) fibre-reinforced PP composites (A) and strength at break of epoxy-hemp UD composites (B) 
with literature data [46] . 

Fig. 5. (A) The length and orientation of the reinforcement, in the various textile architectures, lead to a range of composite property-governing reinforcement 
efficiency factors. (B) Consequently, composite mechanical properties are strongly influenced by the textile architecture and reinforcement form. Unidirectionals 
(UDs) have long and aligned fibres and consequently highest efficiency factors and mechanical properties (when loaded in the fibre direction). Multiaxials, such as 
woven textiles and non-crimped/stitched fabrics, have long fibres but oriented in specific multiple directions, and therefore intermediate properties. Nonwovens and 
injection moulding compounds have (very) short fibres that are randomly oriented (in 2D or 3D) and consequently lowest mechanical properties. Data and figure 
inspired from [16] . 
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ed. Dissanayake et al. reported that by using a carded sliver, energy
onsumption can be reduced by 28% compared to a spun yarn [75] . 

The traditional textile uses of hemp fibre have been for twine, rope,
ets, webbing, sacking, rugs, tarpaulins, heavy industrial canvas, and
abrics for clothing [76] . Clarke and Merlin traced the widespread intro-
uction of hemp fibre use for textiles in Asia, Egypt, the Mediterranean
egion and northern Europe. They report that the archaeological, as well
s historical records, are rich in evidence supporting the ancient impor-
ance of hemp fibre as a textile resource to humans [76] . 

Yarns are the most prevalent intermediate product, and can be pro-
essed into different textile products. Fig. 6 gives an overview of yarn (or
hread) based textile structures, based on the textile classification from
chnegelsberg [ 77 , 78 ]. Product examples for hemp textile are given for
ater-retted, wet-spun hemp. 

The braided and woven textile products shown in Fig. 6 are based
n wet-spun yarns, which are very compact. The yarns are generally
ighly-twisted, and for the given fabric (bottom-right photo in Fig. 6 )
he weft thread is composed of several twisted threads. The poor im-
regnability of such twisted spun yarns, and resulting intra-yarn im-
regnation porosity and reduction in composite mechanical properties,
s well-documented [ 14 , 23 , 79 ]. 

Furthermore, it is expected and observed that the fibre misorienta-
ion inherent in a twisted yarn has substantially detrimental effects on
he mechanical properties of their aligned composites [ 13 , 14 ]. Based
n a cos 2 (2 𝛼) effect on reinforcing potential [13] , where 𝛼 is the sur-
ace twist angle, while a zero-twist roving would enable 100% of the
einforcing potential of the fibre bundles in the roving, yarns with 10°,
0°, and 30° would receive 88%, 59% and 25% of the reinforcing po-
ential of the fibres. Indeed, most commercially available hemp yarns
nd their comprising fabrics have surface twist angle above 20° It is
herefore strongly recommended that low-twist rovings are essential
o take advantage of the full fibre properties. However, low-twist rov-
ngs in hemp are not currently produced, although such reinforcement
orms do now exist at a commercial scale for flax. A moot, but mean-
hile useful, recommendation is that fine hemp yarns with small di-
meters should be used [ 14 , 13 ]. This is because even if a hemp yarn
s twisted to the same level (in revolutions per metre), a smaller di-
meter hemp yarn has a notably lower surface twist angle, and con-
equently the fibres are misoriented by a lesser degree. In addition,
ry-spinning (rotor/ring spinning) produces more twisted yarns than
et-spinning [ 14 , 23 ], as wet-spinning, through the benefit of stronger

hreads in wet, swollen conditions and increased inter-fibre friction,
s less reliant on twisting to form a continuous product. Progress in
et-spinning and exploring possibilities of using binders, as has been
one for some flax-based unidirectional products, such as by Lineo(now
coTechnilin Ltd) (France) with the commercialized FlaxTape© or Flax-
reg©, are important areas of development of future low-twist hemp
einforcements. 
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Fig. 6. Traditional thread-based hemp textile 
structures (based on the textile classification 
from Schnegelsberg) [ 77 , 78 ] . ). Product exam- 
ples are given. Hemp braids and fabrics pro- 
duced from traditionally produced wet spun 
hemp yarns are shown. 
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While yarn twist is a source of misorientation at the fibre scale,
onversion of yarns into specific textile preforms can also lead to fur-
her misorientation. For instance, woven fabrics require interlacing
arns/tows over and under adjacent yarns/tows, and braided materi-
ls require further interlacing, twisting and coiling. This also results in
rimping. Indeed, higher levels of yarn twist, and coarser yarn diame-
ers, can exacerbate issues of such misorientation at the textile preform
cale resulting in up to 5–10% further drop in mechanical properties
 14 , 23 ]. Avoiding out-of-plane misorientation (e.g. from crimp) is crit-
cal in further improving composite mechanical properties. For this, con-
idering non-crimped fabrics and stitched multiaxials, wherein layers of
pecifically oriented unidirectional textiles are stitched together, is im-
ortant [10] . 

Special textiles developed for composites require low twist rovings
nd yarns. Fig. 7 shows the visualized result of a review of different tech-
iques to produce hemp yarns. The overview lists process lines which are
o longer in use, some which are in use or under development, and oth-
rs which are future developments. For each of the listed process lines,
e will provide a critical evaluation of the possible advantages and dis-
dvantages to produce hemp yarns and textile semi-finished products to
anufacture components for structural composite applications. 

.1. Traditional method 

According to Clarke and Merlin, hemp fibres were used across all
f Europe and Asia for millennia to manufacture cordage and textiles
76] . Historically, two types of hemp fibre processing are to be distin-
uished to manufacture yarn suitable for weaving fabrics [76] . In China
nd other Asian countries, hemp bark was split into narrow strips (see
ig. 7 – strip hemp) and was tied together to form a yarn, while in Europe
he bark strip (strip hemp) was combed to refine the fibre bundles before
pinning [ 76 , 80 ]. For a better understanding of traditional hemp yarn
roduction in Europe, it is worth to take a closer look at Hungary. Spon-
er et al. provide insights into the traditional production method, from
ater-retted hemp stalks to wet-spun yarns [81] . In Hungary scutched
emp and tow (see Fig. 7 ) used to be spun to yarns with different tech-
iques, but some traditional hemp processing techniques and types of
achinery like water-retting and wet-spinning disappeared, because of

hanges in demand, high production costs, unfavourable working condi-
ions, as well as environmental regulations [81] . The traditional process
ine can be optimized by replacing the water retting process by osmotic
egumming [82] . Konczewicz et al. showed that osmotic degumming
mproves the quality of the extracted fibre bundles significantly in terms
f colour, odour, aspect ratio, as well as emissions of volatile organic
ompounds compared to field-retted hemp [82] . 

After the disappearance of the wet-spinning process for hemp, both
he hackled hemp (see Fig. 7 ) and the tow were dry spun in Hungary
81] . Depending on the quality of the hackled hemp, spinning tech-
iques can be adopted from the flax sector. For hackled flax, the wet-
pinning process with boiling is used to produce fine worsted yarns,
hile dry-spinning leads to coarser yarns [83] . Hemp yarns from the

raditional line are, in general, very compact and are highly-twisted,
hich does not make them the first choice for high-performance com-
osite applications. 
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Fig. 7. Historical, current, and future concepts of hemp yarn production (historical and currently no longer pursued processes are in black, current process are in 
blue, and recent/future developments are in green); "Flax" means that the process has been used to produce and process flax for hemp. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2. Baby hemp production 

In the late 1990s and early 2000s, while the traditional processing of
emp into yarns was progressively disappearing throughout the world,
ncreasing demand for sustainable hemp textiles spurred research and
ntrepreneurial activities to find innovative solutions and/or adapt ex-
sting techniques to produce hemp yarns for the clothing industry. In
he year 2000, in the north of Italy, in a territory where hemp culti-
ation had a great tradition, the Consorzio Canapa Italia was funded
o reintroduce the production of textile hemp in the region. A complete
roduction chain, from cultivation to the production of hemp yarns, was
stablished to obtain hemp stems of a size similar to those of flax, to pro-
ess hemp stems through existing flax scutching lines. This was achieved
y growing hemp at very high stands (400–500 plants m 

− 2 ) that were
hen chemically desiccated when the plants reached 1.2–1.4 m in height.
his technique is known as “baby hemp ” production [35] . Hemp fibre
f acceptable textile quality was produced, but the limited yield, the
nconsistent quality, the use of chemical products to stop the plants‘
rowth (with its consequent environmental impact) and the low eco-
omic turnover for farmers were the main causes for the failure of the
nterprise, only 2 years from its start. 

