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In the paper we introduce new criteria for a handlebody link to be irreducible. These 
criteria are numerical and can be computed by a code. They are able to detect the 
irreducibility of all handlebody knots in the Ishii-Kishimoto-Moriuchi-Suzuki knot 
table and most handlebody links in the link table produced by G. Paolini and the 
authors. We also prove the existence of irreducible handlebody links of any given 
type.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A handlebody link HL is a union of finitely many handlebodies of positive genus embedded in the 3-
sphere S3; two handlebody links are equivalent if they are ambient isotopic [13], [3]. Throughout the paper 
handlebody links are non-split unless otherwise specified.

A handlebody link HL is reducible if there exists a cutting 2-sphere S in S3 such that S and HL intersect 
at an incompressible disk D in HL (Fig. 1.1); otherwise it is irreducible. Note that a cutting sphere S of 
a reducible handlebody link HL factorizes it into two handlebody links HL1, HL2, where HLi := HL∩Bi, 
and Bi, i = 1, 2, are the closures of components of the complement S3 \ S (Fig. 1.1); the factorization is 
denoted by

HL = (HL1, h1)–(HL2, h2), (1.1)
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Fig. 1.1. A reducible handlebody link and its factors.

and HLi, i = 1, 2, is called a factor of the factorization, where h1, h2 are components of HL1, HL2 containing 
D, respectively.

Handlebody links are often studied via diagrams of their spines [3], but it is, in general, difficult to detect 
the irreducibility from their diagrams—the complexity being in the IH-move [3]. As a result, the task is 
usually left to irreducibility criteria. [4] develops several quandle-invariant-based criteria for handlebody 
knots, which are used to build the knot table in [5]; some geometric criteria using knotted handle decompo-
sition are discussed in [6]. The present paper concerns numerical criteria for handlebody links that employ 
homomorphisms of the knot group, the fundamental group of a handlebody link complement, on a finite 
group.

We denote by ksG(HL) the number of conjugacy classes of homomorphisms from the knot group GHL
to a finite group G, where two homomorphisms are in the same conjugacy class if they are conjugate [7]. 
And, we say a handlebody link HL is of type [n1, n2, ..., nm] if it consists of ni handlebodies of genus i, 
i = 1, . . . , m; a handlebody link is r-generator if its knot group is of rank r. Note that r is necessarily larger 
than or equal to the genus g(HL) of HL, which is the sum 

∑m
i=1 i · ni of the genera of components of HL.

Let A4, A5 be the alternating groups of degree 4, 5, respectively. The main results of the paper are the 
following.

Theorem 1.1 (Necessary conditions for reducibility–A4). Let HL be a reducible handlebody link of genus g. 
If the trivial knot is a factor of some factorization of HL, then

12 | ksA4(HL) + 6 · 3g−1 + 2 · 4g−1; (1.2)

if a 2-generator knot is a factor of some factorization of HL, then

12 + 24k | ksA4(HL) + (6 + 16k) · 3g−1 + (2 + 6k) · 4g−1, k = 0 or 1; (1.3)

if a 2-generator link is a factor of some factorization of HL, then

48 + 24k | ksA4(HL) + (26 + 16k) · 3g−1 + (8 + 6k) · 4g−1, k = 0, 1, 2, 3 or 4. (1.4)

Theorem 1.2 (Necessary conditions for reducibility–A5). Let HL be a reducible handlebody link of genus g. 
If the trivial knot is a factor of some factorization of HL, then

60 | ksA5(HL) + 14 · 4g−1 + 19 · 3g−1 + 22 · 5g−1. (1.5)

From these necessary conditions we derive an irreducibility test for handlebody knots of genus up to 3
and handlebody links of various types.

Corollary 1.3. Given an r-generator handlebody knot HK of genus g, if r = g + 1 and HK fails to satisfy 
either (1.2) or (1.5), then HK is irreducible; if r = g+2 and HK fails to satisfy (1.3), then HK is irreducible.
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Table 1
Irreducibility test for handlebody links with more than one component.

no. of components type r = g r = g + 1
HL is irreducible if it fails criterion/criteria

2 [1, 1] (1.2) or (1.5) (1.3)
[0, 2] (1.2) or (1.5) (1.3)
[1, 0, 1] (1.2) or (1.5) (1.3) & (1.4)
[0, 1, 1] (1.2) or (1.5) not applicable
[1, 0, 0, 1] (1.2) or (1.5) not applicable

3 [2, 1] (1.2) & (1.4) (1.3) & (1.4)
[1, 2] (1.2) & (1.4) not applicable
[2, 0, 1] (1.2) & (1.4)

4 [3, 1] (1.2) & (1.4) not applicable

The situation with multi-component handlebody links is more complicated as there are more possible 
combinations, so we summarize it in a tabular format in Table 1, which is also a corollary of Theorems 1.1
and 1.2. The right two columns in Table 1 list criteria which if a handlebody link fails, it is irreducible. Be 
aware of “& (i.e. and)” and “or” in those two columns.

