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ABSTRACT 
 
Transcriptome differences between Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell 
lymphoma (MCL), which are all derived from B cell, remained unclear. This study aimed to construct lymphoma-specific 
diagnostic models by screening lymphoma marker genes. Transcriptome data of HL, DLBCL, and MCL were obtained from 
public databases. Lymphoma marker genes were screened by comparing cases and controls as well as the intergroup 
differences among lymphomas. A total of 9 HL marker genes, 7 DLBCL marker genes, and 4 MCL marker genes were 
screened in this study. Most HL marker genes were upregulated, whereas DLBCL and MCL marker genes were 
downregulated compared to controls. The optimal HL-specific diagnostic model contains one marker gene (MYH2) with 
an AUC of 0.901. The optimal DLBCL-specific diagnostic model contains 7 marker genes (LIPF, CCDC144B, PRO2964, PHF1, 
SFTPA2, NTS, and HP) with an AUC of 0.951. The optimal MCL-specific diagnostic model contains 3 marker genes (IGLV3-
19, IGKV4-1, and PRB3) with an AUC of 0.843. The present study reveals the transcriptome data-based differences 
between HL, DLBCL, and MCL, when combined with other clinical markers, may help the clinical diagnosis and prognosis. 
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INTRODUCTION 
 
Lymphoma is a malignant tumor originating from the 
lymphoid hematopoietic system and is mainly divided 
into two categories: Hodgkin's lymphoma (HL) and 
non-Hodgkin's lymphoma (NHL). Lymphoma is 
considered to be a chemosensitive tumor and the risk of 
lymphoma increases significantly with age [1]. 
Weakened organismal functions, defects in cellular and 
tissue homeostasis, immune deficiency, and multiple 
genetic alterations such as increased DNA damage in 
cells were correlated with aging. These risk factors are 
also the main causes of many cancers such as 
lymphoma [2]. Studies have reported that many anti-
aging measures are also helpful in the treatment of 
lymphoma [2]. Enhancing the expression of anti-aging 
genes can be an effective way to inhibit lymphoma, a 
recent study showed that enforced expression of Klotho 
could significantly induce cell apoptosis and inhibit 
tumor growth in diffuse large B-cell lymphoma 
(DLBCL) [3]. Furthermore, downregulated telomere-
binding genes (TRF1, TRF2, and POT1) lead to 
complex chromosomal aberrations, alternative 
lengthening of telomeres, and induced the progression 
of HL [4]. 
 
According to the WHO classification of lymphoid 
neoplasias (2016 version), more than 40 types of 
lymphoma are recognized, with clinical behaviors 
spanning from remarkably indolent to profoundly 
aggressive [5]. There are many subtypes of NHL and 
the most common of which is DLBCL. HL and DLBCL 
are B-cell-derived lymphomas with high incidence [6]. 
Mantle cell lymphoma (MCL) is a rare type of B-cell 
lymphoma that is still incurable, accounting for about 3-
6% of all NHL because of its high malignant 
aggressiveness [7]. There are large differences in 
histological classification, pathological diagnostic 
markers, clinical treatment, and prognostic status among 
HL, DLBCL, and MCL [7–9]. The prognosis of the 
three B cell-derived lymphoma subtypes is quite 
different [7, 9, 10]. Especially the prognosis of MCL 
patients is very poor, and many therapy methods have 
not achieved the expected outcomes [11]. 
 
The different types of lymphoma or lymphoma subtypes 
can be distinguished by gene expression profiling [12]. 
Several genes can be used as diagnostic markers for 
specific types of lymphoma. The ligands of the tumor 
necrosis factor (TNF) family (APRIL and BAFF) 
showed high specificity and sensitivity in the diagnosis 
of central nervous system lymphoma [13]. The high 
expression of FOXP-1 in pediatric-type follicular 
lymphoma can also distinguish it from follicular 
hyperplasia [14]. Furthermore, high-throughput T cell 
receptor (TCR) gene sequencing technology facilitates 

the detection of early-stage cutaneous T-cell lymphoma 
[15]. However, most of the previous lymphoma 
diagnostic or prognostic models did not consider the 
heterogeneity among different tumors or subtypes [16–
20]. Due to a large number of lymphoma subtypes, 
some genes may show consistent differential expression 
in multiple lymphoma subtypes that may interfere with 
the diagnostic specificity. Furthermore, complex gene-
gene interactions also affect the accuracy of tumor 
diagnosis [21] and prognostic status [22]. Therefore, a 
diagnostic model with excellent performance should 
also be robust and hardly affected by gene-gene 
interactions. 
 
The identification of tumor subtypes contributes to the 
effective treatment of the disease and prolongs the 
survival of cancer patients. Using gene expression 
characteristics to screen specific molecular markers is 
an effective approach to distinguish tumor subtypes. 
Through the identification of subtype-specific genes and 
constructing corresponding models, researchers can 
accurately perform subtype-specific diagnosis and 
prognostic evaluation for various tumor patients [23–
25]. Currently, the diagnosis of HL, DLBCL, and MCL 
is mainly based on the morphology and the different 
combinations of CD surface antigens [26]. The clinical 
application of genotyping differences among these 
lymphomas is still limited, and there is lacking an 
effective molecular diagnostic model. Therefore, this 
study aims to screen for subtype-specific marker genes 
and constructed lymphoma-specific diagnostic models, 
and then explore the related biological functions and 
prognostic status of these specific molecular markers. 
 