.3. One m stem sectioning and bio-degumming approach 

An alternative strategy to adapt hemp for flax scutching lines was
tudied in the framework of the European Hemp-Sys project (FP5-
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IFE QUALITY; no. QLK5-CT-2002-01363) [84] , was further developed
ithin the Multihemp project (European Union’s Seventh Framework
rogramme; no. 311849), and is ongoing currently in the SSUCHY
roject (The Bio-Based Industries Joint Undertaking - BBI JU). Instead
f shortening the height of the crop, as in the ‘baby hemp’ systems, in
his case the hemp crop is harvested at full flowering when the plant
eaches maximum height, and subsequently, the stem is cut in two sec-
ions of approximately 1 m length, which are kept parallel and baled in
he same way as flax. The Hempsys project investigated the processing
f non-retted stems, thereby avoiding the difficult step of field-retting,
hrough controlled bio-degumming of the fibre after scutching [84] . This
trategy proved feasible at the experimental level both during the Hemp-
ys project [84] and more recently during Multihemp [54] . However, it
as never upscaled at an industrial level due to the lack of dedicated
arvesting machines that could cut the hemp stem into 1 m sections
nd lay them in an ordered swath for subsequent baling. The varying
tem diameters of the 1 m long sections during processing (scutching
nd hackling) posed a further problem (in losses and fibre bundle re-
nement). In addition, there were concerns regarding the environmen-
al impact of the bio-degumming phase due to high water and energy use
85] . 

.4. Total fibre line 

In the past 30 years, there have been various approaches to separate
emp stems to produce fine fibre bundles for the textile industry. Differ-
nt separation techniques were developed and evaluated, like chemical
eparation, steam explosion [ 86 , 87 ] or enzymatic treatment [88] . An
ttempt was made to use field-retted or even un-retted hemp from the
disordered line’ (see Fig. 7 ). Unique concepts for processing these kinds
f hemp fibres/fibre bundles on open-end spinning machines were de-
eloped. The produced yarns were intended, especially for the clothing
ndustry [89] . 

Current research and development work reports novel concepts for
ow twist flax and hemp bast fibre yarns from disordered lines [90] .
orbin et al. report on the development of low-twist hemp rovings [91] ,
heir results show that very competitive tensile properties are obtained
or fabric-based hemp composites in comparison to flax cross-ply com-
osite laminates. For mid-performance reinforcements, Gregoire et al.
ecently proposed an alternative process for extracting fibres based on
bre openers [52] . They reported that the length of the fibre bundles
as sufficient for textile processing via the carded route, and mechani-

al investigations provided evidence that a combine machine could pro-
ide hemp of quality satisfying the requirements of mid-performance
extiles. 

.5. Mixed route 

This process chain represents the development of hemp fibre process-
ng for the textile industry in China, which is referred to as “cottonisa-
ion of hemp ” [83] . Developments in China led to new machine concepts
nd degumming technologies, which allow producing very fine hemp fi-
res/fibre bundles to be used on cotton or wool machines, as well to be
lended with industrially produced staple fibres [83] . These develop-
ents allow the production of hemp fibre bundles, which are processed

nto yarns in the long-staple range of cotton and wool for clothing and
ome textile applications. Because of the length of the hemp fibres/fibre
undles, and the twist and the compactness of the yarns, these hemp
arns are less suitable for composite applications. 

The fibres/fibre bundles needed for yarn production must be ob-
ained from the hemp plant through decortication and separation pro-
esses. In the following section, the methods for hemp fibre processing
re presented and critically evaluated. 
. Hemp fibre processing and hemp stem decortication plus 

eparation 

We begin with a definition of terms, outline the problem of compar-
ng different processing techniques and provide a concept for precise
lassification. Fig. 8 expresses the systematic terminology used in tradi-
ional hemp processing. 

To give a perspective on what has been done for flax, it is useful to
ite Akin’s work [92] . He points out that while traditional processing
f long flax requires the orientation of the stalks and fibre bundles to
e maintained throughout the value chain from harvest to final yarn,
his strict orientation can be omitted in more modern processing lines.
t is not the length of the bundles that is the key issue, but rather the
rientation. According to Müssig [93] , the following definitions help
o distinguish between the processing techniques: (1) longitudinal flax,
hich is flax with fibres and fibre bundles particularly orientated in only
ne direction, and (2) disordered flax, which is flax with fibres and fibre
undles having no preferred orientation [92] . 

Production chain for longitudinal hemp : where hemp stems have to
e kept parallel until the scutching and hackling phase. 

Processing for disordered hemp: the most common destination for
emp crops in Europe, and various lines have been developed for this
urpose [94] . 

Regardless of the orientation of the hemp stalks, hemp can be pro-
essed in many different ways. With the visualisation in Fig. 9 , an at-
empt is made to systematically structure the different techniques to
rocess hemp from straw to the final fibre bundles, ready for yarn pro-
uction. 

Hemp yarn production is possible for longitudinal and disordered
emp. For the selection of suitable processes ( Fig. 9 ), it is essential to
onsider the following properties. 

.1. Decortication efficiency 

After bale opening (see Fig. 9 ) the mechanical processing of hemp
tems takes place to separate bast fibres from shives. This step is called
decortication’ [95] . To note, there is sometimes confusion or misuse
f terms; for instance, some references to decortication can include the
leaning and even refining steps (see Fig. 9 ). Even some mix-up between
efibration and decortication can be found based on the community of
nd-usage, e.g. pulp & paper [96] . Decortication has an essential posi-
ion in the entire production chain, and its efficiency is influenced by the
echanical treatment employed [ 94 , 97 ]. The assessment of decortica-

ion is mostly done visual and tactile, but the need for a more objective
nd reproducible evaluation of decortication efficiency has driven the
evelopment of lab-scale assessment machines [95] . With these devel-
pments, the energy consumed during decortication is now quantifiable
nd is paired with the yield content of bast fibres and shives, permit-
ing a systematic comparison for a range of hemp varieties grown under
ifferent conditions [98] . This supports both the selection of improved
emp genotypes for dedicated materials applications [99] and the op-
imisation of agro-techniques [100] , with the vision of tailored hemp
roduction for specific end-uses. 

Indeed, it is worth mentioning that the less aggressive the decor-
ication step, the better are the mechanical properties of the bast fi-
res, arguably because of less fibre damage induced during decortication
 101 , 52 ]. This becomes evident through the work of Bos et al. [102] ,
ho report significantly higher fibre strength for manually decorticated
bres compared to fibres obtained through mechanical decortication.
ecortication efficiency is also influenced by stem morphological char-
cteristics [95] and biochemical composition [103] . The latter also im-
acts mechanical properties, and it is best illustrated through the com-
arison of decortication efficiency of green stems versus retted stems
104] and assessing the influence of the stem development stage [67] .
or retting, to improve the suitability of hemp fibre for current or future
ntended industrial applications (e.g. structural composites), various bi-
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Fig. 8. A schematic overview of the systematic termi- 
nology used in traditional hemp processing (adapted 
from Schnegelsberg [ 78 ]). 

Fig. 9. A schematic overview of hemp fibre processing techniques. 
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tic or abiotic treatments (sometimes both) have been adopted on the
bres [105] and on the stems [ 96 , 92 ]. Decortication of stems is made
asier following retting – be it water-retting [106] or dew-retting . The
nderlying mechanism in action here is the decrease in the fracture en-
rgy at the interphases of the bast fibres with both shives [107] and
he epidermis. Evidence for the latter is provided by imaging the cam-
ium layer being cleaned of its xyloglucan by immunolabeling [108] . A
istinct illustration of this assumption is provided by scanning electron
icroscopy observation ( Fig. 10 ) [109] . 

Following retting, there is usually no other stem treatment carried
ut to assist decortication, arguably because of economic reasons, but
lso because retting is efficient. The steam explosion process must be
entioned in this context to illustrate the convenience of a controlled

biotic treatment. The stems are treated by moist steam (around 200 °C)
nder pressure (1.5–3 MPa) for a few minutes, followed by rapid explo-
ive decompression [110] , boosting the ‘cleaning’ efficiency. Decortica-
ion is facilitated due to the fewer contaminant shives adhering to the
bres. When applied to fibre bundles, steam explosion leads to more
ingle fibres and fewer bundles, with fibre elements of superior length
111] compared to untreated fibre lots [112] . Some other alternatives
o exist; for example, microwave-assisted stem decortication is currently
eing investigated at the laboratory scale. Other abiotic stem treatments
hat are low cost and industrially up-scalable are desirable to assist the
ecortication step toward improved fibre/shives fractionation with pre-
erved fibre properties. 
.2. Cleaning efficiency and contamination with shives 

During the decortication process, the shives are separated from the
bre bundles and are mechanically broken into millimetric particles
 51 , 94 ]. As the presence of shives is detrimental to composite proper-
ies, cleaning processes free fibre bundles from shives (see Fig. 9 ). The
rowth stage of the hemp plant influences the adhesive strength between
he histological cell layers. Consequently, it has been shown that higher
leaning efficiency can be obtained by adjusting the harvesting growth
tage of stems [113] . A complementary strategy was tested recently by
inkering with the decortication parameters. A large panel of 14 selected
arieties were decorticated and the decortication efficiency shown to be
ependent on the variety as well as the breaker (decortication) residence
ime. The retting duration is also shown to influence the decortication
nd cleaning efficiency by loosening the bond between layers of tissue
see Fig. 10 ); the longer the retting step (dew retting with a conventional
uration), the lower the residual shives content [65] . 