The set of irreducibility criteria is put to test in Section 4, and its effectiveness is evidenced by results 
in Tables 2 and 3, which show that it detects the irreducibility of all handlebody knots, which are of type 
[0, 1], in the Ishii-Kishimoto-Moruichi-Suzuki knot table [5], and the irreducibility of all handlebody links, 
which are of type [1, 1], [2, 1] or [3, 1], in the handlebody link table in [1] except for 69 and 612.

The major constraint of the irreducibility test is that the rank of the knot group GHL cannot be too 
large and the difference between the rank and the genus g(HL) needs to be small. Nevertheless, they are 
applicable to a large number of interesting cases, and can be computed easily with a code.

The paper is organized as follows: Section 2 recalls basic properties of handlebody links and knot groups. 
The necessary conditions for reducibility, Theorems 1.1 and 1.2, are proved in Section 3. Section 4 records 
results of the irreducibility test applying to various families of handlebody links. Lastly, the existence 
of irreducible handlebody links of any given type is proved by a concrete construction making use of a 
generalized knot sum for handlebody links.

2. Preliminaries

Throughout the paper we work in the piecewise linear category. We use HL to refer to a handlebody link 
(including a handlebody knot), and use HK, K or L when referring specifically to a handlebody knot, knot 
or link, respectively. G• denotes the knot group of • = HL, HK, K or L, and � stands for an isomorphism 
of groups. We start with some basic properties of reducible handlebody links and of free product of groups.

Definition 2.1. The rank rk(G) of a finitely generated group G is the smallest cardinality of a generating set 
of G.

Definition 2.2. A handlebody link is r-generator if its knot group is of rank r.

The rank respects the free product of groups [2]:

Lemma 2.1 (Grushko theorem). If G = G1 ∗G2, then

rk(G) = rk(G1) + rk(G2).

Lemma 2.2. A g-generator handlebody knot HK of genus g is trivial.
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Proof. By the exact sequence of group homology [11], the deficiency d of the knot group of HK is at most 
g; on the other hand, the Wirtinger presentation induces a presentation with deficiency g, so we have d = g. 
By [8, Satz 1], [12], the knot group is free, and therefore HK is trivial. �

The following corollaries are a consequence of Lemmas 2.1 and 2.2 and the fact that HL =
(HL1, h1)–(HL2, h2) implies then g(HL) = g(HL1) + g(HL2). These corollaries, together with Theorems 1.1
and 1.2, give Corollary 1.3 and Table 1.

Corollary 2.3. A (g+1)-generator handlebody knot HK of genus g = 2, 3 is reducible if and only if the trivial 
knot is a factor of some factorization of HK.

Corollary 2.4. A 2-component, g-generator handlebody link HL of genus g ≤ 5 is reducible if and only if the 
trivial knot is a factor of some factorization of HL.

Corollary 2.5. A genus g, (g+1)-generator handlebody link HL of type [1, 1] or [0, 2] is reducible if and only 
if the trivial knot or a 2-generator knot is a factor of some factorization of HL.

Corollary 2.6. A 3- or 4-component, g-generator handlebody link HL of genus g ≤ 5 is reducible if and only 
if the trivial knot or a 2-generator link is a factor of some factorization of HL.

Corollary 2.7. A 5-generator handlebody link HL of type [1, 0, 1] or [2, 1] is reducible if and only if the trivial 
knot, 2-generator knot, or 2-generator link is a factor of some factorization of HL.

3. Irreducibility test

3.1. Homomorphisms to a finite group

Definition 3.1. Given a handlebody link HL and a finite group G, ksG(HL) is the number of conjugacy 
classes of homomorphism from GHL to G, ksGH(HL) is the number of conjugacy classes of homomorphisms 
from GHL to a subgroup of G isomorphic to H, and kswG(HL) is the number of homomorphisms from GHL
to G.