RESULTS 
 
Differentially expressed genes overview 
 
There were more than 3000 differentially expressed 
genes (DEGs) in the tumor samples compared to the 
controls in each type of lymphoma, and most of the 
genes were upregulated (Figure 1A). Most of these 
differentially expressed genes are upregulated, and a 
few genes are downregulated. This result is consistent 
with previous reports that the number of up-regulated 
genes in different lymphomas is much greater than 
down-regulated genes [27–29]. Regarding the 
intergroup comparisons, DLBCL showed a large 
difference compared with the other two lymphomas, 
whereas only a small difference was detected between 
HL and MCL (Figure 1B). There were 67, 369, and 59 
specific DEGs in HL vs. control, DLBCL vs. control, 
and MCL vs. control, respectively (Figure 1C). 
Furthermore, the results of the intergroup comparisons 
suggest that there were 182 intergroup difference genes 
(IDGs) shared by HL vs. DLBCL and HL vs. MCL, 
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1145 IDGs shared by DLBCL vs. HL and DLBCL vs. 
MCL, and 186 IDGs shared by MCL vs. HL and MCL 
vs. DLBCL (Figure 1D). According to the screening 
criteria for lymphoma-specific genes (defined as the 
intersection of specific differentially expressed genes in 
lymphoma samples compared to controls and the 
common intergroup differentially expressed genes in 
different lymphoma groups), we identified 20 HL-
specific genes (Figure 1E), 88 DLBCL-specific genes 
(Figure 1F) and 8 MCL-specific genes (Figure 1G). The 
GO enrichment results showed that the HL specific 

genes are mainly involved in muscle functions, 
differentiation, and development functions; the DLBCL 
specific genes are mainly involved in proliferation, 
development, and neuromodulation functions; and the 
MCL specific genes are mainly involved in multiple 
immune-related functions (Supplementary Table 1). 
Interestingly, most of the HL-specific genes were 
upregulated, whereas more than 90% of the DLBCL-
specific genes were downregulated. Half of the MCL-
specific genes were upregulated while the other half 
were downregulated.  

 

 
 
Figure 1. Differential gene expression analysis of three lymphomas. (A) The number of differentially expressed genes (DEGs) in 
lymphoma samples compared to controls. (B) The number of intergroup difference genes (IDGs) in three types of lymphoma. (C) Venn 
diagram of DEGs in lymphomas compared to controls. The red color indicates the number of upregulated genes and the green color 
indicates the number of downregulated genes. The expression trends of these genes are consistent in different types of lymphoma 
compared with controls. (D) Venn diagram of the IDGs between the lymphoma groups. The red color indicates the number of upregulated 
genes and the green color indicates the number of downregulated genes. (E) Venn diagram of HL-specific DEGs and HL common IDGs. 
(F) Venn diagram of DLBCL-specific DEGs and DLBCL common IDGs. (G) Venn diagram of MCL-specific DEGs and MCL common IDGs. The red 
bar indicates the upregulated genes, and the green bar indicates the downregulated genes. HL, Hodgkin's lymphoma; DLBCL, diffuse large 
B-cell lymphoma; MCL, mantle cell lymphoma. 
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Expression and function of the lymphoma marker 
genes 
 
There were 20 lymphoma-specific genes (9 HL 
marker genes, 7 DLBCL marker genes, and 4 MCL 
marker genes) with a mean absolute value of 
intergroup fold-change high than 0.5 that were 
defined as lymphoma marker genes (Figure 2A). 
Among these genes, IL9, SFTPA2, and IGLV3-19 
showed the highest specificity in HL, DLBCL, and 
MCL, respectively. The GO enrichment results 
showed that these marker genes were mainly 
involved in the regulation of various immune 
response and metabolic processes (Supplementary 
Table 2). Gene-gene interaction analysis proved that 
most marker genes were independently correlated 
with lymphoma status (Supplementary Table 3). The 
high expression of MYH2 increased HL risk whereas 
the high expression of LIPF and IGLV3-19 reduced 

DLBCL and MCL risk. The functional interaction 
network shows that most of the HL marker genes 
showed coexpression relationships with each other 
(Figure 2B). DLBCL and MCL marker genes showed 
multiple interaction relationships with other genes 
(Figure 2C and 2D). The enrichment results suggest 
that HL marker genes are mainly involved in actin- 
and cytoskeleton-related functions (Figure 2E), 
DLBCL marker genes are mainly involved in 
chromatin modification and regulation processes 
(Figure 2F), and MCL marker genes correlate with 
organismal homeostasis (Figure 2G). The prognostic 
analysis shows that IL9 and CRNN correlated with 
the International Prognostic Score (IPS) in HL 
(Supplementary Figure 1). Furthermore, low 
expression of CCDC144B and PHF1 and high 
expression of HP, LIPF, and SFTPA2 correlate with 
poor overall survival and progression-free survival in 
DLBCL (Supplementary Figure 2). 

 

 
 
Figure 2. Expression and functional interaction network of lymphoma marker genes. (A) Log2 transformed the fold-change 
(logFC) of lymphoma marker genes in different comparisons. The orange color indicates the logFC of the gene > 0, and the cyan color 
indicates the logFC of the gene < 0. (B) Functional interaction network of HL marker genes. (C) Functional interaction network of DLBCL 
marker genes. No records of CCDC144B or PRO2964 were found in the GeneMANIA database. (D) Functional interaction network of MCL 
marker genes. No records of IGLV3-19, IGKV4-1, or IGLV4-60 were found in the GeneMANIA database. (E) Enriched functions of HL marker 
genes and query genes. (F) Enriched functions of DLBCL marker genes and query genes. (G) Enriched functions of MCL marker genes and 
query genes. HL, Hodgkin's lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma. 
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Single-gene prediction model 
 
A logistic regression model showed that all these 
marker genes could significantly separate the lymphoma 
samples from the controls (Figure 3A–3C). The odds 
ratios of these marker genes are relatively consistent 
with the expression difference between lymphomas and 
controls. The results of the ROC analysis of these 
marker genes are shown in Figure 3D. The ideal 
classification effect of marker genes is that they have 
high sensitivity and specificity in the specific type of 
lymphoma (the AUC value is close to 1) and have a 
random effect for the other two lymphomas (the AUC 
value is close to 0.5). For the HL marker genes, MYH2 
showed the highest AUC of 0.901 in HL, a low AUC in 
DLBCL, and an AUC close to 0.5 in MCL; therefore, it 
can be used as the optimal model in the single-gene 

prediction model in HL (Figure 3E). LIPF showed the 
highest AUC of 0.875 in DLBCL and low AUCs in HL 
and MCL and is considered to be the optimal single-
gene prediction model in DLBCL (Figure 3F). 
However, IGLV3-19 had the highest AUC in MCL 
marker genes but only showed a general prediction 
effect (Figure 3G). 
 