.3. Fibre bundle fineness 

While the decortication step aims to separate the bast from the other
ell types, increasing the fineness of the fibre bundles further helps
mprove composite properties [111] . Various processing techniques in-
uence the fineness of fibre bundles. In practice, enzymatic treatment
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Fig. 10. A schematic illustration of SEM mi- 
crographs of cross-sections of hemp stem be- 
fore and during retting; (A) before retting, after 
(B) 14, (C) 28 and (D) 42 days of retting. Scale 
bar = 100 𝜇m. (inspired by Bleuze et al. [109] .). 
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f stems (as well as water retting) will result in finer bundles. There-
ore retted stems are much preferred over unretted ‘green’ stems [104] .

hen a bio-degumming treatment is applied on stems, which is a bio-
rocess based on hydrolase enzymes, similar effects are observed [54] .
n addition, we note that the fineness of the bundles was even better
hen steam explosion or enzymes were applied on decorticated bundles

111] . Controlled microbial retting has also shown positive results, as
as fungi-assisted retting [114] . A mechanical operation like hackling
r refining ( Fig. 7 ) helps in getting smaller bundle sizes, and recently
98] the effect of the hemp genotype was illustrated with better bun-
le fineness obtained with a ‘yellow stem’ variety (Carmaleonte). The
uestion of the use of intensive processing is always a question of bal-
ncing quality and quantity. Lower yields typically accompany intensive
efining processes. They, therefore, have a high added value in terms of
neness and low shive content, often at the expense of the yield of long
bre bundles. The result is large quantities of short and low-value fibres.

.4. Fibre bundle length 

Currently, high-quality long flax (compare Fig. 7 ) have mechanical
roperties suitable for some structural components, though their high
rice (of fibres, rovings and composites textile) is a major limiting factor.
einforcement products (non-wovens and aligned textiles) have been
pecially developed for high-performance flax composite applications
n France, Belgium and Switzerland in the past few years [ 115 , 116 ,
17 ]. The processing steps correspond to the traditional line (see Fig. 7 )
or flax in Europe using field retting. The yarns and rovings specially de-
eloped for flax composites are generally based on long flax (see Fig. 8 ),
hich is carded and processed into wet-spun yarns. Realizing a compa-

able processing technique for hemp in Europe (Traditional Line; Fig. 7 )
s not currently feasible. Instead, new concepts that use hemp from the
isordered lines (total fibre line) need to be materialised. The processing
echnology has to be adapted in such a way that the hemp fibre bundles
ave a length spectrum (approx. 5–10 cm) which allow carding and pro-
essing into yarns (dry or wet) with a shorter staple length compared to
ong hemp . 

Ongoing research aims to process flax and hemp fibre bundles from
isordered lines into yarns with nearly unidirectional fibres by an al-
ernative spinning process at lower costs [90] . It has been shown that
nidirectional flax yarns produced from this alternative process lead to
omposites with comparable properties to those constructed with com-
ercial long-flax roving. The work on hemp is still in development, with
rst results that seem promising [90] . 

.5. Fibre bundle damage 

Achieving high decortication yield and cleaning efficiency, alongside
ell-preserved fibre intrinsic properties (mechanical and morphologi-

al) can be challenging, particularly if complementary treatment pro-
esses (e.g. retting) are not used. Furthermore, even when the decorti-
ation process is optimised, or the crop growth stage is well-adapted to
nsure low fibre/shive interface strength, there is a trade-off between
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imiting fibre damage induced during decortication and the other crite-
ia, such as fibre/shive ratio and degree of individualisation. Fibre dam-
ge during decortication manifests as micrometric cell wall structural
islocations, sometimes referred to as defects or kink bands. They form
long the length of the fibre spaced tens, hundreds or thousands of mi-
rometres apart [ 118 , 49 , 119 , 120 ] depending on dislocation density,
arshness of decortication, and severity of composite processing [ 118 ,
9 , 119 , 121 ]. The tricky point lies in the definition of the length scale
f these defects, as the local nanometric dislocation or misalignment of
he cellulose microfibrils in a fibre could be considered a damage de-
ect, and/or large micrometric kink bands in a fibre bundle could also
e considered a damage defect. 

At the outset, it is essential to mention that such damage defects
re present, albeit in substantially smaller quantities, in unprocessed,
on-decorticated fibres, and are also present in low quantities in hand
ecorticated fibres [ 122 , 123 ]. Their multiple origins and descriptions
n bast fibres have been widely reviewed [124] , alongside their implica-
ions on composite properties [16] . Though such defects are detectable
n unprocessed stems, for instance, induced by wind [118] , they are also
enerated when hemp stems are processed mechanically [123] and es-
ecially in case of under-retting, when extracting conditions must be
evere. Indeed, this goes back to the trade-off mentioned earlier about
leaning efficiency and the preservation of the structural properties of
he fibre. The impact of all the production process steps on damage evo-
ution in fibres was investigated recently [125] . The results highlight
hat the decortication stage is the major contributor to damage forma-
ion, and subsequent processing steps (see Fig. 9 ) like carding [52] also
dd to the total defect count, though to a relatively lesser extent. The
election of process steps and their intensity should be driven by the
equired fibre quality for its end products; for instance, separation and
arding will create additional damage, but also generate finer fibre bun-
les. 

The impact of the fibre extraction process on the morphological
nd mechanical properties of hemp fibres/fibre bundles has been in-
estigated by researchers using carefully designed experimental setups.
hygesen et al. report a monotonically decreasing relationship between
he processing steps and the strength of hemp fibre bundles [118] . They
overed retting, scutching, carding, cottonization, and yarn production,
nd observed a strength reduction of approximately 30% per process-
ng step (on average). Considering that no cellulose modification oc-
urred during any step, they concluded that the strength reduction was
riven by fibre ultrastructure damage. In this study, however, fibre mor-
hology was not studied, nor correlated with fibre strength. Note that
arious hemp processing machines are in use today, and the principal
ifferences in decortication processes, i.e. breaker roller versus hammer
ills, will lead to hemp products with contrasting qualities in terms of

ength, defect count, and shive content [94] . Finally, the extraction pro-
ess of hemp fibres, alongside crop variety and growth conditions, is an
mportant contributor to the high scatter in its morphological charac-
eristics, which in turn may account for hemp’s lower tensile properties,
ompared to flax [126] . 

. Stem harvesting, post-harvesting and retting 

The harvesting time and the retting duration of the stems affect the
aturity of the fibres, and are not well-controlled by farmers. These
arameters also influence the mechanical properties and the degree of
ndividualisation of the fibres, and consequently have a knock-on effect
n the performance of the resulting bio-based composites. This section
ill cover three key points of discussion. 

• The morphological properties of hemp, and in particular the degra-
dation mechanisms and structural evolutions at the stem scale during
retting will be discussed. 

• The influence of retting on the properties of fibres and plant walls
will be described, in terms of defects, modifications of the parietal
structure, individualisation of the fibres and evolution of their me-
chanical properties. 

• The decortication and separation of fibre bundles and the choice of
the harvesting time will be discussed, in relation to the maturity
and performance of the fibres. The conditions and monitoring of the
retting process will be analysed. 

.1. Impact of harvesting 

Harvesting is an important step in hemp production. The time and
ethod of harvesting have a significant influence on the quality of the
emp fibres. It dictates the selection of further processing devices for
emp stems, and the economics of hemp fibres production. While the
emp crop can be harvested with a wide variety of prototype and com-
ercial types of machinery [94] , all harvesting systems can be grouped

n two categories, longitudinal and disordered , as illustrated in Fig. 7 .
 comprehensive overview of developments in the field of harvesting
nd post-harvesting technology can be found in Amaducci and Guso-
ius [94] . 

The disordered system is the only one used in modern hemp cultiva-
ion. It involves standard or modified combine harvesters that, in one or
wo passages, collect the seeds and leave the stems on the field in a dis-
rdered swath. Following this system, the farmer can benefit from the
ncome derived from the sale of seeds, and potentially from the extrac-
ion of CBD from the threshing residue [127] . However, in this system,
arvesting is carried out considering seed ripening and not fibre qual-
ty. Notably, the fibres obtained from stems collected at seed ripening
re more suitable for lower value applications, such as the production
f paper and pulp [ 128 , 129 , 130 ], short fibre/fibre bundle reinforced
hermoplastics [ 131 , 25 ] or perhaps non-woven textiles (needle felts or
eeces) [130] . Several authors report that fibre quality decreases dur-

ng seed maturation. Liu et al. have measured that the tensile strength
s higher in fibres obtained from stems collected at the beginning of
owering than from stems collected at seed maturation [103] . This is
robably due to the accumulation of secondary, short and lignified fi-
res, and to the reduction of cellulose deposition. Musio et al. measured
ower breaking strength values in composites (through the impregnated
bre bundle test) made with fibres obtained from stems collected when
he seed matured rather than at full flowering [54] . 