Lemma 3.1. Suppose any subgroup of G either has trivial centralizer or is abelian, and any two maximal 
abelian subgroups of G have trivial intersection. Let Hi, i = 1, . . . , n, be isomorphism types of maximal 
abelian subgroups of G, and li be the number of maximum abelian subgroups isomorphic to Hi. Then for 
any handlebody link HL, ksG(HL) can be expressed in terms of kswG(HL) and ksGHi

(HL):

ksG(HL) = ksGH1
(HL) + · · · + ksGHn

(HL) − n + 1

+
kswG(HL) − l1(kswH1

(HL) − 1) − · · · − ln(kswHn
(HL) − 1) − 1

|G| . (3.1)

Proof. The difference

ksG(HL) −
(
ksGH1

(HL) + · · · + ksGHn
(HL) − n + 1

)
(3.2)

is the number of conjugacy classes of homomorphisms GHL → G whose images have trivial centralizers. For 
such a homomorphism φ, we have

φ �= g · φ · g−1, for any non-trivial element g ∈ G;
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thus the conjugacy class of φ contains |G| members. Now, since the intersection of any two maximal abelian 
subgroups is trivial, the difference

kswG(HL) − l1(kswH1
(HL) − 1) − · · · − ln(kswHn

(HL) − 1) − 1 (3.3)

is the number of homomorphisms GHL → G whose images have trivial centralizers. Therefore dividing (3.3)
by |G| gives us (3.2), that is,

kswG(HL) − l1(kswH1
(HL) − 1) − · · · − ln(kswHn

(HL) − 1) − 1
|G|

= ksG(HL) −
(
ksGH1

(HL) + · · · + ksGHn
(HL) − n + 1

)
.

This proves the formula (3.1). �
It is not difficult to check that A4, A5 satisfy conditions in Lemma 3.1, whence we derive the following 

formulas.

Corollary 3.2. Let Zn be the cyclic group of order n, and V4 � Z2 ⊕ Z2. Then

ksA4(HL) = ksA4
V4

(HL) + ksA4
Z3

(HL) − 1 +
kswA4

(HL) − 4(kswZ3
(HL) − 1) − kswV4

(HL)
12 (3.4)

ksA5(HL) = ksA5
V4

(HL) + ksA5
Z3

(HL) + ksA5
Z5

(HL) − 2 (3.5)

+
kswA5

(HL) − 10(kswZ3
(HL) − 1) − 5(kswV4

(HL) − 1) − 6(kswZ5
(HL) − 1) − 1

60 .

If any two subgroups of G isomorphic to H are conjugate, then given an injective homomorphism H ι−→ G, 
the number nH of conjugacy classes of elements in G representable by elements in ι(H) is independent of ι. 
If furthermore ι(H) is the centralizer of every non-trivial element h ∈ ι(H), then kswH(HL), ksGH(HL) can be 
computed explicitly as follows.

Lemma 3.3. Given an abelian group H, and an injective homomorphism ι : H → G, suppose subgroups of 
G isomorphic to H are all conjugate, and the centralizer of every non-trivial element h ∈ ι(H) is ι(H). If 
g(HL) = g, then

kswH(HL) = |H|g and ksGH(HL) = (nH − 1) · |H|g − |H|
|H| − 1 + nH .

Proof. Firstly, since H is abelian, any homomorphism from GHL to H factors through the abelianization 
of GHL, which is the free abelian group Zg of rank g. Particularly, kswH(HL) (resp. ksGH(HL)) is equal to the 
numbers (resp. of conjugacy classes) of homomorphisms from Zg to H (resp. to ι(H) in G). This implies 
the first identity.

For the second identity, we let

ksGH(HL) = lg

and id, h2, . . . , hnH
∈ ι(H) < G be selected representatives of the nH conjugacy classes of elements in G. 