Multigene prediction model 
 
The optimal model in HL is MYH2 (Figure 4A and 4G), 
which had the highest AUC compared with the remaining 
gene combination models (Figure 4D). The optimal 
model in DLBCL is the combination of 7 marker genes, 
including LIPF, CCDC144B, PRO2964, PHF1, SFTPA2, 
NTS, and HP (Figure 4B and 4G), which had the highest 
AUC of 0.951 (Figure 4E). The optimal model

 

 
 
Figure 3. Evaluation of single-gene models in three types of lymphoma. (A–C) The classification performance of HL marker genes, 
DLBCL marker genes, and MCL marker genes using a univariate logistic regression model. The diamond shape indicates the odds ratio (OR), 
and the line indicates the 95% confidence interval (CI). The red color indicates OR > 1, and the blue color indicates OR < 1. (D) The area 
under the curve (AUC) of the marker genes in three types of lymphoma. (E–G) Receiver operating characteristic (ROC) curves of the optimal 
single-gene model in HL (MYH2), DLBCL (LIPF), and MCL (IGLV3-19). HL, Hodgkin's lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, 
mantle cell lymphoma. 
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in MCL is the combination of 3 marker genes, 
including IGLV3-19, IGKV4-1, and PRB3 (Figure 4C 
and 4G), which had the highest AUC of 0.843 (Figure 
4F). These three optimal models all show high 
specificity in a certain type of lymphoma and showed 
relatively poor specificity for the other two types of 
lymphomas (Supplementary Figure 3). Considering 
the analyzed gene expression data derived from 
samples including not only lymphoma cells, but also 
stroma. We screened the data derived from isolated 
lymphoma cells and normal B cells (Table 1) and 
analyzed the expression of the lymphoma marker 
genes between cases and controls. Despite the small 
sample size, most marker genes still showed the 
differential expression consistent with the overall 
analysis (Supplementary Figure 4). Furthermore, the 
optimal diagnostic models of these genes showed high 
prediction accuracy in the data derived from isolated 
lymphoma cells (Supplementary Figure 5). The 
dataset of GSE132929 including multiple types of 
lymphomas (no HL or controls) was used to verify the 
predictive performance of the above optimal models. 
Previous studies suggested that it is difficult to 
distinguish Burkitt's lymphoma (BURL) and DLBCL 
[30, 31], the DLBCL optimal model showed a high 
AUC of 0.843 in the validation set with removed 
BURK (Supplementary Figure 6). 

DISCUSSION 
 
Accurate and effective diagnosis is critical to the 
appropriate treatment of lymphoma. Although many 
new techniques are used for the diagnosis of lymphoma, 
such as immunohistochemical tests, flow cytometry, 
cytogenetic, and other molecular biology techniques 
[32], the most effective diagnostic strategy is still tissue 
biopsy [33]. Given that some genes show extremely 
high mutation frequencies in certain types of 
lymphoma, using a single-gene mutation or a 
combination of mutations may accurately diagnose few 
types of lymphomas [34]. However, the diagnosis of 
most lymphomas using genetic mutations may not 
achieve the desired accuracy. Previous transcriptome 
studies have revealed that there are a large number of 
abnormally expressed genes in different types of 
lymphomas compared with normal tissues [29, 35–37]. 
These highly differential genes may be used as 
diagnostic and prognostic markers for lymphomas [38]. 
The difference in clinical treatment and prognosis of 
B-cell-derived lymphoma is correlated to its molecular 
heterogeneity. In this study, lymphoma marker genes 
and specific diagnostic models are proposed, which are 
helpful to improve the diagnosis accuracy of HL, 
DLBCL, and MCL. These results indicate that there are 
certain differences at the molecular level among HL, 

 

 
 
Figure 4. Screening of the optimal multigene prediction model for three lymphomas. (A–C) Stepwise screened multigene 
prediction models in HL, DLBCL, and MCL. From left to right on the x-axis (stepwise screened genes), each additional gene corresponds to a 
model [for example, in (A), MYH2 represents model 1, which contains one gene of MYH2, ACTA1 represents model 2, which contains two 
genes including MYH2 and ACTA1]. The red box shows the optimal model for each type of lymphoma. (D–F) ROC curves of the screened 
optimal models for each type of lymphoma. (G) Genes in the screened optimal models for three lymphomas. HL, Hodgkin's lymphoma; 
DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma. 
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Table 1. Information on the datasets of three types of lymphoma. 

GEO ID Contributor Samples Sample type Platform 

Hodgkin's lymphoma (HL) 
GSE77881 Van Loo P, 2007 10 cases 

1 control 
lymph nodes Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
GSE124532 Brune V, 2008 17 cases 

25 controls 
isolated lymphoma cells (case) 
isolated normal B cells (control) 

Affymetrix HG-U133 Plus 2.0 
Array (GPL570) 

GSE13996 Chetaille B. 2008 64 cases lymph nodes Affymetrix HG-U133A 2.0 Array 
(GPL571) 

GSE17920 Steidl C, 2009 130 cases lymph nodes Affymetrix HG-U133 Plus 2.0 
Array (GPL570) 

GSE47044 Hartmann S, 2013 19 cases 
5 controls 

isolated lymphoma cells (case) 
isolated normal B cells (control) 

Affymetrix Human Gene 1.0 ST 
Array (GPL6244) 

Diffuse large B-cell lymphoma (DLBCL) 
GSE124532 Brune V, 2008 11 cases isolated lymphoma cells Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
GSE31312 Li Y, 2011 498 cases lymphoma tissue Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
GSE56315 Bødker JS, 2014 89 cases 

33 controls 
lymphoma tissue (case) 
isolated normal B cells (control) 

Affymetrix HG-U133 Plus 2.0 
Array (GPL570) 

GSE64555 Linton K, 2014 40 cases lymphoma tissue Affymetrix HG-U133 Plus 2.0 
Array (GPL570) 

GSE69053 Sha C, 2015 212 cases lymphoma tissue Illumina HumanRef-8 WG-DASL 
v3.0 (GPL8432) 
Illumina HumanHT-12 WG-DASL 
V4.0 (GPL14951) 

GSE86613 Bødker JS, 2016 41 cases lymphoma tissue Affymetrix HG-U133 Plus 2.0 
Array (GPL570) 

Mantle cell lymphoma (MCL) 
GSE21452 Staudt LM, 2010 64 cases lymph nodes Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
GSE36000 Jares P, 2012 38 cases isolated lymphoma cells Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
GSE70910 Liu D, 2015 55 cases lymph nodes, peripheral blood Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
GSE93291 Staudt LM, 2017 59 cases lymph nodes Affymetrix HG-U133 Plus 2.0 

Array (GPL570) 
1The one control sample in this study was the mixed five control samples. 
2This dataset included 17 HL samples, 11 DLBCL samples, and 25 controls. The number of control samples was shown in the 
HL group and was not repeated in the DLBCL group.  