For the development of new harvesting methods for hemp, possi-
le damage to hemp fibres by the harvesting process has generally not
een taken into account. In the literature, there are few studies inves-
igating the damaging influence of the harvesting technique on the fi-
re properties of hemp [94] . Müssig and Harig report that harvesting
ethods cause least damage to fibre bundles, if fibres and shives are
ot separated on fresh green stems during harvesting [132] . Müssig and
artens as well as Gusovius et al. come to the same conclusions [ 68 ,

33 ]. The study also examined a harvesting method that separates fibres
nd shives from fresh green stems in the field. This harvesting method
hows a tremendous damaging effect on the fibre bundles, with a signif-
cant reduction in strength [ 132 , 93 ]. 

.2. Impact of retting at the fibre scale 

During retting, the overall architecture of the plant is impacted. Ret-
ing, which lasts several weeks depending on its progress, is a micro-
iological process during which the stems are colonised by fungi and
acteria. These microorganisms secrete enzymes which induce degra-
ation of the cell walls. Usually, studies focus on plant polysaccharides,
lthough the deconstructing enzyme arsenal is known to be richer. The
ypical degrading arsenal includes phenol oxidases or proteases and
ther hydrolases because these polymers are majors constituents of the
ell wall. Amongst the polysaccharides, hydrolases and hemicellulases
re of major importance. During retting they have, for instance, the abil-
ty to degrade the xyloglucan epitopes localized in the cambium layer
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n flax [108] . This hemicellulose degradation, in turn, facilitates the dis-
ociation of the fibre crown from the xylem part in hemp (see Fig. 10 ,
) [109] . To note, the most well-known and perhaps most studied hy-
rolases is the pectinase family [ 134 , 135 ]. The pectins of the middle
amellae, the cortical parenchyma, the epidermis, the xylem and the
undles of fibres are gradually degraded, which favours the extraction
nd division of fibre bundles during the mechanical extraction step; an
mprovement of the separation of fibre bundles from the woody core of
he plant is expected. Thus, the retting step induces a significant dis-
ociation of the stem tissues and consequently a drop in fibre bundle
nterfacial cohesion. 

At the scale of the single fibre, it seems evident that multi-scale and
ulti-feature modifications occur and evolve during the dynamic retting
rocess. This has led to published reports with contrary observations in
erms of physical properties (mechanical mostly), biochemical patterns,
nd fibre cell wall polymers arrangements (cellulose to mention one).
he divergent conclusions are argued and even assumed, to be princi-
ally explained by the set-point of retting explored. In order to classify
he dynamics of the retting process, it is not sufficient to use only the
emporal unit (i.e. the retting duration). Rather, the pedoclimatic con-
itions must always be described, discussed and used for comparison.
he effect of soil quality on retting with regards to the consortia of soil
icroorganisms present is a possible explanation of the different retting
ynamics observed. Ribeiro et al. report in their study, which is based on
ene sequencing, that the most important fungal and bacterial species
re identical in six different hemp retting sites, but they differ signifi-
antly in their distribution [136] . This can be interpreted as the field
etting process may progress differently according to the richness of its
onsortia of microorganisms. However, soil that is less rich in microor-
anisms could be suitable if the retting duration is increased. From a
echanistic point of view, the combination of bacteria and fungi seems

ery effective for flax [108] . The dynamic response of these microorgan-
sms will probably also increase the efficiency of hemp retting [137] . 

The action of soil microbiota during retting aids the individualiza-
ion of larger bundles into smaller bundles, though this can take a few
eeks; Mazian et al. monitored this process of separation into smaller
undles after five weeks of field retting [67] . Alongside the changes at
he bundle scale, it is clear that not only the middle lamellae between
undles but also the middle lamellae between fibres faces enzymatic
egradation [ 42 , 67 ]. The following sections will explore this further,
ith the mechanical properties and biochemical aspects as the focus. 

.3. Impact of retting on defects and mechanical properties of fibres 

At the level of the single fibre, its seems evident from literature that
ver the retting duration the fibre mechanical properties will follow a
ell-shape trend, due to the amount and diversity of enzymatic activi-
ies [109] executed by the fungal and bacterial microorganisms [137] .
uantified enzymes mostly poly- and oligo-saccharides hydrolases, de-

pite the expected recalcitrance of lignin in the functional properties of
bre; hence, there is the need to also identify and asses oxydases (i.e.

accases). From a mechanical property point of view, there is first an
ncrease in tensile strength in the early phase of the retting process, up
o an optimum retting duration, before a sustained reduction in ten-
ile strength of the fibres, this condition is often referred to as over-
etting [ 68 , 65 , 101 ]. Trends in both strain at break and Young’s modu-
us stand out in comparison to the development of tensile strength. The
train at break decreases with retting duration. The tensile strength of
echanically extracted single fibres from the same field confirm that

oth the under-retted fibre and the over-retted fibres over 70 days have
ower strength (480 and 340 MPa after 10 and 75 days respectively;
iu et al. [104] ) compared to the optimal retting duration (660 MPa af-
er 39 days). Interestingly, the apparent elastic modulus of single fibres
oes not evolve substantially during retting, remaining between 15 and
7 GPa. In contrast, the strain to failure decreases by 30% with retting
uration, starting at 3.5% after 10 days of retting [101] . 
Liu et al. report comparable trends with higher values for all reported
haracteristics, and highlight the effect of the hemp growth stage [104] .
ndeed, if stems are harvested early, and the stem and cells have not ma-
ured, tensile strength only decreases with increasing retting duration.
his is in contrast to the bell-shape trend observed for mature stems
ith mature cells. 

Mazian et al. report a substantial difference in tensile strength be-
ween non-retted (170 MPa) and retted (340 MPa) fibre bundles [67] .
ut the authors did not observe a significant reduction in strength for
 prolonged retting duration (of 63 days); this is in contrast to the pre-
iously described bell-shaped evolution in tensile strength with retting
uration. The Young’s modulus was 8 GPa for un-retted samples and
ncreased to values of 12 GPa for the retted samples, independent of ret-
ing time. They also observed that the strain at break of the fibre bundles
ncreased with retting time [67] until the stem was over-retted; this is
gain in contrast to the gradual decrease in failure strain with retting
uration reported for single fibres [ 65 , 67 ]. 

.4. Impact of retting on parietal architecture and biochemistry 

Most publications thematically related to this section attempt to link
hysical properties with the development of biochemistry and thus im-
licitly with parietal architecture. A sensitivity analysis reports that
t the level of single fibres, the Young modulus is a first-order factor
138] for mechanical performance, and is directly related to the amount
f crystalline cellulose in the cell wall. Del Masto et al. have shown
hat the stiffness of a fibre is strongly influenced by the dispersion in
he morphological characteristics of the fibres. Tensile test simulations
how the strong influence of the degree of ellipticity (vis. fibre cross-
ection shape) on the form of non-linearity of the tensile stress-strain
esponse. The results suggest that this morphological effect is strongly
oupled with structural properties and physical mechanisms, such as the
iscoelastic behaviour of cell wall components [126] . It may be assumed
hat retting directly affects the morphology of the fibre by modifying the
bre ultrastructure (changing of the crystallinity of the cellulose, mea-
ured through the crystallinity index (CI)). For example, the CI decreases
hen over-retting begins. As a consequence of the observed decrease in

ellulose crystallinity, a strong reduction in stiffness, strength and elon-
ation at break is suspected [65] . In the mentioned work, a decrease
n cellulose crystallinity from 78% to 73% was observed before and af-
er over-retting. This led to a predicted loss of 10% in tensile strength,
hich was consistent with the experimental values. However, a recent x-

ay diffraction (XRD) investigation on fibre bundles during retting show
n increase in cellulose crystallinity from 53% to 73% at 63 retting days
67] . A similar trend was recently shown on flax fibres [42] . One may
ypothesize that the over-retting stage was not reached in these stud-
es. What is imperative to point out here is the re-occurring difficulties
n comparing data between various studies carried out using different
echniques. With XRD, for example, a single to double crystallinity value
f the cellulose can be determined, depending on the treatment of the
easured data (see the discussion in Placet et al. [65] ). 