Note that if g = 1, we have l1 = nH .
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For g > 1, up to conjugation, we may assume the g-th copy of Zg is sent to h ∈ {id, h2 . . . , hnH
}. There 

are lg−1 homomorphisms when h = id, and |H|g−1 homomorphisms when h = hi, i = 2, . . . , nH , because 
the centralizer of hi is ι(H). As a result, we obtain the recursive formula

lg = lg−1 + (nH − 1) · |H|g−1,

and hence

lg − l1 =
g∑

k=2

(lk − lk−1) =
g∑

k=2

(nH − 1) · |H|k−1 = (nH − 1) · |H|g − |H|
|H| − 1 . (3.6)

This implies the second equality after we substitute l1 = nH into (3.6). �
Maximal abelian subgroups of A4, A5 satisfy conditions assumed in Lemma 3.3, and hence we have the 

formulas:

kswZ3
(HL) = 3g; kswV4

(HL) = 4g; kswZ5
(HL) = 5g, (3.7)

ksA4
Z3

(HL) = 3g; ksA4
V4

(HL) = 4g − 4
3 + 2, (3.8)

ksA5
Z3

(HL) = 3g − 3
2 + 2; ksA5

V4
(HL) = 4g − 4

3 + 2, ksA5
Z5

(HL) = 5g − 5
2 + 3. (3.9)

Plugging (3.7), (3.8) into (3.4) and (3.7), (3.9) into (3.5) gives us the following

Corollary 3.4. For a genus g handlebody link HL, we have

kswA4
(HL) = 12 · ksA4(HL) − 8 · 3g − 3 · 4g

kswA5
(HL) = 60 · ksA5(HL) − 20 · 3g − 15 · 4g − 24 · 5g.

For the sake of convenience, we let ksG(G′) denote the set of conjugacy classes of homomorphisms from 
G′ to G; especially, ksG(HL) = |ksG(GHL)|.

Lemma 3.5. For a 2-generator knot K, ksA4(K) = 4 or 6. In each case, ksA4(GK) contains four conju-
gacy classes represented by homomorphisms whose images are abelian. If ksA4(K) = 6, the two additional 
conjugacy classes are represented by surjective homomorphisms.

Proof. Since any non-surjective homomorphism φ : GK → A4 factors through the abelianization of GK , 
Im(φ) is either trivial or isomorphic to Z2 or Z3. By (3.8), the number of conjugacy classes of non-surjective 
homomorphisms are

ksA4
V4

(K) + ksA4
Z3

(K) − 1 = 3 + 2 − 1 = 4,

and hence ksA4(K) ≥ 4.
Now, consider a two-generator presentation of GK :

< a, b | w(a, b) = 1 > (3.10)

and its abelianization:

GK
π−→ GK/[GK , GK ] � Z =< g >; (3.11)
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let g3n+l, g3n′+l′ be the image of a, b under (3.11), respectively. Suppose both l and l′ are non-zero, then 
either 3 | l′ − l or 3 | l′ − 2l. If 3 | l′ − l, we replace b with b′ by b′ = a−1b; this implies a new presentation 
of GK :

GK =< a, b′ | w′(a, b′) = 1 >,

where w′(a, b′) = w(a, ab′), and b′ vanishes under the composition

GK
π−→ GK/[GK , GK ] � Z

±−→ Z3 � A4/[A4, A4].

Similarly, if 3 | 2l − l′, we replace b with b′′ by b′′ = a−2b to get a new presentation

GK =< a, b′′ | w′′(a, b′′) = 1 >,

where w′′(a, b′′) = w(a, a2b′′), and b′′ vanishes under the composition

GK
π−→ GK/[GK , GK ] � Z

±−→ Z3 � A4/[A4, A4].

Therefore, given a surjective homomorphism φ, we may assume φ(b) in (3.10) is in the commutator of A4
and hence of order 2, and φ(a) is of order 3. Up to conjugation, there are only two such homomorphisms: 
one corresponds to φ(a) = (123), the other φ(a) = (132); note that every two elements of order 2 in A4 are 
conjugate with respect to (123) or (132). This shows there are at most two surjective homomorphisms from 
GK to A4, and they always appear in pairs because there exists an automorphism of A4 sending (123) to 
(132), namely

Φ(23) : A4 → A4

x �→ (23)x(23). � (3.12)

Lemma 3.6. If L is a 2-generator link, then ksA4(L) is 14, 16, 18, 20 or 22. In each case, ksA4(GL) contains 
14 elements represented by homomorphisms whose images are abelian. If ksA4(L) > 14, then any additional 
conjugacy class is represented by surjective homomorphisms.