DLBCL, and MCL, which provides some insights for 
the molecular diagnosis and prognosis assessment of 
these three types of lymphomas. 
 
Gene expression profiling has broad application 
prospects in tumor diagnosis [39], and numerous novel 
biomarkers have been identified in the most common 
types of B-cell, T-cell, and NK-cell lymphomas [40]. 
Multiple diagnostic models based on the combined 
effects of tumor biomarkers have been developed and 
show high prediction accuracy. A previous report 
constructed two logistic regression models based on 
mammography features and demographic data; both of 
these models showed high accuracy for breast cancer 
diagnosis [41]. A logistic regression model integrating 

transcriptome and clinical data also showed high 
diagnostic accuracy in lung cancer [42]. Furthermore, 
using machine learning methods to construct tumor 
diagnostic models is also an effective strategy. 
Diagnostic models based on support vector machines 
and their derived methods by feature extraction of 
transcriptome data exhibited high prediction accuracy in 
multiple cancer datasets [43, 44]. The sample size is an 
important factor affecting the accuracy of the diagnostic 
model [45]. In this study, the sample size of DLBCL is 
relatively large, while the sample size of HL and MCL 
is relatively small, and the final multigene diagnosis 
models also showed the highest diagnostic accuracy for 
DLBCL. In future work, a larger sample size can be 
used to develop more accurate tumor-specific diagnosis 
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or prognosis models. With the expansion of the sample 
size, it is expected to be further upgraded to a 
personalized prediction model. 
 
The screened HL marker genes were mainly involved in 
actin- and cytoskeleton-related functions. Multiple 
studies showed that the actin cytoskeleton plays a 
crucial role in aging and apoptosis [46], and the 
dysfunction of the actin cytoskeleton correlated to many 
age-related diseases, such as cancer [47]. Actin 
polymerization and actin-myosin interactions directly 
drive the movement and migration of lymphocytes [48]. 
A proteomics study showed that several upregulated 
proteins were involved in the regulation of the 
cytoskeleton and/or cell migration in HL [49]. Inhibited 
cytoskeleton-related proteins promoted the 
differentiation of Hodgkin's and Reed-Sternberg (H/RS) 
cells toward terminal B-cells in HL cell lines [50]. 
DLBCL marker genes were mostly enriched in 
chromatin modification and regulation processes. 
Increased variations in chromatin modification were 
correlated with aging [51], studies showed that these 
epigenetic factors can also induce tumorigenesis [52]. 
Mutations in chromatin modification-related genes are 
correlated to gene expression profiles and clinical 
outcomes in DLBCL [53]. These genes can be used as 
signatures for evaluating the effect of medical 
treatments on DLBCL [54, 55]. Several 
immunoglobulin (Ig) subunit genes were chosen as 
MCL marker genes in this study. Alterations in IgG 
glycosylation patterns have been observed in aging and 
various cancers [56]. The regulation and modification of 
Ig are essential to maintain immune homeostasis in vivo 
[56]. The imbalanced Ig heavy and light chain 
stereotypy was found in MCL [57]. 
 
The above reports indicated that the marker genes 
screened in this study correlated with the specific 
biological changes of different lymphomas. 
Furthermore, these marker genes also showed high 
diagnostic accuracy in other tumors and correlated with 
tumorigenesis and prognosis. A previous study showed 
that MYH2 was correlated with multiple prognostic 
factors in lymph-node-negative primary breast cancer 
[58]. Downregulated IL26 promotes anaplastic large 
cell lymphoma cell growth and survival [59]. Gastric 
lipase (LIPF) is highly expressed in the normal stomach 
and showed significantly low expression in gastric 
adenocarcinoma, suggesting that it can be used as a 
diagnostic and prognostic indicator for gastric cancer 
[60, 61]. Low expression of PRB3 was found to be 
associated with tumor recurrence in prolactinomas [62] 
and salivary gland acinic cell carcinoma [63]. Besides, 
there are several representative markers associated with 
each subtype, such as CD15, CD30, CD45, and PD-L1 
for HL [10], CD5, MYC, BCL2, and BCL6 for DLBCL 

[9], and CCND1, CD5, and SOX11 for MCL [7]. 
However, most of these genes did not meet the 
differential expression screening criteria. Therefore, 
these genes are not included in the specific markers 
screened in this study. 
 
In conclusion, screening for tumor-specific biomarkers 
requires the rigorous consideration of differences 
between tumor and normal cells as well as the 
differences among different tumors or subtypes. The 
present study provides the transcriptome data-based 
reference markers, which may help the diagnosis of HL, 
DLBCL, and MCL when combined with other clinical 
markers. As there are multiple subtypes of lymphoma 
according to the WHO classification, whether the 
currently obtained marker genes can be used to 
diagnose other types of lymphomas requires further 
research. One potential shortcoming in this study is the 
sample size of different lymphoma datasets varies 
largely, especially for the control group is relatively 
low. The present study provides a molecular diagnostic 
method, a reference for tumor diagnosis with a subtle 
difference to clarify tumor subtypes. 
 