The same criticism can be made when determining biochemical com-
onents. The reported changes in the chemical composition during the
etting process are sometimes contrasting and inconsistent; this can only
e explained by the fact that the composition of the fibre and fibre bun-
le has been mixed up [96] . The retting process first acts on the bun-
les by depectization that degrades pectin-enriched structures, like the
iddle lamella. Pectins, with their amorphous nature and short-chain

engths, are good carbon substrates for the colonising microorganisms
uring retting. These pectin may have some carbohydrate monomers
n common with hemicelluloses, for instance arabinose and rhamnose
onosaccharides [139] . This can make it challenging to confidently at-

ribute the quantified monomers to one of the two families. In parallel
o enzymatic hydrolysis of pectins and hemicelluloses preferentially lo-
ated in the middle lamella and the thin primary cell wall, the consortia
f microorganisms also produce enzymes targeting glycan polymers, and
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herefore cellulases are also active. There is no direct evidence that the
morphous segments of cellulose are degraded before the crystalline
egments. Only indirect observations support this proposition, with a
uantitative decrease in glucose in the fibre/fibre bundle, along with an
bserved increase in cellulose crystallinity. The authors hypothesise a
eduction in the amorphous content of cellulose, which is also coherent
ith the observed increase in measured mechanical properties [42] . The

ellulose crystallinity of the fibres/fibre bundles needs to be preserved
o promote overall fibre quality. It is known that both tissular and cel-
ular heterogeneity in plant biomass present a significant barrier for en-
ymatic cell wall disassembly [140] , by hampering enzyme penetration
141] . The size of the enzymes may also present a physical limitation
o their penetration. Cellulase is one of the largest enzymes, and there-
ore, its accessibility is limited. However, accessibility can be facilitated
y the simultaneous degradation of the surrounding polymers, such as
emicelluloses. The exact knowledge of the cohort of enzymes and its
ub-class-specificities contributes to a better understanding of the dy-
amic bioprocess of retting, and aids the monitoring and management
f the retting process for better control on fibre mechanical properties.
he influence of parietal arrangement on structure and consequently
echanical properties was recently highlighted at the scale of the bun-
les by Jankauskiene et al. [142] . The authors compared a large panel of
ater-retted hemp lots, and they evidenced that the inter-fibre poros-

ty within the bundle has a strong impact on its strength; the higher
he separation due to porosity, the lower the strength. This separation
eems to be influenced by the biochemical composition, in particular,
he changes in pectin distribution. 

Polysaccharides are not the only polymers present in hemp fi-
res/fibre bundles; the role and evolution of lignin, a complex polyphe-
ol macromolecule, is also important. Lignin is biosynthesized in the fi-
al stage of fibre-cell wall remodelling, and its content ranges from 2%
o 6% of dry matter [ 37 , 33 ], but can reach values of 11–13% [143] .
he reason for these high values is mainly due to the type of analytical
ethod used (Van Soest in this case). There are contradictory reports

n literature on the impact of retting on lignin. Some authors report
n increase in lignin content, while some a decrease. In the case of an
ncrease being reported, the synthesis of ‘new’ lignin during retting is
nrealistic. An analytical bias is possible, if nonspecific methods based
n gravimetry, such as Van Soest, are used due to condensate proteins
nd complexes that are counted towards the lignin fraction [ 144 , 145 ,
46 ]. Due to the recalcitrance of lignin, it is possibly not an ‘absolute
ncrease’, but rather a ‘relative increase’ due to the removal of polysac-
harides of other cell wall components, such as pectins and hemicel-
uloses. Although recalcitrant, some enzymes (e.g. peroxidase, LPMO)
nd biotic processes can depolymerise lignin, and the consortia of ret-
ing microorganisms have the ability to do this within weeks. 

While the degradation of lignin seems more likely, the question is
ow does this take place (and how it is described in the literature)? Au-
hors, reporting a decrease in lignin content during retting and at the
atest stage of retting, like Mazian et al. [67] , most likely analysed sam-
les in which the net balance between initial enrichment of the lignin
ompartment (quick removal of polysaccharides) and degradation of the
olymer is negative. When interpreting the published results, it should
e considered that samples are compared with an offset in the produc-
ion of lignin-degrading enzymes. It must be taken into account that
hese enzymes are produced in the latter phase of field retting and that
ecretion takes place under, as yet, unknown control mechanisms of the
onsortia of microorganisms. 

Results from literature sometimes reveal contradictory observations,
rom a mechanical, biochemical or fibre-optical point of view. In the
ase of retting, it is difficult to compare batches, as the boundary be-
ween under-retting, normal retting and over-retting is unclear, subjec-
ively established and dictated by the experience of farmers. This reflects
he lack of coordination and monitoring of the property-governing ret-
ing process in the hemp agricultural sector. It further underlines the
eed to control this stage better to obtain fibres of optimal quality. 
.5. Hemp stem morphology and impact of retting at the stem scale 

Morphologically speaking, a stem of mature hemp can be considered
s a tapering hollow body which exhibits variable length and diameter
ccording to the variety, quality of the soil and environmental condi-
ions [ 147 , 148 ]. Conventional European hemp stems can reach heights
f 2–4 m and diameters around 10–30 mm with a tapered profile from
he apex to the bottom of the plant [149] . The internal architecture
f the stem is hierarchical and organized from centre to periphery with
ith, xylem, vascular cambium, phloem, fibres, cortical parenchyma and
pidermis ( Fig. 11 , B). The fibre network can be completed by a sec-
ndary fibre network, preferentially present at the bottom of the stem
31] . These fibres probably have a mechanical support function and de-
elop when the plant needs to increase its flexural stiffness; they are
uch shorter than the primary fibres (2–3 mm against 20–30 mm) and
ave significantly smaller cross-sections. On the other hand, the me-
hanical properties of their walls are similar to that of primary fibres
38] . 

From a mechanical point of view, it is possible to simplify the rep-
esentation of this stem cross-section ( Fig. 11 , A) by considering only
he most important parts, i.e. the fibre zone and the xylem of the stem
 Fig. 11 , C). Although fibres play a significant role in the bending stiff-
ess of the plant, the woody core or xylem has also been shown to make
 significant mechanical contribution [150] . The latter consists of con-
uctive tissues with a honeycomb structure [151] . The primary fibre
one is much denser with long gelatinous fibres (20–30 mm on average)
nd bound together by a very cohesive intermediate lamella composed
ainly of pectic compounds. The fibres consist of a sequence of plant

ell walls including a primary wall, a secondary wall, and a lumen. The
econdary cell wall is the thicker and stiffer layer and is reinforced by
ellulosic microfibrils (MFI = 4–11 °; Z-twist) in a non-cellulosic matrix
f hemicellulose, pectin and lignin, and provides the majority of the
bres’ mechanical properties [ 152 , 153 , 138 ]. 

In summary, a hemp (or any bast fibre) stem can be considered as
 model for an optimised composite material, with long and stiff fibres
round the periphery, distributed evenly and unidirectionally in the di-
ection of the stem and, in the centre, a light foam made up of rigid walls;
he central lacuna completes this lightweight, rigid structure. This opti-
ised sandwich structure allows the plant to perform exceptionally well

n terms of stiffness, buckling resistance and slenderness. 
Compared to hemp, flax is reported to have a fairly low variation in

bre morphological properties. A possible cause could be the influence
f the morphology of the stems on the field retting process. With a diam-
ter of only a few millimetres, the flax stem is much thinner than a hemp
tem and almost perfectly cylindrical in shape. Hemp stems are signif-
cantly thicker and also strongly tapered along the length of the stem.
uring the retting of the flax stem, the microorganisms can execute the

etting process much more homogeneously. In the case of hemp, as dif-
erent areas of the stems are also morphologically different, this may
ead to a more irregular, inhomogeneous retting, which in turn leads
o greater variability in morphological fibre properties. The degrada-
ion processes of the microorganisms become increasingly visible on the
lant surface during retting, which is also noticeable by a change in the
olour of the stem. The colonization by microorganisms makes the stem
arker [ 68 , 109 , 154 ]. For flax, this side effect of retting is employed
s a management tool of the retting process by monitoring changes in
olour and CIELAB measurements (CIELAB or CIE L ∗ a ∗ b ∗ colour space is
 colour space defined by the International Commission on Illumination
CIE –) [92] . As Faughey and Sharma report, the Near-InfraRed Spec-

roscopy (NIRS) method offers the possibility of non-destructive mea-
urement of important flax quality properties [155] . The application of
his method has already provided reproducible results in determining
he degree of retting of flax stems [156] . For this purpose, a retting
ensor has been developed, which primarily measures the blackening
f the flax stem due to microbial degradation. The quotient (A1000)
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Fig. 11. The organisation of a hemp stem (A) can be schematically simplified (C); retting step induces a significant impact on the cohesion of tissues, inducing a 
division of the fibres bundles and a progressive separation of the fibre ring from the woody core of the stem (D&E). Inspired from [ 191 , 109 , 154 ]. 
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s used to assess the degree of retting of flax stems {A1000 quotient:
1000 = Abs.(1000 nm)/Abs.(1370 nm)} [ 156 , 86 ]. 