Proof. Suppose φ : GL → A4 is non-surjective, then it factors through the abelianization of GL, so by (3.8), 
the number of conjugacy classes of non-surjective homomorphisms can be computed by

ksA4
V4

(K) + ksA4
Z3

(K) − 1 = 9 + 6 − 1 = 14

and particularly ksA4(L) ≥ 14.
Suppose φ : GL → A4 is onto, and

< a, b | w(a, b) = 1 >

is a presentation of GL. Then either both φ(a) and φ(b) are of order 3 or one of them is of order 3 and the 
other of order 2. In the former case, up to conjugation, there are four possibilities:

I : φ(a) = (123), φ(b) = (124);

II : φ(a) = (123), φ(b) = (142);

III : φ(a) = (132), φ(b) = (124);

IV : φ(a) = (132), φ(b) = (142).
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By (3.12) w(φ(a), 124) = 1 if and only if w(Φ(23)
(
φ(a)

)
, (142)) = 1 since

w(Φ(23)(φ(a)), (142)) = Φ(23)
(
w(φ(a), (143))

)
= Φ(23)

(
(123)w

(
φ(a), (124)

)
(132)

)
.

Therefore, I and IV appear in pair; so do II and IV, for a similar reason. Now, if one of φ(a) and φ(b) is of 
order 2, we also have four possibilities:

I′ : φ(a) = (123), φ(b) = (12)(34);

II′ : φ(a) = (132), φ(b) = (12)(34);

III′ : φ(a) = (12)(34), φ(b) = (123);

IV′ : φ(a) = (12)(34), φ(b) = (132).

They appear in pairs as in the previous case. Thus, ksA4(L) is an even integer between 14 and 22. �
3.2. Necessary conditions for reducibility

We divide the proof of Theorems 1.1 and 1.2 into three lemmas.

Lemma 3.7. Given a reducible handlebody link HL of genus g, if the trivial knot is a factor of some factor-
ization of HL, then

12 | ksA4(HL) + 6 · 3g−1 + 2 · 4g−1 and 60 | ksA5(HL) + 14 · 4g−1 + 19 · 3g−1 + 22 · 5g−1.

Proof. By the assumption, the knot group GHL is isomorphic to the free product Z ∗GHL′ , where HL′ is a 
handlebody link of genus g − 1.

Recall that ksA4(Z) contains four elements by (3.8). Let φ1, φ2, φ1
3, φ

2
3 be homomorphisms representing 

these four conjugacy classes with Im(φ1) trivial, Im(φ2) isomorphic to Z2, and Im(φi
3), i = 1, 2, isomorphic 

to Z3. Then observe that, given a homomorphism φ : GHL → A4, by conjugating with some element in A4, 
we may assume its restriction φ|Z is one of {φ1, φ2, φ1

3, φ
2
3}.

Case 1: φ|Z = φ1. Let φ, ψ : GHL → A4 be two homomorphisms with

φ|Z = ψ|Z = φ1.

Then they are in the same conjugacy class if and only if their restrictions φ|GHL′ , ψ|GHL′ are conjugate, so 
there are ksA4(HL′) conjugacy classes in this case.
Case 2: φ|Z2 = φ2. Let φ, ψ : GHL → A4 be two homomorphisms with

φ|Z = ψ|Z = φ2.

Then they are in the same conjugacy class if and only if

φ|GHL′ = g · ψ|GHL′ · g−1, for some g ∈ V4.

Hence in case 2, the number of conjugacy classes is

kswA4
(HL′) − kswV4

(HL′)
4 + kswV4

(HL′).

Case 3: φ|Z = φi
3, i = 1 or 2. Let φ, ψ : GHL → A4 be two homomorphisms with
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φ|Z = ψ|Z = φi
3, i = 1(resp. 2).

Then they are in the same conjugacy class if and only if

φ|GHL′ = g · ψ|GHL′ · g−1, for some g ∈ Im(φi
3), i = 1(resp. 2),

and therefore for each i, there are

kswA4
(HL′) − kswZ3

(HL′)
3 + kswZ3

(HL′)

conjugacy classes.
Summing the three cases up gives us the formula of ksA4(HL) in terms of the ks-invariants of HL′:

ksA4(HL) = ksA4(HL′) +
kswA4

(HL′) − kswV4
(HL′)

4 + kswV4
(HL′)

+ 2 ·
(kswA4

(HL′) − kswZ3
(HL′)

3 + kswZ3
(HL′)

)
. (3.13)

Combining (3.13) with (3.7) and Corollary 3.4, we get the equation

ksA4(HL) = 12 · ksA4(HL′) − 6 · 3g−1 − 2 · 4g−1,

which implies the first assertion.
ksA5(HL) can be computed in a similar manner. First note that ksG(Z) contains five elements by (3.9), 

and they are represented by homomorphisms

φ1, φ2, φ3, φ
1
5, φ

2
5 (3.14)

with Im(φ1) trivial, Im(φ2) isomorphic to Z2, Im(φ3) isomorphic to Z3, and Im(φi
5), i = 1, 2, isomorphic to 