MATERIALS AND METHODS 
 
Lymphoma dataset collection 
 
Transcriptome datasets of HL, DLBCL, and MCL were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). The dataset 
selection criteria were as follows: (1) all datasets were 
genome-wide; (2) the number of samples in each dataset 
must be ≥ 10; (3) all samples were non-cell-line samples; 
and (4) complete microarray data (raw or normalized) 
were available. If a dataset contained any of the following 
items, it was excluded: (1) the number of samples was less 
than 3 for cases or controls; (2) the samples were treated 
with drugs or other agents; and (3) serious RNA 
degradation or the number of detected genes was too 
small. Based on the above criteria, 14 datasets were chosen 
for the integrated analysis (GSE12453, GSE13996, 
GSE17920, GSE21452, GSE31312, GSE36000, 
GSE47044, GSE56315, GSE64555, GSE69053, 
GSE70910, GSE7788, GSE86613 and GSE93291). The 
sample type of most data is lymphoma tissue, only a small 
part of the data derived from isolated lymphoma cells, the 
details of these datasets are provided in Table 1. In total, 
the collected datasets contained 240 HL samples, 891 
DLBCL samples, 216 MCL samples, and 64 healthy 
samples. 
 
Data preprocessing 
 
R statistical software v3.3.3 (https://www.r-project.org/) 
was used to perform data preprocessing. Because these 

https://www.r-project.org/
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datasets contain different microarray platforms, they were 
grouped into 15 batches according to the study and 
platform. Each batch contained only one study and one 
platform (Supplementary Table 4). Gene annotation, 
integration, and renormalization of the 15 batches were 
carried out using custom-designed Python code. The 
method and scripts are detailed in our previous 
publications [64, 65]. Because there were missing values 
for genes in a few samples, the mean expression value of 
these genes in the whole sample was used to replace the 
missing data. Fortunately, the missing values had little 
effect on the data (Supplementary Figure 7). After global 
renormalization, the distribution of gene expression values 
across all studies had a consistent range (Supplementary 
Figure 8). Heatmap in the pheatmap package in R was 
used to show all gene expression profiles in the integrated 
and the global renormalized datasets. The method of 
unsupervised clustering was chosen as "ward.D". There 
was a strong batch effect in the integrated datasets, and 
this batch effect has been mostly eliminated in the global 
renormalized datasets (Supplementary Figure 9). 
 
Differential expression analysis 
 
Differential gene expression analysis was performed 
using the empirical Bayesian algorithm in the limma 
package in R [66]. Up- and downregulated genes were 
defined as a log2 transformed fold-change (logFC) ≥ 1 
or ≤ -1 for lymphoma samples compared with controls. 
Because the difference between lymphoma groups was 
smaller than the difference between lymphoma samples 
and controls, the fold-change cutoff was set as 1.2. A 
false discovery rate (FDR)-corrected P-value ≤ 0.05 
was considered significant. 
 
Screening of lymphoma marker genes 
 
Lymphoma-specific genes were defined as the 
intersection of specific differentially expressed genes in 
lymphoma samples compared to controls and the 
common intergroup differentially expressed genes in 
different lymphoma groups. For example, the filtered 
HL-specific genes are differentially expressed between 
HL vs. control with no difference in DLBCL vs. control 
or MCL vs. control and are differentially expressed 
between HL vs. DLBCL and HL vs. MCL. To ensure 
that the screened marker genes have a relatively large 
differential expression compared to other types of 
lymphoma, the lymphoma marker genes were defined 
as lymphoma-specific genes with a mean absolute value 
of intergroup fold-change ≥ 0.5. 
 
Gene-gene interaction analysis 
 
Considering that the gene-gene interactions between the 
screened marker genes and other genes may affect 

prediction accuracy, Pearson correlation analysis was 
used to calculate the correlation coefficient between 
each marker gene and all other genes. An FDR 
corrected P-value ≤ 0.05 was considered significantly 
correlated. A multiple logistic regression model was 
used to analyze the effect of each marker gene on the 
corresponding lymphoma. The top 10 significantly 
correlated genes (filtered by significance) were used as 
covariates for model correction. 
 
GO enrichment analysis 
 
The information on human genes and related GO 
biological functions were downloaded from the 
QuickGO database (http://www.ebi.ac.uk/QuickGO-
Beta/). GO enrichment analysis was performed using a 
hypergeometric test and the formula shown in a 
previous report [67]. An FDR corrected P-value ≤ 0.05 
was considered significantly enriched. 
 
Functional interaction analysis 
 
The GeneMANIA application [68] in Cytoscape v3.4.0 
was used to perform functional interaction analysis of 
marker genes in three types of lymphoma. The 
interaction networks were built with the default 
parameter settings. The application predicts 20 query 
genes that are correlated to the input genes and generate 
a functional association network based on their 
relationships. The functional enrichment results of the 
genes in the network were automatically generated, and 
an FDR-corrected P-value ≤ 0.05 was considered 
significantly enriched. 
 
Prognostic analysis 
 
Two datasets (GSE17920 and GSE31312) had 
prognostic information. The GSE17920 dataset (HL) 
contains multiple prognostic indicators but no survival 
data, and the GSE31312 dataset (DLBCL) contains 
complete overall and progression-free survival 
information. The difference in HL marker genes 
regarding prognostic indicators was determined using 
Student’s t-test. Survival analysis was conducted using 
the survival package in R. The effects of DLBCL 
marker genes on overall and progression-free survival 
were assessed using Kaplan–Meier survival curves. 
 
Single-gene and multigene prediction models 
 
The single-gene prediction model and the multigene 
prediction model were built using the lymphoma marker 
genes. A univariate logistic regression model was used 
to calculate the odds ratios of the screened lymphoma 
marker genes in each type of lymphoma. For the single-
gene prediction models, the specified type of lymphoma 

http://www.ebi.ac.uk/QuickGO-Beta/
http://www.ebi.ac.uk/QuickGO-Beta/


www.aging-us.com 10 AGING 

was classified as "case", whereas the healthy samples 
and the other two types of lymphomas were classified 
as "control". The receiver operating characteristic 
(ROC) curve and the area under the curve (AUC) of the 
single marker genes were calculated using the pROC 
package in R. The model with the largest AUC was 
defined as the optimal model. A stepwise modeling 
strategy was used to screen the optimal multigene 
combination models for each type of lymphoma. First, a 
gene with the largest AUC was selected. Then, we used 
a multivariate logistic regression model to generate the 
combined effect of the selected gene and each of the 
remaining genes. Next, we selected the best two-gene 
model with the highest AUC and repeated the previous 
steps. Finally, we selected the optimal model with the 
highest AUC in each multigene combination model. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 