Müssig and Martens used this approach as a reproducible method
o replace the subjective visual classification of field retting of hemp
sing a scoring system [68] . To start the baling of the stems after field
etting to ensure that the hemp stems are harvested and stored at the
ighest possible quality, the A1000 value was used as a marker. The
ollowing characteristics were chosen as a measure of good quality: easy
o decorticate, a low percentage of shives and minimal shortening of
bre bundles with a simultaneous refinement of the fibre bundles [68] .
lthough the suitability of NIRS as a tool for controlling field retting has
een proven, this method seems not yet to be accepted by farmers. 

At the beginning of the retting process, only a small amount of
orosities can be noticed in the phloem area ( Fig. 11 , D), though after
2 days ( Fig. 11 , E), a significant decohesion of bundles, especially close
o the epidermis part is highlighted. Thus, retting induces irreversible
hanges in the hemp stem architecture and especially in the fibre area
etween bundles and surrounding tissues. These modifications impact
he structure and the mechanical performance of the stem [154] . 

It is possible to quantify the impact of retting on mechanical proper-
ies of the stem. To characterise plant stems, simple flexural tests have
een developed for many years and reviewed by Shah et al. [157] . Their
bjective is mainly to link the mechanical behaviour of the stem with
lant stiffness, buckling resistance and slenderness [ 158 , 159 , 160 ] and
o understand the biomechanics of plants better. The bending behaviour
f stems can be described to be similar to that of thin-wall tubes [161] ,
nd ovalization during the test needs to be avoided as it leads to substan-
ial shear stress. Experimental parameters such as span length need to be
arefully selected, according to the morphology of the stem. For hemp,
équilé et al. studied the contribution of the fibres to the mechanical
roperties of the stems, and proposed to use a span length correspond-
ng to a stem aspect ratio (L/D) of 40 to avoid the Brazier buckling effect
uring testing [107] . In the case of hemp, the xylem contributes less than
alf of the global stiffness of the stem (45%). Even though there are no
ublished results on the stiffness of retted hemp stems, this test method
eems to be promising for rapid mechanical assessment of the impact of
etting on stem integrity. 

Another way to quantify the impact of retting on stems is to imple-
ent a peeling test. Réquilé et al. investigated the peeling behaviour

f hemp stems, before and after retting [154] . Based on the analysis of
he fracture energy at the fibre/woody core interphase in combination
ith SEM observations, a significant decrease in fracture energy was
easured with increasing retting time. The results show a strong influ-

nce of retting on the ease of peeling the outer tissue of the stem [154] .
hus, by bending or peeling tests, mechanical and cohesion behaviour
f a plant stem can be assessed and monitored over the retting time.
 recent paper reports a new technique that can be used as an indica-

or for the degree of retting. The method is based on the investigation of
he temporal dynamic of volatile organic compounds (VOCs) and odours
mitted by plants during retting [162] . The authors report a decrease in
OCs and plant odour with retting duration. 

. Cultivation strategies for fibre hemp 

Hemp is considered an environmentally friendly crop, which can be
rown in a wide range of environments with limited inputs using sus-
ainable agro-techniques. There are no pesticides or herbicides used in
emp cultivation. Organic or mineral fertilisers are usually applied be-
ore sowing and, especially in high stand cultivation for fibre destina-
ion, the crop is planted in very narrow rows that render access to the
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eld after sowing practically impossible, but greatly increase the com-
etition of hemp over weeds. The success of hemp cultivation largely
epends on decisions and agronomic interventions that are carried out
rior to sowing. Fine-tuning of hemp agronomic choices must consider
ariety characteristics, environmental conditions and of course the end-
se of the hemp crop. Considering the scope of this review, the focus
nd-use is high-quality fibre production. However, it is worth men-
ioning that hemp is a multi-use industrial crop, also cultivated for its
eeds and high-value secondary metabolites [ 127 , 163 ]. The possibil-
ty to grow hemp as a multi-purpose crop is, for sure, relevant from an
conomic perspective as the income derived from the seeds and/or the
nflorescence improves the farmer’s income, making hemp farming cost
iable (if not attractive). This is particularly relevant if the price of hemp
bre must be reduced (in the coming years) to compete with alternative
atural or non-natural fibres. In this regard, combining the production
f fibres with that of the inflorescence seems an optimal solution as
arvesting time for the fibre and the inflorescence is synchronous, in
ontrast to delaying harvesting until seed maturity, which reduces fibre
uality due to increased lignification and accumulation of secondary
bre [ 151 , 37 ]. 

.1. Varietal selection of hemp 

Hemp is a naturally dioecious plant which belongs to the Cannabi-
aceae or Cannabaceae family. According to Small and Cronquist, this
amily belongs to the order Urticales and includes two genera, Cannabis
or hemp and Humulus for hops [164] . According to Bremer et al., the
annabinaceae are in the order of Rosales, which also includes nettle
 Urtica dioica or urens ) and ramie ( Boehmeria nivea ), other plants valued
or their fibre content [165] . In the Cannabinaceae family, the genus
annabis is associated with a species, Cannabis Sativa , but its subdivi-
ion, according to the authors, is controversial. Some consider that only
wo subspecies exist [164] , C. sativa subsp sativa and C. sativa subsp
ndica , while for others the subspecies ruderalis, the savage form of
he plant should also be considered [166] . Regardless, C. sativa is the
ost widely grown species with varieties selected mainly for fibre and

eed production. The species C. indica includes psychotropic varieties
ith a high production of TetraHydroCannabinol (THC) (psychoactive
olecule). 

During the 20th century, the selection of industrial hemp made
t possible to develop non-psychotropic varieties ( C. sativa ) with a
etraHydroCannabinol level below 0.2% (THC, psychoactive molecule)

n order to comply with current regulations. The varieties selected and
ultivated today in Europe are descendants of the monoecious Fibri-
on variety, known for its high fibre content and its hardy character

167] . The varieties mainly cultivated today are nevertheless very poly-
orphic because they were originally obtained from monoecious plants,
aturally present in dioecious populations. The origin of industrial hemp
eads to the diversity of development and morphology obtained on mo-
oecious plants. Indeed, the polymorphism that results from this selec-
ion method is very strong within a variety. Selection efforts focus on
he development of monoecious forms with high female plant expres-
ion, with masculinized plants having a shorter lifespan due to their
igh sensitivity to parasites. This allows better biomass yields to be ob-
ained and also reduces the heterogeneity of the products harvested. 

.2. Selection criteria and trade-off governing variety choice for composite 

pplications 

Choosing the right variety is of paramount importance to ensure a
uccessful crop with a high yield of quality fibre [168] . Large production
f fibre is obtained by choosing a late variety, that in a given environ-
ent maximises stem production [ 100 , 169 ] with high fibre content. A
ide range of fibre content can be found among hemp varieties [167] ,
ith the highest fibre level to be found in monoecious varieties that
ave undergone extensive breeding during the 20th century. Limited
nformation is available on the intrinsic quality of fibre from different
arieties, but traditional dioecious genotypes tend to have a superior
bre quality than monoecious ones [170] . Differences in fibre fineness
mong dioecious and monoecious hemp varieties, due to different single
bre diameter, have been reported [ 40 , 171 , 98 ] but large differences in
bre quality are indirectly caused by variety earliness. In early varieties,
aving a short growing cycle, the degree of fibre maturity (i.e. filling of
he lumen) tends to be lower than in late varieties, but in the latter, the
ccumulation of secondary fibres tends to be higher, especially in the
ower internodes [35] . 

It is evident that multiple traits should be considered when choosing
 genotype for biobased composite applications, but overall it seems ad-
isable to choose a late variety that will produce a high yield of mature
bres. It should be noted that late varieties have a lower seed produc-
ion, which is a problem in the case of dual-purpose crops [168] and har-
esting can fall under unfavourable weather conditions, both for stem
rying and particularly for field retting [ 100 , 68 ]. Even though a num-
er of studies have recently been published on this topic [ 109 , 67 ], field
etting of hemp is a rather unexplored process that depends on a large
umber of factors that are very difficult to control. In recent years, to
educe the risk of field retting, and improve fibre quality, breeders have
eveloped genotypes that are easier to decorticate and for which the
eed for retting is significantly reduced or even null. In recent research
usio et al. confirmed that in a “yellow ” variety (i.e. with lower lignin

ontent and improved decorticability) [172] , compared to a conven-
ional “green ” variety, fibre extraction was more efficient [54] . 