Z5. As with the case of A4, given a homomorphism φ : GHL → A5, by conjugating with some element in A5, 
its restriction on Z is one of the representing homomorphisms in (3.14). The number of conjugacy classes of 
homomorphisms that restrict to φ1 is ksA5(HL′), and the number of conjugacy classes of homomorphisms 
that restrict to φ2, φ3 or φi

5, i = 1, 2, is

kswA5
(HL′) − kswV4

(HL′)
4 + kswV4

(HL′),

kswA5
(HL′) − kswZ3

(HL′)
3 + kswZ3

(HL′),

or
kswA5

(HL′) − kswZ5
(HL′)

5 + kswZ5
(HL′), respectively.

Summing them up yields the formula of ksA5(HL):

ksA5(HL) = ksA5(HL′) +
kswA5

(HL′) − kswV4
(HL′)

4 + kswV4
(HL′)

+
kswA5

(HL′) − kswZ3
(HL′)

3 + kswZ3
(HL′)

+ 2 ·
(kswA5

(HL′) − kswZ5
(HL′)

5 + kswZ5
(HL′)

)
. (3.15)
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The formula (3.15), together with (3.7) and Corollary 3.4, implies the identity:

ksA5(HL) = 60 · ksA5(HL′) − 19 · 3g−1 − 14 · 4g−1 − 22 · 5g−1,

and thus the second assertion. �
Lemma 3.8. Given a reducible handlebody link HL of genus g, if a 2-generator knot K is a factor of some 
factorization of HL, then

12 + 24k | ksA4(HL) + (6 + 16k) · 3g−1 + (2 + 6k) · 4g−1,

where k = 0 or 1.

Proof. By the assumption the knot group GHL is isomorphic to the free product GK ∗GHL′ , where HL′ is a 
handlebody link of genus g−1. By Lemma 3.5, ksA4(GK) might have two more elements than ksA4(Z). Let 
φ1
s, φ

2
s be representing surjective homomorphisms of these two conjugacy classes. Since two homomorphisms

φ, ψ : GHL → A4 with φ|GK
= ψ|GK

= φi
s, i = 1 or 2 (3.16)

are conjugate if and only if

φ|GHL′ = ψ|GHL′ ,

there are kswA4
(HL′) conjugacy classes of homomorphisms with the property (3.16). Adding it to (3.13), we 

obtain

ksA4(HL) = ksA4(HL′) +
kswA4

(L) − kswV4
(HL′)

4 + kswV4
(HL′)

+ 2 ·
(kswA4

(HL′) − kswZ3
(HL′)

3 + kswZ3
(HL′)

)
+ 2k · kswA4

(HL′), (3.17)

where k = 0 or 1. Plugging (3.7) and Corollary 3.4 into (3.17) implies the identity:

ksA4(HL) = (12 + 24k) · ksA4(HL′) − (6 + 16k) · 3g−1 − (2 + 6k) · 4g−1, k = 0 or 1,

and therefore the assertion. �
Lemma 3.9. Given a reducible handlebody link HL of genus g, if a 2-generator link L is a factor of some 
factorization of HL, then

48 + 24k | ksA4(HL) + (26 + 16k) · 3g−2 + (8 + 6k) · 4g−2,

where k = 0, 1, 2, 3 or 4.

Proof. The knot group GHL is isomorphic to the free product GL ∗GHL′ , where HL′ is a handlebody link 
of genus g− 2. By Lemma 3.6, ksA4(GL) contains 14 + 2k elements, k = 0, 1, 2, 3 or 4, where one conjugacy 
class is for the trivial homomorphism, five for non-trivial homomorphisms whose images are in V4, eight 
for homomorphisms whose images are isomorphic to Z3, and 2k for surjective homomorphisms. The same 
argument as in the proof of Lemmas 3.7 and 3.8 implies
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Table 2
Irreducibility of Ishii, Kishimoto, Moriuchi and Suzuki’s handlebody knots.