 
 

Supplementary Figure 1. Correlation of HL marker genes and prognostic indicators. (A) Correlation between HL marker genes 
and stage. (B) Correlation between HL marker genes and International Prognostic Score. The genes were divided into high and low groups 
based on the median expression value. HL, Hodgkin's lymphoma. Significance: *P < 0.05, **P < 0.01, ***P < 0.001. 
 



www.aging-us.com 16 AGING 

 
 

Supplementary Figure 2. Effect of DLBCL marker genes on patient overall survival (A) and progression-free survival (B). The genes were 
divided into high and low groups based on the median expression value. 
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Supplementary Figure 3. The marker genes showed relatively poor specificity for the other two types of lymphomas 
(corresponding to the optimal model in Figure 4). (A) The classification performance of HL marker genes on DLBCL. (B) The classification 
performance of HL marker genes on MCL. (C) The classification performance of DLBCL marker genes on HL. (D) The classification performance of 
DLBCL marker genes on MCL. (E) The classification performance of MCL marker genes on HL. (F) The classification performance of MCL marker 
genes on DLBCL. HL, Hodgkin's lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma. 
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Supplementary Figure 4. Expression of lymphoma marker genes in the data derived from isolated lymphoma cells and 
normal B cells. The corresponding datasets see in Table 1. (A) Expression of HL marker genes between HL samples and controls. 
(B) Expression of DLBCL marker genes between DLBCL samples and controls. (C) Expression of MCL marker genes between MCL samples 
and controls. HL, Hodgkin's lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma. Significance: *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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Supplementary Figure 5. Screening of the optimal multigene prediction model for three lymphomas using the data derived 
from isolated lymphoma cells. The corresponding datasets see in Table 1. (A–C) Stepwise screened multigene prediction models 
in HL, DLBCL and MCL. From left to right on the x-axis (stepwise screened genes), each additional gene corresponds to a model [for 
example, in (A), CRNN represents model 1, which contains one gene of CRNN, MYL1 represents model 2, which contains two genes 
including CRNN and MYL1]. The red box shows the optimal model for each type of lymphoma. (D–F) ROC curves of the screened optimal 
models for each type of lymphoma. (G) Genes in the screened optimal models for three lymphomas. HL, Hodgkin's lymphoma; DLBCL, 
diffuse large B-cell lymphoma; MCL, mantle cell lymphoma. 
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Supplementary Figure 6. The prediction performance of the lymphoma marker genes in the validation dataset of 
GSE132929. The dataset including Burkitt's lymphoma (BURK), diffuse large B-cell lymphoma (DLBCL), double hit 
lymphoma (DHL), follicular lymphoma (FL), mantle cell lymphoma (MCL), medial zone lymphoma (MZL), and other high-
grade B-cell lymphomas (no Hodgkin's lymphoma (HL) or controls). There were only 5 DLBCL marker genes and 1 MCL marker 
gene (PRB3) in the GSE132929 dataset. (A–C) The validation dataset does not include BURK. (D–F) The validation dataset includes BURK. 
(A, D) Stepwise screened multigene prediction models in DLBCL. From left to right on the x-axis (stepwise screened genes), each additional 
gene corresponds to a model [for example, in (A), PHF1 represents model 1, which contains one gene of PHF1, NTS represents model 2, 
which contains two genes including PHF1 and NTS]. The red box shows the optimal model for each type of lymphoma. (B, E) ROC curves of 
the screened optimal model for DLBCL. (C, F) ROC curves of the PRB3 model for MCL. 
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Supplementary Figure 7. Histogram of genes with missing values. The x-coordinate indicates how many samples have missing 
values. This study collected 1411 samples, and the total number of genes was 18116. The figure shows that most of the samples’ 
expression data are relatively complete (80% of samples have no missing values, 13% of samples have less than 3% missing values, and only 
7% of samples have more than 10% missing values). 
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Supplementary Figure 8. The distribution of the RMA-processed gene expression values (A) and the global renormalized gene expression 
values (B) of the lymphoma datasets. Details of these batches see Supplementary Table 4. There was a relatively large deviation in the 
distribution of gene expression values across these batches in the RMA-processed gene expression values. The distribution of gene 
expression values across these batches had a consistent range in the global renormalized gene expression values. 
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Supplementary Figure 9. Heatmap of the gene expression profiles in the integrated (A) and the global renormalized (B) lymphoma 
datasets. All gene expression values were z-score converted. There was a strong batch effect in the integrated datasets whereas only a 
weak batch effect in the global renormalized datasets. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 

Supplementary Table 1. Enriched GO biological processes of lymphoma specific genes.1 

ID Term FDR Genes in GOBP 
Hodgkin's lymphoma 
GO:0070268 cornification 7.43E–08 KRT24, SPRR2B, SPRR1A, 