.3. Effect of environmental conditions on hemp yield and fibre quality and

uture perspectives under climate change 

Hemp is a ubiquitous species, which has been successfully cultivated
n a large array of environments for the production of fibre, seeds and
econdary metabolites. The production of hemp fibre is affected by en-
ironmental condition in a number of ways. Research papers describ-
ng hemp production under contrasting environmental conditions [ 173 ,
74 , 168 ], irrigation regimes [175] and temperatures [176] have mainly
ocussed on plant production, and data on the effect of climatic factors
n hemp fibre quality are relatively scarce. No specific information on
he effect of temperature or water availability on fibre quality is avail-
ble. Regarding flax, Milthorpe showed that hydric stress during culti-
ation induces a significant decrease in dry biomass, reduced fibre size,
ut a similar quantity of fibres [177] . 

Climatic conditions have a relevant indirect effect on fibre quality
ffecting the intensity and duration of field retting. In the past, high-
uality fibre was mainly obtained by water-retting of the hemp stems,
hough nowadays this practice is highly regulated due to environmen-
al problems, and was also abandoned due to high labour cost require-
ents. High-quality fibre production is, therefore, dependent on suitable
eather conditions during the phase of field retting. 

A major concern for high-quality hemp fibre production is the fre-
uency of storms that can lodge the crop or bend the stems, rendering
arvesting of long hemp production impossible or challenging. Unfortu-
ately, a feature of the changing climate is the increased frequency of
trong winds and storms that can severely damage hemp cultivation.
nother feature of climate change is the alternation of extremely dry or
et years that have a strong influence on hemp growth and fibre de-
elopment. Hemp is extremely sensitive to excess water, especially in
he first growing phases, so heavy rains after emergence or cultivation
n soils with poor drainage determine stunted growth and reduction in
lant density, which in turn result in low yield and poor fibre develop-
ent. Additional concerns over climate change are related to the fre-

uency and intensity of drought periods. When established, hemp has
elatively good tolerance to drought, but in early phases of development,
hen the taproots are still superficial, plant growth is severely affected
y drought, plant density is significantly reduced, but more than that,
owering can be induced and plant height severely shortened [100] . 
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.4. Soil conditions and plant establishment: keys to a high stand 

omogeneous crop for high-quality fibre 

While it has been proven that plant density has a limited effect on
emp biomass production and fibre yield [ 100 , 178 ], a high and homo-
eneous plant density is needed to produce fine fibres suitable for textile
pplications or high-quality composite applications. Plant density has a
arge effect on plant biometrics; stems of plants grown at higher density
re thinner and have primary fibres with a lower diameter than stems of
lants grown at low plant density, similar to observations and measure-
ents on flax [147] . A decrease in stem diameter could be interesting

n an objective of fibre extraction with conventional scutching equip-
ent (see Fig. 7 ; “one m stem sections ”). In addition at high plant den-

ity, there is a very limited development of secondary fibres [ 35 , 40 ]
hich is also a positive point for composite applications, as although

hese secondary fibres having similar mechanical properties to primary
bres, they have a drastically reduced length, penalizing their aspect
atio and consequently their reinforcement ability. At high plant den-
ity, interplant competition for light limits final plant height, but also
timulates stem elongation in the first phases of plant growth, which
esults in longer internodes at the base of the plant [179] . It was found
hat longer and finer fibres are located in thin and long internodes [34] .
esides fibre quality (i.e. finesses and presence of secondary fibres), the
ffect of plant density on stem biometrics affects their suitability for
urther processing. In particular, density is a strong determinant of stem
ength and influences the effectiveness of harvesting systems designed
o cut the stem into 1 m segments [84] . Density also significantly affects
tem diameter, which in turn affects stem decorticability. 

Final plant density, and as a consequence the impact this has on fibre
haracteristics, is determined by the amount of seed used at sowing and
y the environmental conditions affecting seed germination and plant
stablishment. For successful crop establishment, the soil preparation
ust be optimal and weather conditions favourable [100] . 

The effect of nitrogen fertilisation on hemp yield is limited, and in
 wide range of environments 60 kg ha − 1 of nitrogen was sufficient to
each maximum stem and fibre yield [176] . Considering that nitrogen
ertilisation is one of the most relevant component affecting the envi-
onmental impact of field crops, the limited nitrogen requirements of
emp and its high nitrogen use efficiency [178] contribute to the low
nvironmental footprint of hemp fibres. Data on the effect of nitrogen
ertilisation on fibre quality is limited, but high nitrogen fertilisation
ends to decrease decorticatibility and fibre quality as a consequence
180] . Barth and Carus compare different bast fibres with regard to their
ustainability [181] . In order to avoid different allocation effects and to
arry out a comparable ecological balance, they use the same fibre sep-
ration process for hemp and flax (total fibre line - disordered line). The
tudy (cradle-to-gate) compares the global warming potential (GWP) per
onne of natural fibre that can be processed into needle felts and finally
nto compression moulded composites for automotive interior applica-
ions. In this comparison, flax and hemp when fertilized with mineral
ertilizer show approximately equal GWP values. When using organic
ertilizer, hemp performs better [181] . In this context, it should be noted
hat the processes of spinning and weaving have a substantial impact on
he environmental categories, especially with regard to energy use. 

In their overview paper on the life-cycle assessment (LCA) of flax and
emp, Müssig and Albrecht point out the challenges in the preparation
nd interpretation of LCA studies [182] . In order to interpret data on
nvironmental impacts, to compare the results of different LCA studies
r to compare the data of own surveys with results from the literature,
t is essential to know the exact background, the balancing framework,
s well as the allocation methods of an LCA. It is also important to know
he functional unit and to precisely define the objective of the LCA. For
xample, when evaluating different natural fibre reinforced polymers,
ot only the ecological impact per kg of fibres, but also the ‘function’
f a kg of fibre, in terms of the achievable mechanical properties of the
omposite material, must be compared [182] . In this context, the func-
ional unit of a composite material can be its stiffness, for example. To
alculate the tensile properties of different natural fibre composites on
he basis of the fibre properties, the approach of Madsen and Lilholt can
e used. They have developed a modified version of the rule of mixtures,
upplemented by parameters of the porosity content and the anisotropy
f the fibre properties, to improve the prediction of the tensile proper-
ies of composites [183] . More information on the life cycle assessment
f hemp fibre-reinforced composites can be found in [ 131 , 184 , 185 ,
86 ]. 

.5. Ideotyping hemp for composite applications 

The ideal hemp genotype for composite applications should produce
arge quantities of high-quality fibre (i.e. high finesses, high degree of
aturity, high crystallinity of the cellulose and a low amount of struc-

ural defects, to mention few) with low environmental impact and high
roduction stability (under both actual and future climate scenarios). In
revious breeding programmes, the yield of stems in t/ha was the main
ocus. Questions of fibre properties (length, fineness or strength) were
ot considered. In some breeding programmes (e.g., Toonen et al. [187] )
he focus was on improving the decoration of hemp stems in order to
btain fibres that contain as little shives as possible. New genotypes
hould be bred in the future, which in addition to high fibre content and
ood defoliation properties also provide high-quality fibres. The aim of
reeding should be to increase the fibre length while maintaining high
tiffness and strength of the fibres. 

The height of the crop is a relevant parameter when implementing
 harvesting system for longitudinal hemp processing as in the case of
baby hemp ” or “one m stem section ” ( Fig. 7 ). Plant height can be con-
rolled by combining a variety with a certain photoperiod sensitivity and
 specific planting density. To optimise harvesting efficiency for longi-
udinal hemp, in each environment, the right combination of planting
ensity and variety earliness should be found [100] . 

Variety earliness is an essential site-specific trait that not only influ-
nces stem height and stem yield, but also determines harvesting time
nd the probability to have favourable weather conditions for field ret-
ing. A valuable feature to reduce the risk associated with unfavourable
eld retting conditions is the introgression of the “yellow ” character that
rastically reduces retting time. 

Additional traits that could increase the economical sustainability
f hemp cultivation are high content in secondary metabolites (i.e.
annabinoids and terpenes), or the coupling of high seed yield and high
bre quality at seed maturity. Finally, in perspective of ongoing climate
hange challenges, the future of breeding envisages the selection of va-
ieties being more drought tolerant. 

. Under what boundary conditions can structural components 

e built from hemp fibres? 

At the product scale, small wind turbine blades have been fabri-
ated from flax composites by various research teams (not commer-
ially/industrially), and so it is conceivable that hemp composites may
e used to fashion similar sized blades in the near future. However,
uch research and testing is needed to understand the behaviour of
emp biobased composites, and attain confidence in their reliability,
or hemp composites to be used at a larger industrial scale for structural
omponents. 