handlebody knot rank ksA4 A4-criterion (1.2) ksA5 A5-criterion (1.5)
HK 41 3 30 � 156 �
HK 51 3 22 ? 111 �
HK 52 3 30 � 156 �
HK 53 3 30 � 105 �
HK 54 3 22 ? 365 �
HK 61 3 30 � 143 �
HK 62 3 30 � 105 �
HK 63 3 22 ? 83 �
HK 64 3 22 ? 111 �
HK 65 3 22 ? 97 �
HK 66 3 22 ? 97 �
HK 67 3 30 � 157 �
HK 68 3 22 ? 105 �
HK 69 3 30 � 146 �
HK 610 3 22 ? 195 �
HK 611 3 22 ? 73 �
HK 612 3 30 � 135 �
HK 613 3 30 � 156 �
HK 614 3 46 ? 353 �
HK 615 3 46 ? 353 �
HK 616 3 22 ? 267 �

ksA4(HL) = ksA4(HL′) + 5 ·
(kswA4

(HL′) − kswV4
(HL′)

4 + kswV4
(HL′)

)

+ 8 ·
(kswA4

(HL′) − kswZ3
(HL′)

3 + kswZ3
(HL′)

)
+ 2k · kswA4

(HL′), (3.18)

where k = 0, 1, 2, 3 or 4. Plugging (3.7) and Corollary 3.4 into (3.18), we obtain

ksA4(HL) = (48 + 24k) · ksA4(HL′) − (26 + 16k) · 3g−2 − (8 + 6k) · 4g−2

and hence the lemma. �
4. Examples

4.1. Applications to handlebody knot/link tables

Irreducibility of handlebody knots in [5] and handlebody links in [1] are examined here with the ir-
reducibility criteria (Corollary 1.3 and Table 1). The ksA4 - and ksA5-invariants of handlebody links are 
computed by Appcontour [10]; the same software is also used to find an upper bound of the rank of each 
knot group. In many cases, the upper bound is identical to the rank.

The results of the irreducibility test are recorded in Tables 2 and 3, where the check mark � stands for 
the corresponding condition(s) not satisfied, and hence the handlebody link is irreducible, and the question 
mark means the opposite, so its irreducibility is inconclusive. To avoid confusion, HK is added to the name 
of each handlebody knot in [5]; so is HL to the name of each handlebody link in [1].

Since all handlebody knots in [5] are 3-generator, by Corollary 1.3, if either 12 does not divide ksA4(HK) +
26, or 60 does not divide ksA5(HK) + 223, HK is irreducible. On the contrary, in Table 3 different criteria 
are required to test each case, depending on the rank and the number of component (the column “comp.”) 
based on Table 1. For instance, for a 3-generator handlebody link of type [1, 1], such as HL41, if it fails 
either of (1.2) and (1.5), it is irreducible. But, for HL51, which is possibly 4-generator, we need to have both
(1.2) and (1.3) failed in order to draw a conclusion; also, the A5 criterion is not applicable in this case.
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Table 3
Irreducibility of handlebody links in [1].

comp. handlebody link rank ksA4 A4-criterion ksA5 A5-criterion
2 HL 41 3 114 � 600 �

HL 51 ≤ 4 98 � not applicable
HL 61 3 90 � 600 �
HL 62 3 106 ? 689 �
HL 63 3 90 � 469 �
HL 64 3 106 ? 689 �
HL 65 ≤ 4 210 � not applicable
HL 66 3 130 ? 1380 �
HL 67 ≤ 4 98 � not applicable
HL 68 3 114 � 1401 �

3 HL 69 4 310 ? not applicable
HL 610 4 326 � not applicable
HL 611 4 486 � not applicable
HL 612 4 502 ? not applicable
HL 613 4 822 � not applicable
HL 614 4 486 � not applicable

4 HL 615 5 1242 � not applicable

Fig. 4.1. Knot sum of HK 41 and HK 51 with meridian disks.

4.2. Irreducible handlebody links of a given type

Here we present a construction of irreducible handlebody links of any given type. First we introduce the 
notion of D-irreducibility for handlebody-link-disk pairs.

Definition 4.1 (D-irreducibility). A handlebody link HL is D-irreducible if either its complement S3 \ HL
admits no incompressible disks or it is a trivial knot. A handlebody-link-disk pair (HL, D) is a handlebody 
link HL together with an oriented incompressible disk D ⊂ HL. The pair (HL, D) is D-irreducible if there 
exists no incompressible disk D′ in the complement S3 \ HL with D′ ∩D = ∅. An unknot with a meridian 
disk is the trivial D-irreducible handlebody-link-disk pair.