KRT16, PI3 
GO:0018149 peptide cross-linking 2.71E–06 SPRR2B, SPRR1A, PI3 
GO:0006936 muscle contraction 4.10E–06 MYH2, ACTA1, MYL1, MYOT 
GO:0030049 muscle filament sliding 5.09E–06 MYH2, ACTA1, MYL1 
GO:0030216 keratinocyte differentiation 1.15E–05 SPRR2B, SPRR1A, KRT16 
GO:0008544 epidermis development 2.00E–05 SPRR2B, SPRR1A, KRT16 
GO:2000648 positive regulation of stem cell proliferation 2.64E–04 SOX11 
GO:0071305 cellular response to vitamin D 2.64E–04 PHEX 
GO:0010226 response to lithium ion 2.64E–04 ACTA1 
GO:0060174 limb bud formation 3.16E–04 SOX11 
Diffuse large B-cell lymphoma 
GO:0021846 cell proliferation in forebrain 1.24E–05 FGF8, LHX5 
GO:0007512 adult heart development 3.71E–05 MYH6, MYH7 
GO:0014898 cardiac muscle hypertrophy in response to stress 4.62E–05 MYH6, MYH7 
GO:0019226 transmission of nerve impulse 6.86E–05 CACNG7, CNTNAP2 
GO:2000311 regulation of AMPA receptor activity 9.70E–05 CACNG7, SHANK1 
GO:0071625 vocalization behavior 9.70E–05 CNTNAP2, SHANK1 
GO:0002026 regulation of the force of heart contraction 1.14E–04 MYH6, MYH7 
GO:0035176 social behavior 1.38E–04 CNTNAP2, TH, SHANK1 
GO:0006941 striated muscle contraction 1.53E–04 MYH6, MYH7 
GO:0006936 muscle contraction 1.68E–04 MYH13, GALR2, MYH6, MYH7 
Mantle cell lymphoma 
GO:0002377 immunoglobulin production 4.62E–07 IGLV4-60, IGKV4-1 
GO:0006956 complement activation 3.92E–06 IGKV4-1, IGLV3-19 
GO:0006958 complement activation, classical pathway 6.29E–06 IGKV4-1, IGLV3-19 
GO:0030449 regulation of complement activation 7.87E–06 IGKV4-1, IGLV3-19 
GO:0038096 Fc-gamma receptor signaling pathway involved 

in phagocytosis 
1.75E–05 IGKV4-1, IGLV3-19 

GO:0048333 mesodermal cell differentiation 3.59E–05 INHBA 
GO:0071372 cellular response to follicle-stimulating hormone 

stimulus 
3.59E–05 INHBA 

GO:2001241 positive regulation of extrinsic apoptotic 
signaling pathway in absence of ligand 

4.13E–05 INHBA 

GO:0061029 eyelid development in camera-type eye 4.70E–05 INHBA 
GO:0071397 cellular response to cholesterol 5.28E–05 INHBA 

1All GO biological process enrichment results are sorted by FDR and showed the top 10 enriched results for each lymphoma. 
  



www.aging-us.com 25 AGING 

Supplementary Table 2. Enriched GO biological processes of lymphoma marker genes.1 

ID Term FDR Genes in GOBP 
Hodgkin's lymphoma 

GO:0045407 positive regulation of interleukin-5 biosynthetic 
process <1.00E–16 IL9 

GO:0030049 muscle filament sliding 1.77E–07 ACTA1, MYH2, MYL1 
GO:0030216 keratinocyte differentiation 4.02E–07 KRT16, SPRR1A, SPRR2B 
GO:0008544 epidermis development 9.04E–07 KRT16, SPRR1A, SPRR2B 
GO:0070268 cornification 2.52E–06 KRT16, SPRR1A, SPRR2B 
GO:0006936 muscle contraction 2.56E–06 ACTA1, MYH2, MYL1 
GO:0043503 skeletal muscle fiber adaptation 2.56E–06 ACTA1 
GO:0009991 response to extracellular stimulus 6.71E–06 ACTA1 
GO:0018149 peptide cross-linking 6.71E–06 SPRR1A, SPRR2B 
GO:0071417 cellular response to organonitrogen compound 1.17E–05 ACTA1 
Diffuse large B-cell lymphoma 

GO:2000296 negative regulation of hydrogen peroxide catabolic 
process 1.71E–06 HP 

GO:0061086 negative regulation of histone H3-K27 methylation 6.15E–06 PHF1 
GO:0061087 positive regulation of histone H3-K27 methylation 7.32E–06 PHF1 
GO:0051354 negative regulation of oxidoreductase activity 7.32E–06 HP 
GO:0050880 regulation of blood vessel size 2.30E–05 NTS 
GO:0006108 malate metabolic process 2.56E–05 LIPF 
GO:0045814 negative regulation of gene expression, epigenetic 1.19E–04 PHF1 
GO:0007585 respiratory gaseous exchange 1.32E–04 SFTPA2 
GO:0006953 acute-phase response 1.42E–04 HP 
GO:0010942 positive regulation of cell death 1.61E–04 HP 
Mantle cell lymphoma 
GO:0002377 immunoglobulin production 2.49E–08 IGKV4-1, IGLV4-60 
GO:0006956 complement activation 3.85E–07 IGKV4-1, IGLV3-19 
GO:0006958 complement activation, classical pathway 5.55E–07 IGKV4-1, IGLV3-19 
GO:0006955 immune response 6.35E–07 IGKV4-1, IGLV3-19, IGLV4-60 
GO:0030449 regulation of complement activation 6.35E–07 IGKV4-1, IGLV3-19 

GO:0038096 Fc-gamma receptor signaling pathway involved in 
phagocytosis 1.43E–06 IGKV4-1, IGLV3-19 

GO:0050776 regulation of immune response 5.29E–06 IGKV4-1, IGLV3-19 
GO:0038095 Fc-epsilon receptor signaling pathway 5.29E–06 IGKV4-1, IGLV3-19 
GO:0050900 leukocyte migration 7.66E–06 IGKV4-1, IGLV3-19 
GO:0006898 receptor-mediated endocytosis 8.45E–06 IGKV4-1, IGLV3-19 

1All GO biological process enrichment results are sorted by FDR and showed the top 10 enriched results for each lymphoma.  



www.aging-us.com 26 AGING 

Supplementary Table 3. Logistic regression between marker genes and lymphomas. 