There is not sufficient literature on high-volume fraction ( > 50%)
ligned hemp biocomposites manufactured through well-controlled
anufacturing processes, such as resin transfer moulding and prepreg-

ing. Moreover, there is a lack of comprehensive studies on their me-
hanical performance (fatigue and creep, compression, torsion and
ulti-axial stress, vibration and impact), environmental and ageing per-

ormance (with moisture, fire, low or high temperature), economic fea-
ibility, and life cycle assessment. In addition, there are also no studies at
he product scale (or hemp biobased composite scale) on computational
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a  
odelling (e.g. finite element analysis), manufacturing simulation (e.g.
esin flow behaviour) or structural simulation (e.g. strength, fatigue or
odal analysis). At the ‘system-level’ of the product, the compatibility

f hemp biobased composites with other materials in the product (e.g.
alsa wood core, or a UV and rain-protecting polymer gel coat/paint,
r adhesive bonding agents to glue the spar to the skin) may also need
pecific studies. 

This can only be achieved through systematic research and devel-
pment programmes covering multiple length scales (from mm-scale fi-
re to m-scale product). Such programmes may also reveal that hemp
and natural fibre) biobased composites may not always be ‘drop-in’ re-
lacements to glass fibre composites. Instead, some (if not complete) re-
esigning of the product may be necessary to optimise the use of hemp
iobased composites in the application. Indeed, just like the initial use
f quasi-isotropic carbon fibre composites in the ‘black aluminium’ ap-
roach was a gross under-utilisation of carbon fibre composite materials,
aking a hemp biobased composites blade to be exactly identical to a

lass fibre composite blade (e.g. same composite lay-up, shape etc.) may
e under-valuing the potential of hemp biobased composites, and worse,
eading to simplistic conclusions that ‘they [hemp biobased composites]
o not work’. The question, perhaps, we should be asking is, ‘when do
hey work?’ or ‘how can we get them to work?’. 

Research into hybridisation approaches (e.g. hemp + carbon fibre
omposites) and biobased resins as alternatives to conventional syn-
hetic resins could provide some answers. At the preform reinforcement
cale, currently, mainly 2D random non-woven’s (fleeces and needle
elts) and bi-axial plain woven fabrics are available in large scale for
emp. For structural products, a larger variety of low (ca. 50 g/m 

2 )
nd high ( > 800 g/m 

2 ) areal density aligned hemp fabrics are needed.
hese include unidirectional preforms, as have been developed for flax
lready, but also biaxial and triaxial preforms. Exploring 3D-knitting,
raiding, prepregging, yarn/tape winding, automated fibre/tape place-
ent and other manufacturing processes and their requisite preform

einforcements are also vital, as specific products may be more read-
ly manufactured through specific processes. In general, to substantially
educe property loss from misoriented discrete hemp fibres, avoiding
rimp at the fabric scale through stitched multiaxials or non-crimped
abrics, and avoiding twist in yarns through low-twist (or twistless), pos-
ibly pre-impregnated, hemp rovings and tows would be ideal. 

Hemp composite reinforcements need to be developed as flax rein-
orcements have been developed over the past decade or so. This may
rove to be challenging, as hemp, being a very different plant to flax,
as a larger shive content and attaining shive-free fine and long fibre
undles will require specific upstream fibre extraction and processing
teps. Unlike for flax, the current industrial fibre extraction processes
or hemp do not allow production of combed long fibre bundles, and
re unsuitable for the manufacture of quality textiles or unidirectional
einforcements. A part of the European industry disappeared with the
dvent of cotton and synthetic fibres and it is necessary to re-develop
bre extraction systems and spinning mills to support the biobased com-
osite industry in achieving its potential. 

Finally, incorporating hemp fibres into composites makes it possible
o reduce the environmental impact of these materials. This is a first step
hat is already being industrialised, particularly in the field of short fibre
hermoplastic composites. In order to complete the thinking and benefit
s much as possible from the environmental properties of these fibres,
t is necessary, in the years to come, to work on the choice of matrices.
he development of biodegradable matrices is essential to further de-
elop end-of-life solutions. Gradual replacement of thermoset polymers
ith thermoplastic matrices that are recyclable and/or degradable at

he end of their life is also an attractive approach. The use of vegetable
il-based resins, which have a low global warming potential and can be
hermally recycled at the end of their life cycle together with the natural
bres may also present an ecologically sustainable solution [188] . This
hift has already been initiated by the aeronautics sector or certain niche
arkets with high added value. For economic reasons, it is not yet the
ase in the ship-building or automotive industries, for example, which
re highly sensitive to the cost of materials. Reducing environmental im-
act (in terms of embodied energy, emitted carbon, end-of-life waste) is
robably the big challenges for the next 10–20 years for these industries.

To meet the desired performance at the composite scale, as part of a
op-down evaluation, optimisation right down to the fibre scale is neces-
ary. In particular, achieving consistency in fibre quality, optimisation
f the first mechanical transformation of the stem, and progress in large-
cale retting and varietal selection are priorities. 

Consistency in quality of the physical-chemical properties of the fi-
res would be attainable by sorting the secondary fibre from the primary
bre in the first transformation process, or by reducing the content of
econdary fibres though agronomic or genetic approaches. This would
ead to reduced scatter in fibre dimensions (geometric properties), as
ell as mechanical properties. Optimisation of the transformation pro-

ess would also help produce minimally-damaged fibres that are clean
nd well-separated from shives. 

The retting of hemp is another area needing attention. Retting is
ell mastered and controlled for flax, but more subjectively and incon-

istently implemented for hemp. There is a lack of a general guidance
r policy, even at the level of large cooperatives of farmers. This leads
o fibres with significant heterogeneity in terms of retting degree; over-
etted fibres have diminished properties, while under-retted fibres have
ore defects, due to the harsher conditions needed during mechanical

xtraction. The period of harvesting also influences the properties of
he fibres; when plants are harvested too late, the lignification of the
bres makes fibre extraction more challenging and affects the integrity
f the properties of the fibres. Identifying the end-use of the crop, mak-
ng a choice between whether enhanced fibre properties or high seed
ield is the aim, is important. Current research shows that fibres har-
ested at seed maturity are less stiff and strong than fibres harvested
t full-flowering. However, fibres harvested at a later stage still have
n acceptable reinforcement potential and, in addition, it often makes
ittle economic sense to not harvest the seeds [189] . Research is needed
o reconcile, through genetics or varietal selection, these two remunera-
ive products (vis. fibres and seeds) for the farmer. Appropriate varietal
election would boost the production of fibre-dedicated cultivar with
igher fibre yields (instead of xylem), and favouring shorter heights and
iameters of the stem for practical handling. Less lignified fibre bundles
ould also be a target, as well as less cohesive cambial and parenchy-
atic layers within the stem. 

Finally, in view of global warming, the stress resistance of hemp is of-
en highlighted, sometimes without scientific evidence. The drought tol-
rance of hemp needs more research; this would also support the selec-
ion of cultivation areas. Climate change also underlines the limits and
ecessary adjustments with regard to field retting. In Europe, droughts
re becoming more common over the summer period during which ret-
ing would take place, and alternative modes of retting are increasingly
eing explored. In the coming years, the development of off-field retting
hrough appropriate biotechnologies may become of interest. This may
nclude the use of bacteria to feed on pectic substances and produce
iopolymers (like PHA) in exchange. 

Hemp is a multi-purpose crop, which can be used to produce a large
umber of marketable biobased intermediate and end products from all
ractions of biomass [ 163 , 190 ]. Overall, sustainability in the hemp fibre
roduction chain can be achieved by optimising the various processing
teps. Under the boundary conditions discussed in this section, and the
ider review, the use of hemp fibres for high-performance composites is

ealistic on an industrial scale in the short-to-medium term. Further op-
imisation, especially from an economic point of view, is to be expected,
hrough adapted and improved process technologies. 

. Conclusions 

Most products, be they structural, semi-structural or non-structural,
re required to meet a range of specifications to ensure they function
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s required for their design life. Structural components, such as the ro-
or blades of a turbine, have to satisfy essential criteria related to stiff-
ess and strength performance, fatigue performance and environmental
urability. They also have to meet desirable criteria such as lightweight,
ow cost, and increasingly low embodied energy, and improved end-of-
ife disposal options. From our critical top-down review of the state-of-
he-art of hemp composites, hemp fibres, and hemp plants - i.e. entire
emp processing chain - we observe that while the hemp dream lives
nd hemp may find applications in some high-performance applications
n short to medium term, much progress needs to be made in order
or truly structural components to be successfully designed and fabri-
ated from hemp composites at an industrial scale. Specifically, there
s a need for more product design case-study projects using hemp bio-
omposites, and multi-scale structural property assessment to support
uch design. There is also the need for the development and optimisa-
ion of a wider range of reinforcement forms, such as unidirectional and
ultiaxial non-crimped fabrics from zero-twist ribbons, tows and sliv-

rs. Moreover, evidence-based selection of fibre extraction, retting, and
isintegration process parameters, as well as crop variety is necessary
o achieve more consistent fibre quality. 
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