D-irreducibility is equivalent to irreducibility for handlebody knots of genus g ≤ 2 [15] but stronger in 
general [14, Examples 5.5-6], [1, Remark 3.3]. Any D-irreducible handlebody link with an incompressible disk 
is a D-irreducible pair. On the other hand, the underlying handlebody link of a D-irreducible handlebody-
link-disk pair could be trivial (left handlebody-knot-disk pair in Fig. 4.2a).

Definition 4.2 (Knot sum). The knot sum of two handlebody-link-disk pairs (HL1, D1), (HL2, D2) is a 
handlebody link (HL1, D1)#(HL2, D2) obtained by gluing HL1, HL2 together as follows: Let Bi be a 3-
ball with B̊i ∩ HLi a tubular neighborhood N(Di) of Di in HLi, and identify N(Di) with the oriented 
3-manifold Di × [0, 1] using the orientation of Di, i = 1, 2. Then the knot sum is obtained by removing 
Bi from S3 and gluing resultant 3-manifolds S3 \B1, S3 \B2 via an orientation-reversing homeomorphism 
f : ∂(S3 \B1) → ∂(S3 \B2) with f(D1 × {i}) = D2 × {j}, i, j ∈ {0, 1} and i − j ≡ 1 mod 2.

The knot sum resembles the order-2 connected sum of spatial graphs [9].
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Fig. 4.2. Knot sum of D-irreducible handlebody-link-disk pairs.

Theorem 4.1. The knot sum of two non-trivial D-irreducible handlebody-link-disk pairs (HL1, D1), (HL2, D2)
is D-irreducible.

Proof. We prove by contradiction. Suppose the knot sum

HL � (HL1, D1)#(HL2, D2)

is not D-irreducible, and D is an incompressible disk in S3 \ HL.
Let B be a 3-ball with B ∩ (S3 \ HL) the complement of HL2, and A the intersection annulus ∂B ∩

(S3 \ HL). Isotope B and hence A such that the number of components of A ∩D is minimized.
Claim: A ∩ D = ∅. Suppose the intersection is non-empty, then we can choose a component α of A ∩ D

that is innermost in D. α must be an arc, for otherwise it would contradict either the D-irreducibility of 
(HLi, Di) or the minimality. α cuts D into two disks, one of which, say D′, and A intersect at α. Without 
loss of generality, we may assume D′ is in S3 \B.

If α is essential in A, then HL1 can be identified with the union of a tubular neighborhood of α in B
and S3 \B ∩ HL in S3. Since D′ ∩ ∂D is an arc connecting two sides of D1 in HL1, D1 is not separating 
and therefore a meridian disk of HL1. In addition, D′ and ∂D1 intersect at only one point, so (HL1, D1) is 
either trivial or not D-irreducible, contradicting the assumption.

If α is inessential in A, let D′′ be the disk cut off from A by α. Then D′ ∪ D′′ is a compressing disk 
in HL1. If ∂(D′ ∪ D′′) is inessential in ∂ HL1, the intersection α can be removed—with other intersection 
arcs intact—by isotoping B. On the other hand, the D-irreducibility of (HL1, D1) forces ∂(D′ ∪D′′) to be 
inessential in ∂ HL1. Thus, we have proved the claim, whence the theorem follows. �

In Fig. 4.2, K1, K2, K3 are knots, and L is a link. If L in Fig. 4.2a is the composition of two Hopf links, 
the resulting knot sum is HL612. Its irreducibility, which cannot be seen by our irreducibility test, hence 
follows from Theorem 4.1. The following corollary generalizes Suzuki’s example [14, Theorem 5.2].

Corollary 4.2. Given m non-negative integers n1, n2, . . . , nm with n :=
∑

ni > 0, there is an irreducible 
handlebody link of type [n1, n2, . . . , nm].

Proof. Consider a chain of rings with n-component—a knot sum of n − 1 Hopf links (Fig. 4.2b). Label each 
ring with a number in {1, 2, . . . , n}, and for the ring with label k,

l−1∑
i=1

ni < k ≤
l∑

i=1
ni,

we consider its knot sum with an irreducible handlebody knot of genus l, which can be obtained by per-
forming the knot sum operation iteratively on handlebody knots in [5] with meridian disks (e.g. Fig. 4.1). 
The resultant handlebody link is necessarily irreducible by Theorem 4.1 and of the prescribed type. �
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