Variable 
Crude Adjusted1 

Adjusted top 10 significantly correlated genes1 OR 
(95% CI) P OR 

(95% CI) P 

Hodgkin’s Lymphoma 
MYH2 1.99  

(1.75–2.27) 
< 0.001 2.55 

(1.97–3.29) 
< 0.001 MYL1, ACTA1, KBTBD10, MB, CKM, MYH1, 

SMPX, CSRP3, MYBPC1, ASB5 
SPRR2B 1.77 

(1.59–1.98) 
< 0.001 1.25 

(0.97–1.60) 
0.084 SPRR1A, S100A7, SPRR1B, SPRR3, KRT6A, 

S100A2, KRT6B, CLCA2, CRCT1, CRNN 
MYL1 1.89 

(1.65–2.18) 
< 0.001 1.43 

(1.00–2.04) 
0.048 KBTBD10, MB, MYBPC1, SMPX, MYH1, 

MYH2, MYOT, CSRP3, TNNT1, MYL2 
SPRR1A 1.61 

(1.48–1.74) 
< 0.001 1.96 

(1.26–3.05) 
0.003 KRT13, KRT6A, KRT6B, S100A7, SPRR1B, 

SPRR2B, SPRR3, S100A2, SPINK5, KRT14 
CRNN 1.68 

(1.47–1.92) 
< 0.001 1.95 

(1.41–2.69) 
< 0.001 CLCA2, DSG3, TGM3, KRT6B, CRCT1, 

SPINK7, KRT16, RHCG, TMPRSS11D, KRT78 
ACTA1 1.71 

(1.50–1.95) 
< 0.001 1.51 

(1.13–2.03) 
0.006 CKM, MYH2, MYL2, CA3, MYH1, MYLPF, 

TNNC1, TNNC2, MYH7, XIRP2 
IL9 0.39 

(0.35–0.44) 
< 0.001 0.40 

(0.33–0.48) 
< 0.001 IL13RA2, IL26, AMPH, DHRS2, CCL11, CLC, 

TFPI2, MFAP2, CYP4Z1, SCG2 
KRT16 1.51 

(1.35–1.69) 
< 0.001 1.78 

(1.31–2.43) 
< 0.001 KRT6B, LY6D, DSG3, CLCA2, CRNN, RHCG, 

TGM3, KRT14, SERPINB2, KRT17 
IL26 0.39 

(0.33–0.47) 
< 0.001 1.11 

(0.87–1.41) 
0.404 IL9, CYP4Z1, CLC, IL13RA2, IL22, DHRS2, 

COL6A6, CCL26, AMPH, CCL23 
Diffuse Large B-cell Lymphoma 
LIPF 0.08 

(0.06–0.11) 
< 0.001 0.38 

(0.25–0.60) 
< 0.001 GKN1, CTSE, SFTPA2, OLFM4, DEFA6, 

KRT20, TMEM183A, MUC7, GKN2, RBP2 
SFTPA2 0.20 

(0.17–0.24) 
< 0.001 0.21 

(0.16–0.29) 
< 0.001 LIPF, CTSE, GKN1, SLC34A2, TMEM183A, 

KRT4, MUC7, DEFA6, OLFM4, KRT20 
CCDC144
B 

0.48 
(0.41–0.55) 

< 0.001 0.46 
(0.38–0.54) 

< 0.001 TAF13, LOC100287927, ZNF90, GTF2I, 
PTENP1, PKD2L2, UGGT1, HIST1H4E, PTMS, 
LOC100509761 

HP 0.31 
(0.27–0.37) 

< 0.001 0.36 
(0.30–0.43) 

< 0.001 ALB, FGA, AHSG, FGL1, PRG4, FGB, TTR, 
GC, FGG, C4BPA 

PRO2964 0.53 
(0.47–0.59) 

< 0.001 0.65 
(0.57–0.73) 

< 0.001 HIST1H2BM, PTENP1, RAB30, HIST1H4B, 
ZNF814, ST6GAL1, HIST2H2AA3, HIST1H3I, 
SKIL, LOC100129112 

NTS 1.94 
(1.70–2.21) 

< 0.001 1.85 
(1.56–2.19) 

< 0.001 CLEC4M, NPY1R, MMRN1, CCL20, MATN2, 
CETP, CCL21, TFPI, TSPAN7, SDPR 

PHF1 0.64  
(0.58–0.70) 

< 0.001 0.63 
(0.58–0.70) 

< 0.001 RPSA, RPLP0, RPL35, RPL30, RPS12, RPL3, 
COX6B1, RPS29, RPLP1, RPS15 

Mantle Cell Lymphoma 
IGLV3-19 0.48 

(0.43–0.53) 
< 0.001 0.16 

(0.12–0.20) 
< 0.001 IGLJ3, IGLV4-60, IGLV2-23, IGLV1-40, 

IGKV3-20, IGKV1-5, LOC100508797, 
IGKV1D-8, LOC100287927, IGLV6-57 

IGKV4-1 0.58 
(0.53–0.63) 

< 0.001 0.29 
(0.23–0.37) 

< 0.001 IGKV1-5, IGLV2-23, IGLJ3, IGKV3-20, IGLV1-
40, IGKC, SDC1, IGKV1D-8, IGLV3-19, 
IGLV4-60 

PRB3 0.55 
(0.49–0.61) 

< 0.001 0.19 
(0.13–0.26) 

< 0.001 PRB4, PRB1, C20orf70, HTN1, CRISP3, 
AZGP1, LPO, CST5, PIP, TCN1 

IGLV4-60 0.46 
(0.40–0.53) 

< 0.001 0.28 
(0.20–0.39) 

< 0.001 IGLV1-40, IGKV3-20, IGLJ3, LOC100287927, 
IGKV1-5, SDC1, IGLV3-19, IGLV6-57, 
IGKV1D-8, IGLV2-23 

1Pearson correlation analysis was used to calculate the correlation between marker genes all other genes in the whole 
samples. A false discovery rate (FDR) corrected P-value ≤ 0.05 was considered as significant correlated. The top 10 significant 
correlated based on FDR P-value were used for covariates correction in logistic regression analysis. 
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Supplementary Table 4. Grouping the lymphoma datasets for data integration and global renormalization. 

GEO ID Category Platform Batch 
GSE7788 HL, Control GPL570 1 
GSE12453 HL, DLBCL, Control GPL570 2 
GSE13996 HL GPL571 3 
GSE17920 HL GPL570 4 
GSE21452 MCL GPL570 5 
GSE31312 DLBCL GPL570 6 
GSE36000 MCL GPL570 7 
GSE47044 HL, Control GPL6244 8 
GSE56315 DLBCL, Control GPL570 9 
GSE64555 DLBCL GPL570 10 
GSE69053 DLBCL GPL8432 11 
GSE69053 DLBCL GPL14951 12 
GSE70910 MCL GPL570 13 
GSE86613 DLBCL GPL570 14 
GSE93291 MCL GPL570 15 

Abbreviations: HL, Hodgkin's lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma. 
 


